用户名: 密码: 验证码:
中脑腹侧背盖区κ-阿片受体系统对吗啡依赖的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿片依赖是严重的医学和社会问题。神经生物学和药理学的研究均表明,阿片类物质依赖与中脑皮层边缘系统直接相关。吗啡等阿片类物质进入体内后,可以与GABA能神经元上的μ-阿片受体结合,使位于腹侧背盖区(ventral tegmentalarea,VTA)的多巴胺(dopamine,DA)能神经元因去抑制而激活,从而引起DA能神经元的投射靶区伏隔核(nucleus accumbens,NAc)、内侧前额叶皮层(medialprefrontal cortex,mPFC)中DA释放增加。这是阿片类物质产生欣快效应进而诱导成瘾的起始事件。除了引起欣快效应外,阿片类物质还激活一系列转录因子如CREB,Fos家族的表达。Fos家族蛋白,尤其是ΔFosB被认为与依赖性药物引起的敏化效应相关,是启动和维持药物依赖状态的分子开关。
     κ-阿片受体及其内源性的配体强啡肽(Dynorphin,Dyn)在中枢神经系统有广泛的分布。κ-阿片受体与μ-阿片受体介导的生物效应通常相互对抗:μ-激动剂激活DA能神经元,使DA释放增加,而κ-激动剂则抑制DA能神经传递;μ-激动剂用药后产生欣快,具有奖赏、强化效应,而κ-激动剂则介导烦躁、厌恶的情绪,没有奖赏、强化效应。这些结果提示,κ-阿片受体与μ-阿片受体就像古代哲学中的“阴”和“阳”一样,共同参与情绪、动机相关的精神神经活动的调节,维持机体阿片系统功能的内稳态。
     大量的研究表明,κ-阿片受体系统可以调控吗啡的药物依赖。选择性的κ-受体激动剂U-50488系统给药可以逆转吗啡诱导的条件性位置偏爱,阻断吗啡诱导的行为敏化,抑制吗啡自身给药行为,而且U-50488的这些作用可为选择性的κ-受体拮抗剂nor-BNI所阻断。而另一方面,在κ-阿片受体基因敲除的动物,依赖性药物引起的DA释放显著增加。κ-受体系统对DA能神经传递的调节可能是κ-激动剂对抗吗啡依赖的作用机制。
     中脑皮层边缘系统是与药物依赖密切相关的脑内结构。在该系统中,DA能神经元占据相对主导的地位,也是该系统参与药物依赖的主要功能性物质基础。其中,VTA是DA能神经元胞体密集的核团,由它发出的神经纤维可以投射到NAc和mPFC,分别形成DA能神经元的中脑边缘通路和中脑皮层通路。近年来的一些研究对于VTA是否存在κ-阿片受体、VTA中的κ-受体系统是否参与了吗啡依赖、κ-激动剂能否直接抑制该区内的DA能神经元以及其抑制作用的机制等问题尚存争议。本研究即拟从多个方面对上述问题进行探讨。
     我们首先应用实时定量PCR技术以及蛋白免疫印迹实验方法,考察了吗啡急慢性给药对中脑皮层边缘系统的三个重要脑区VTA、NAc、mPFC中κ-阿片受体mRNA和蛋白水平的影响。实验结果表明,吗啡急性给药可使上述三个脑区中的κ-阿片受体mRNA水平显著升高,但蛋白水平没有显著性改变。而吗啡慢性给药后,NAc和VTA中κ-阿片受体mRNA水平回复正常,而mPFC中mRNA含量维持高水平;慢性给药还使mPFC和VTA中的κ-受体蛋白显著下降,但对NAc中的蛋白水平没有显著影响。这些结果提示中脑皮层边缘系统内的κ-阿片受体可能参与了药物依赖的过程。而VTA、NAc、mPFC中κ-阿片受体表达改变的区域差异性说明κ-受体在这些脑区的合成和降解受到不同方式的调节,提示这些脑区在调控药物依赖中可能处于不同的地位。
     前人和我们的实验结果均表明VTA中的κ-受体可能参与了吗啡依赖的过程,同时VTA微注射κ-激动剂在正常动物可引起显著的行为改变,于是我们推测VTA微注射κ-激动剂U-50488有可能影响吗啡诱导的精神依赖。我们在两个动物行为模型上对此进行考察。在大鼠条件性位置偏爱实验中,VTA微注射U-50488,至少在所用剂量下并不产生显著的条件性位置厌恶(或偏爱),但却可以显著抑制吗啡所致的条件性位置偏爱;在大鼠行为敏化实验中,VTA微注射U-50488在并不影响动物自发活动的剂量下可显著抑制吗啡所致的行为敏化。这些结果表明,VTA微注射U-50488可以抑制吗啡诱导的精神依赖。
     在进一步的实验中,我们对VTA微注射κ-激动剂影响吗啡依赖的机制进行了初步探讨。采用脑组织匀浆的实验方法,我们检测了mPFC和NAc中单胺类神经递质及其代谢产物浓度的改变。实验结果表明,吗啡急性给药使mPFC和NAc中DA转化率升高,表明这两个脑区中DA能神经传递加强。而VTA微注射U-50488可显著抑制吗啡引起的DA转化率的升高。在吗啡慢性给药情况下,各处理组间虽无显著性差异,但也表现出类似趋势。在清醒动物脑微透析实验中,VTA微注射U-50488还可显著抑制吗啡引起的NAc细胞外液中DA和5-HT代谢产物的升高。免疫组化实验的结果表明,形成行为敏化的大鼠,NAc(包括核部和壳部)和mPFC中的FosB阳性细胞显著增加,而VTA微注射U-50488显著抑制吗啡引起的变化。以上结果提示,VTA微注射U-50488影响吗啡依赖的机制可能包括抑制DA能神经传递,抑制转录因子FosB的表达。VTA微注射U-50488对投射靶区NAc和mPFC均可产生显著影响,提示VTA中κ-阿片受体的作用可能并无VTA-NAc或VTA-mPFC投射通路的选择性。
     通过以上研究我们发现,吗啡急慢性给药可引起中脑皮层边缘系统中κ-阿片受体表达的改变,提示该系统中的κ-阿片受体可能参与了对吗啡依赖的调节。在中脑皮层边缘系统的核心区域VTA给予κ-激动剂可以抑制吗啡诱导的精神依赖,其作用可能与其对单胺类神经递质以及FosB基因表达的调节有关。而且VTA给予κ-激动剂可同时影响靶区NAc和mPFC,提示VTA中κ-阿片受体的作用并无投射通路的选择性。本研究对全面理解κ-受体对中脑DA能神经传递的调控作用以及κ-受体系统与药物依赖的关系有一定意义。
Opioid dependence remains a serious medical and social issue.Neurobiological and pharmacological studies have revealed that there is a direct correlation between the mesocorticolimbic system and opioid dependence.Opioids,such as morphine, disinhibit the dopaminergic neurons by activating theμ-opioid receptor on the GABAergic interneurons in ventral tegmental area(VTA).The subsequent DA efflux in the dopaminergic projecting targets(such as nucleus accumbens,medial prefrontal cortex) is believed to be initial events that trigger reward and dependence.In addition, exposure to opioids results in activation of some transcription factors,such as CREB and Fos family.ΔFosB,a truncated splice variant of full-length FosB,is considered to be a molecular switch of addiction.
     Kappa-opioid receptor,as well as its endogenous ligand dynorphin,hss a wide distribution in central nervous system.Activation of theκ-receptor antagonizes variousμ-receptor-mediated actions in the brain.κ-agonists inhibit the DA neurons and DA release,whileμ-agonists activate the dopaminergic neurotransmission.μ-agonists produce euphoria and function as positive reinforcers.In contrast,κ-agonists produce dysphoria and function as negative reinforcers.Taking together,μ-andκ-receptor act as an opposing pair in opioid signaling in the brain.
     Evidence is increasing to indicate that activation ofκ-opioid receptor suppress the morphine dependence.U-50488,a selectiveκ-agonist,abolishes the reinforcing effects of morphine in both self-administration and conditioned place preference paradigms.Without any effect by its self,selective-antagonist nor-BNI blocks the inhibitory effects of U-50488 on the morphine dependence.On the other hand,DA release stimulated by addictive drugs is exacerbated inκ-receptor knockout mice.The dual modulations of the midbrain dopaminergic system byμ- andκ-receptors may underlie the mechanism through whichκ-agonist inhibits the morphine dependence.
     It has long been recognized that drug dependence processing relies heavily on mesocorticolimbic DA systems,comprising DA neurons in VTA and their projections to NAc,mPFC and other forebrain regions.Recently,major efforts have attempted to specify what functionκ-receptor contribute in VTA.Doesκ-receptor exist in VTA? Doesκ-receptor in VTA exert an inhibitory effect of DA neurotransmission? Does intra-VTA administration ofκ-agonist inhibit morphine dependence and what is the mechanism? We are now trying to explore these issues.
     Using the real-time quantitative PCR and western blot tequniques,we measure theκ-receptor mRNA and protein levels in mPFC,NAc and VTA.Acute exposure to morphine increases the mRNA levels in all three regions,but have no significant effects on protein levels.After chronic exposure to morphine,whereasκ-receptor mRNA returns to basal level in NAc and VTA,the relatively modest induction in mPFC persists.Moreover,κ-receptor protein levels decrease in mPFC and VTA,but remain unchanged in NAc.These results suggest the involvement of mesocorticolimbicκ-receptors in the development of morphine dependence.
     Given the findings metioned above,we speculate that intra-VTA administration ofκ-agonist might influence the morphine dependence.Thus,the effects of U-50488 following VTA microinjetion on the morphine dependence were evaluated in behavior models of conditioned place preference and locomotor sensitization.Intra-VTA administraion of U-50488,at the doses we tested,did not produce significant effects on place conditioning and locomotor activity in naive rats.However,the morphine-induced place preference and locomotor sensitization were attenuated in U-50488-treated rats,suggesting a VTAκ-receptor-mediated mechanism in the modulation of morphine depedence.
     In further studies,we explored the neurochemical and neurobiological mechanisms through whichκ-agonist inhibit the morphine dependence.We found that acute exposure to morphine elevated the DA turnover in NAc and mPFC extracts. These elevations were significantly suppressed in extracts obtained from the rats treated with U-50488.A similar tendency was observed in animals received chronic drug administration,although there were no significant changes in DA turnover.In microdialysis study,U-50488,following microinjection into VTA,also attenuated the morphine-induced elevation of DA metabolite(HVA) and 5-HT metabolite(5-HIAA). In addition,the number of FosB-positive neurons significantly increased in mPFC and NAc during the development of locomotor sensitization.U-50488,following microinjection into VTA,reduced the number of FosB-positive neurons significantly, indicating that the inhibitory effects of intra-VTA U-50488 on morphine dependence might be related to its modulatory effects on expression of the transcription factor FosB.
     In conclusion,κ-opioid receptor in VTA was found to be involved in the morphine dependence.Activation of theκ-opioid receptor in VTA exhibits inhibitory effects on morphine-induce place preference and locomotor sensitization.The mechanism is related to its modulation on DA release and FosB expression.
引文
[1]Davis MP,Walsh D,Lagman R,and LeGrand SB Controversies in pharmacotherapy of pain management.Lancet Oncol 2005,6(9):696-704.
    [2]Koob GF,Le Moal M.Drug addiction,dysregulation of reward,and allostasis.Neuropsychopharmacology 2001,24:97-129.
    [3]Solomon RL.The opponentprocess theory of acquired motivation:the costs of pleasure and the benefits of pain.Am Psychol 1980,35:691-712.
    [4]Robinson TE,Berridge KC.Theneural basis of drug craving:an incentivesensitization theory of addiction.Brain Res Rev1993,18:247-91.
    [5]Robinson TE,Berridge KC.The psychology and neurobiology of addiction:an incentive-sensitization view.Addiction 2000,95:S91-117
    [6]Berke JD,Hyman SE.Addiction,dopamine,and the molecular mechanisms of memory.Neuron 2000,25:515-32.
    [7]Leshner AI.Addiction is a brain disease and it matters,Science 1997,278:45-47.
    [8]Pierce RC,Kumaresan V.The mesolimbic dopamine system:the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 2006;30(2):215-38.
    [9]Nestler EJ.Historical review:Molecular and cellular mechanisms of opiate and cocaine addiction.Trends Pharmacol Sci,2004,25(4):210-218.
    [10]Di Chiara,G.,Bassareo,V.,Fenu,S.,De Luca,M.A.,Spina,L.,Cadoni,C.,et al.Dopamine and drug addiction:the nucleus accumbens shell connection.Neuropharmacology 2004,47(Suppl 1):227-241.
    [11]Wise,R.A.Dopamine,learning and motivation.Nat Rev Neurosci 2004,5:483- 494.
    [12]Williams JT,Christie MJ,Manzoni O.Cellular and synaptic adaptations mediating opioid dependence.Physiological Reviews 2001,81(1):299-343
    [13]Mansour A,Khachaturian H,Lewis ME,Akil H,Watson SJ.Anatomy of CNS opioid receptors.Trends Neurosci 1988,11:308-314.
    [14]Shippenberg TS.The dynorphin/kappa opioid receptor system:a new target for the treatment of addiction and affective disorders? Neuropsychopharmacology 2009,34(1):247
    [15]Huang EY,Hsiao HJ,Lue WM,Tao PL.U-50488 Decreases the Rewarding Effect and Mesolimbic Dopamine Neuron Activity Induced by Morphine in Rats.J Med Sci 2007,27(1):015-022
    [16]Glick SD,Maisonneuve IM,Raucci J,Archer S.Kappa opioid inhibition of morphine and cocaine self-administration in rats.Brain Res 1995,681(1-2):147-52.
    [17]Speciale SG,Manaye KF,Sadeq M,German DC.Opioid receptors in midbrain dopaminergic regions of the rat.Ⅱ.Kappa and delta receptor autoradiography.J Neural Transm Gen Sect 1993,91:53-66.
    [18]Arvidsson U,Riedl M,Chakrabarti S,Vulchanova L,Lee JH,Nakano AH,Lin X,Loh HH,Law PY,Wessendorf MW,et al The kappa-opioid receptor is primarily postsynaptic:combined immunohistochemical localization of the receptor and endogenous opioids.Proc Natl Acad Sci USA 1995,92:5062-5066.
    [19]Mansour A,Burke S,Pavlic RJ,Akil H,Watson SJ.Immunohistochemical localization of the cloned kappa 1 receptor in the rat CNS and pituitary.Neuroscience 1996,71:671-690.
    [20]Fallon JH,Leslie FM,Cone RI.Dynorphin-containing pathways in the substantia nigra and ventral tegmentum:a double labeling study using combined immunofluorescence and retrograde tracing.Neuropeptides 1985,5:457-460.
    [21]Meredith GE.The synaptic framework for chemical signaling in nucleus accumbens.Ann NY Acad Sci 1999,877:140-156.
    [22]Ronken E,Van Muiswinkel FL,Mulder AH,Schoffelmeer AN.Opioid receptor-mediated inhibition of evoked catecholamine release from cultured neurons of rat ventral mesencephalon and locus coeruleus.Eur J Pharmacol 1993,230:349-355.
    [23]Dalman FC,O'Malley KL.K-Opioid tolerance and dependence in cultures of dopaminergic midbrain neurons.J Neurosci 1999,19:5750-5757.
    [24]Schultz,W.Getting formal with dopamine and reward.Neuron 2002,36:241-263.
    [25]Kalivas PW,Volkow ND.The neural basis of addiction:a pathology of motivation and choice.Am J Psychiatry 2005,162(8),1403-1413.
    [26]Capriles N,Rodaros D,Sorge RE,Stewart J.A role for the prefrontal cortex in stress-and cocaine-induced reinstatement of cocaine seeking in rats.Psychopharmacology 2003,168:66-74.
    [27]McFarland K,Davidge SB,Lapish CC,Kalivas PW.Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior.J Neurosci 2004,24(7):1551-1560.
    [28]Rebec GV,Sun W.Neuronal substrates of relapse to cocaine-seeking behavior:role of prefrontal cortex.J Exp Anal Behav 2005,84(3):653-666.
    [29]Phillipson OT.Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus:a horseradish peroxidase study in the rat.J Comp Neurol.1979,187:117-143.
    [30]Kalivas PW,Volkow N,Seamans J.Unmanageable motivation in addiction:a pathology in prefrontal-accumbens glutamate transmission.Neuron 2005,45(5):647-650.
    [31]Wang XM,Zhou Y,Spangler R,Ho A,Han JS,Kreek MJ.Acute intermittent morphine increases preprodynorphin and kappa opioid receptor mRNA levels in the rat brain.Brain Res Mol Brain Res 1999,66(1-2):184-7.
    [32]Cichewicz DL,Haller VL,Welch SP.Changes in opioid and cannabinoid receptor protein following short-term combination treatment with delta(9)-tetrahydrocannabinol and morphine.J Pharmacol Exp Ther 2001,297(1):121-7.
    [33]Arya M,Shergill IS,Williamson M,Gommersall L,Arya N,Patel HR.Basic principles of real-time quantitative PCR.Expert Rev Mol Diagn 2005,5(2):209-19.
    [34]Vats ID,Dolt KS,Kumar K,Karar J,Nath M,Mohan A,Pasha MA,Pasha S.YFa,a chimeric opioid peptide,induces kappa-specific antinociception with no tolerance development during 6 days of chronic treatment.J Neurosci Res 2008,86(7):1599-607.
    [35]Paxinos G,Watson C.The rat brain in stereotaxic coordinates.New York:Academic;1998
    [36]Livak KJ,Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method.Methods 2001,25(4):402-8
    [37]Mansvelder HD.Yin and yang of VTA opioid signaling.Focus on “both kappa and mu opioid agonists inhibit glutamatergic input to ventral tegmental area neurons”.J Neurophysiol 2005,93(6):3046-7.
    [38]Przewlocka B,Turchan J,Lason W,Przewlocki R.Ethanol withdrawal enhances prodynorphin system activity in the rat nucleus accumbens.Neurosci.Lett 1997,238:13-16.
    [39]Keith DE,Murray SR,Zaki PA,Chu PC,Lissin DV,Kang L,Evans CJ,von Zastrow M.Morphine activates opioid receptors without causing their rapid internalization.J Biol Chem 1996,271:19021 - 19024.
    [40]Cole RL,Konradi C,Douglass J,Hyman SE.Neuronal adaptation to amphetamine and dopamine:molecular mechanisms of prodynorphin gene regulation in rat striatum.Neuron 1995,14:813- 823.
    [41]Nishino K,Su YF,Wong C-S,Watkins WD and Chang KJ.Dissociation of mu opioid tolerance from receptor down-regulation in rat spinal cord.J Pharmacol Exp Ther 1990 253:67-71.
    [42]Xia YF,He L,Whistler JL,Hjelmstad GO.Acute amphetamine exposure selectively desensitizes kappa-opioid receptors in the nucleus accumbens.Neuropsychopharmacology.2008,33(4):892-900.
    [43]Pan ZZ mu-Opposing actions of the kappa-opioid receptor.Trends Pharmacol Sci 1998,19:94-98.
    [44]Sora I,Takahashi N,Funada M,Ujike H,Revay RS,Donovan DM,Miner LL,Uh1 GR.Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia.Proe Natl Acad Sci U S A 1997,94(4):1544-9.
    [45]Bals-Kubik R,Herz A,Shippenberg TS.Evidence that the aversive effects of opioid antagonists and kappa-agonists are centrally mediated.Psychopharmacology(Berl) 1989,98(2):203-6.
    [46]Barr GA,Wang S,Carden S.Aversive properties of the kappa opioid agonist U50,488 in the week-old rat pup.Psychopharmacology(Berl) 1994,113(3-4):422-8.
    [47]Spanagel R,Herz A,Shippenberg TS.Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway.Proc Natl Acad Sci USA 1992,89(6):2046-50.
    [48]Itoh J,Ukai M,Kameyama T.Dynorphin A-(1-13) potently improves the impairment of spontaneous alternation performance induced by the mu-selective opioid receptor agonist DAMGO in mice.J Pharmacol Exp Ther 1994,269(1):15-21.
    [49]Weisskopf MG,Zalutsky RA,Nicoll RA.The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation.Nature 1993,362(6419):423-7.
    [50]Wagner JJ,Terman GW,Chavkin C.Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus.Nature 1993,363(6428):451-4.
    [51]Hasebe K,Kawai K,Suzuki T,Kawamura K,Tanaka T,Narita M,Nagase H,Suzuki T.Possible pharmacotherapy of the opioid k receptor agonist for drug dependence.Ann N Y Acad Sci 2004,1025:404-413.
    [52]Hooke LP,He L,Lee NM.Dynorphin A modulates acute and chronic opioid effects.J Pharmacol Exp Ther 1995,273(1):292-7.
    [53]Yamamoto T,Ohno M,Ueki S.A selective K-opioid agonist,U-50488H blocks the development of tolerance to morphine analgesia in rats.Eur J Pharmacol 1988,156:173-176.
    [54]Takahashi M,Senda T,Kaneto H.Role of spinal K-opioid receptors in the blockade of the development of antinociceptive tolerance to morphine.Eur J Pharmacol 1991,200:293-297.
    [55]Tao PL,Hwang CL,Chen CY.U-50488 blocks the development of morphine tolerance and dependence at a very low dose in guinea pigs.Eur J Pharmacol 1994,256:281-286.
    [56]Narita M,Takahashi Y,Takamori K,Funada M,Suzuki T,Misawa M,Nagase H.Effects of kappa-agonist on the antinociception and locomotor enhancing action induced by morphine in mice.Jpn J Pharmacol 1993,62(1):15-24.
    [57]Funada M,Suzuki T,Narita M,Misawa M,Nagase H.Blockade of morphine reward through the activation of K-opioid receptors in mice.Neuropharmacology 1993,32:1315-1323.
    [58]Kuzmin AV,Semenova S,Gerrits MA,Zvartau EE,Van Ree J M.Kappa-opioid receptor agonist U50,488H modulates cocaine and morphine self-administration in drug-na(?)ve rats and mice.Eur J Pharmacol 1997,321:265-271.
    [59]Chefer VI,Czyzyk T,Bolan EA,Moron J,Pintar JE,Shippenberg TS.Endogenous kappa-opioid receptor systems regulate mesoaccumbal dopamine dynamics and vulnerability to cocaine.J Neurosci 2005,25(20):5029-37.
    [60]Phillips AG,LePiane FG.Reinforcing effects of morphine microinjection into the ventral tegmental area.Pharmacol Biochem Behav 1980,12:965-968.
    [61]Gysling K,Wang RY.Morphine-induced activation of A10 dopamine neurons in the rat.Brain Res 1983,277:119-127.
    [62]Kalivas PW,Duffy P.Effect of acute and daily neurotensin and enkephalin treatments on extracellular dopamine in the nucleus accumbens.J Neurosci 1990,10:2940-2949.
    [63]Bals-Kubik R,Ableitner A,Herz A,Shippenberg TS.Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats.J Pharmacol Exp Ther 1993,264:489-495,.
    [64]Watson SJ,Trujillo KA,Herman JP,Akil H.Molecular and Cellular Aspects of the Drug Addictions,ed.Goldstein,A.(Springer,New York),1989,pp.29-91.
    [65]Spanagel R,Herz A,Shippenberg TS.The effects of opioid peptides on dopamine release in the nucleus accumbens:an in vivo microdialysis study.J Neurochem 1990,55:1734-1740.
    [66]Svingos AL,Colago EE,Pickel VM.Cellular sites for dynorphin activation of kappa-opioid receptors in the rat nucleus accumbens shell.J Neurosci 1999,19:1804-1813.
    [67]Yokoo H,Yamada S,Yoshida M,Tanaka M,Nishi S.Attenuation of the inhibitory effect of dynorphin on dopamine release inthe rat nucleus accumbens by repeated treatment with methamphetamine.Eur J Pharmacol 1992,222:43-47.
    [68]Thompson AC,Zapata A,Justice JB,Vaughan RA,Sharpe LG,Shippenberg TS.κ-Opioid receptor activation modifies dopamine uptake in the nucleus accumbens and opposes the effects of cocaine.J Neurosci 2000,20:9333-9340.
    [69]Margolis EB,Hjelmstad GO,Bonci A,Fields HL.Kappa-opioid agonists directly inhibit midbrain dopaminergic neurons.J Neurosci 2003,23:9981-9986.
    [70]Pierce RC,Kumaresan V.The mesolimbic dopamine system:The final common pathway for the reinforcing effect of drugs of abuse? Neuroscience and Biobehavioral Reviews 2006,30:215-38
    [71]Margolis EB,Hjelmstad GO,Bonci A,Fields HL.Both kappa amd mu agonists inhibit glutamatergic input to ventral tegmental area neurons.J Neurophysiol 2005,93:3086-3093.
    [72]Devine DP,Leone P,Wise RA.Mesolimbic dopamine neurotransmission is increased by administration of mu-opioid receptor antagonists.Eur J Pharmacol 1993,243:55-64.
    [73]You ZB,Herrera-Marschitz M,Terenius L.Modulation of neurotransmitter release in the basal ganglia of the rat brain by dynorphin peptides.J Pharmacol Exp Ther 1999,290:1307-1315.
    [74]Pan ZZ,Tershner SA,Fields HL.Cellular mechanism for anti-analgesic action of agonists of the kappa-opioid receptor.Nature 1997,389(6649):382-5.
    [75]Matthews RT,German DC.Electrophysiological evidence for the excitation of rat ventral tegrnental area dopamine neurons by morphine.Neuroscience 1984,3:617- 625.
    [76]Latimer LG,Duffy P,KalivasPW.Muopioid receptor involvement in enkephalin activation of dopamine neurons in the ventral tegrnental area.J Pharmacol Exp Ther 1987,241:328-337.
    [77]Koob GF.Drugs of abuse:anatomy,pharmacology and function of reward pathways.Trends Pharmacol Sci 1992,13(5):177-84.
    [78]Nader K,van der Kooy D(1997) Deprivation state switches the neurobiological substrates mediating opiate reward in the ventral tegmental area.J Neurosci 17:383-390.
    [79]Shippenberg TS,Bals-Kubik R,Herz A.Examination of the neurochemical substrates mediating the motivational effects of opioids:role of the mesolimbic dopamine system and D-1 vs.D-2 dopamine receptors.J Pharmacol Exp Ther 1993,265:53-59.
    [80]Chao J,Nestler EJ.Molecular neurobiology of drug addiction.Annu Rev Med 2004,55:113-32.
    [81]Chen J,Kelz MB,Hope BT,et al.Chronic Fos-related antigens:stable variants of ΔFosB induced in brain by chronic treatments.J Neurosci 1997,17:4933-41.
    [82]Andersson M,Westin JE,Cenci MA,et al.Time course of striatal ΔFosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment.Eur J Neurosci 2003,17:661-66.
    [83]Kelz MB,Chen J,Carlezon WA Jr,et al.Expression of the transcription factor ΔfosB in the brain controls sensitivity to cocaine.Nature 1999,401:272-276.
    [84]Zachariou V et al.ΔFosB in the nucleus accumbens modulates morphine reward,tolerance,and dependence.Soc Neurosci Abstr 2003,29:112-116.
    [85]Colby CR,Whisler K,Steffen C,et al.Striatal cell type-specific overexpression of delta-FosB enhances incentive for cocaine.J Neurosci 2003,23:2488-2493.
    [86]Peakman MC,Colby C,Perrotti LI,et al.Inducible,brain region-specific expression of a dominant negative mutant of c-Jun in transgenic mice decreases sensitivity to cocaine.Brain Res.2003,970:73-86.
    [87]Hiroi N,Brown JR,Haile CN,et al.FosB mutant mice:loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine's psychomotor and rewarding effects.Proc.Natl.Acad.Sci.USA 1997,94:10397-402
    [88]McClung CA and Nestler EJ.Regulation of gene expression and cocaine reward by CREB and AFosB.Nat Neurosci 2003,11:1208-1215.
    [89]Nestler EJ,Barrot M,Self DW.AFosB:a molecular switch for addiction.Proc Natl Acad Sci USA 2001,98:11042-11046.
    [90]Margolis EB,Lock H,Chefer Ⅵ,Shippenberg TS,Hjelmstad GO,Fields HL.Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex.Proc Natl Acad Sci USA 2006,103(8):2938-42.
    [91]Ford CP,Mark GP,Williams JT.Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location.J Neurosci 2006,26(10):2788-97.
    [92]Leyton M,Rajabi H,Stewart J.U-50,488H into A10 reduces haloperidol-induced elevations of accumbens dopamine.Neuroreport.1992,3(12):1127-30.
    [93]Monika Orowska-Majdak.Microdialysis of the brain structures:application in behavioral research on vasopressin and oxytocin.Acta Neurobiol Exp 2004,64(2):177-188.
    [94]Steinmiller CL,Maisonneuve IM,Glick SD.Effects of dextromethorphan on dopamine release in the nucleus accumbens:Interactions with morphine.Pharmacol Biochem Behav 2003,74(4):803-810.
    [95]Huang EYK,Liu TC,Tao PL.Co-administration of dextromethorphan with morphine attenuates morphine rewarding effect and related dopamine releases at thenucleus accumbens.Naunyn Schmiedebergs Arch Pharmacol 2003,368:386-392.
    [96]Chen JS,Nye HE,Kelz MB,et al.Regulation of delta FosB and FosB-like proteins by electroconvulsive seizure and cocaine treatments.Mol Pharmacol 1995,48(5):880-889.
    [97]Kaste K,Kivinummi T,Piepponen TP,Kiianmaa K,Ahtee L.Differences in basal and morphine-induced FosB/DeltaFosB and pCREB immunoreactivities in dopaminergic brain regions of alcohol-preferring AA and alcohol-avoiding ANA rats.Pharmacol Biochem Behav.2009 Mar 24.[Epub ahead of print]
    [98]Narita M,Kishimoto Y,Ise Y,Yajima Y,Misawa K,Suzuki T.Direct evidence for the involvement of the mesolimbic kappa-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state.Neuropsychopharmacology.2005,30(1):111-8.
    [1]Liu CH,Liu H,Han XY,et al.Synthesis and Characterization of Thienorphine and Its Glucuronide Conjugate[J].Synthetic Commun,2005,35:701-710.
    [2]Yu G,Yue Y J,Cui MX,et al.Thienorphine is a Potent Long-acting Partial Opioid Agonist:a Comparative Study with Buprenorphine[J].J Pharmacol Exp Ther 2006,318:282 - 287.
    [3]Zhao WL,Gong ZH,Liang JH.A new buprenorphine analogy,thienorphine,inhibits morphine-induced behavioral sensitization in mice[J].Acta Pharmacol Sin(中国药理学报),2004,25:1413-1418.
    [4]Maesen FP,Smeets JJ,Sledsens TJ,et al.Tiotropium bromide,a new long-acting antimuscarinic bronchodilator:a pharmacodynamic study in patients with chronic obstructive pulmonary disease(COPD)[J].Eur Respir J,1995,8:1506-1513.
    [5]Davids E,Gastpar M.Buprenorphine in the treatment of opioid dependence[J].Eur Neuropsychopharm,2004,14:209-216.
    [6]Schuh KJ,Johanson CE.Pharmacokinetic comparison of the buprenorphine sublingual liquid and tablet[J].Drug Alcohol Depend,1999,56:55-60.
    [7]Lopatko OV,White JM,Huber A,et al.Opioid effects and opioid withdrawal during a 24 h dosing interval inpatients maintained on buprenorphine[J].Drug Alcohol Depend,2003,69:317-322.
    [8]Kreek MJ.Opiates,opioids and addiction[J].Mol Psychiatry,1996,1:232-254.
    [9]Fudala PJ,Jaffe JH,Dax EM,et al.Use of buprenorphine in the treatment of opioid addiction.Ⅱ.Physiologic and behavioral effects of daily and alternate-day administration and abrupt withdrawal[J].Clin Pharmacol Ther,1990,47:525-534.
    [10]Neilan CL,Husbands SM,Breeden S,et al.Characterization of the complex morphinan derivative BU72 as a high efficacy,long-lasting mu-opioid receptor agonist[J].Eur J Pharmacol,2004,499:107-116.
    [11]Husbands SM,Neilan CL,Broadbear J,et al.BU74,a complex oripavine derivative with potent kappa opioid receptor agonism and delayed opioid antagonism[J].Eur J Pharmacol,2005,509:117-125.
    [12]Feinberg AP,Creese I,Snyder SH.The Opiate Receptor:A model explaining structure-activity relationships of opiate agonists and antagonists[J].PNAS,1976,73:4215-4219.
    [1]陈晓岚,刘景根,池志强.阿片成瘾的细胞分子机制[J].中国药理学通报,2005,21(8):901-4.
    [2]Kreek MJ,Nielsen DA,Butelman ER,LaForge KS.Genetic influence on impulsivity,risk taking,stress responsivity and vulnerability to drug abuse and addiction[J].Nat Neurosci,2005,8(11):1450-7.
    [3]Lile JA.Pharmacological determinants of the reinforcing effects of psychostimulants:relation to agonist substitution treatment[J].Exp Clin Psychopharmacol,2006,14(1):20-33.
    [4]Marsch LA,Bickel WK,Badger GJ,Rathmell JP et al.Effects of infusion rate of intravenously administered morphine on physiological,psychomotor,and self-reported measures in humans[J].J Pharrnacol Exp Ther,2001,299(3):1056-65.
    [5]Abreu ME,Bigelow GE,Fleisher L,Walsh SL.Effect of intravenous injection speed on responses to cocaine and hydromorphone in humans[J].Psychopharmacology,2001,154(1):76-84.
    [6]Samaha AN,Li Y,Robinson TE.The rate of intravenous cocaine administration determines susceptibility to sensitization[J].J Neurosci,2002,22(8):3244-50.
    [7]Woolverton WL,Wang Z.Relationship between injection duration,transporter occupancy and reinforcing strength of cocaine[J].Eur J Pharmacol,2004,486(3):251-7.
    [8]Volkow ND,Wang GJ,Fischman MW,Foltin R et al.Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain[J].Life Sci,2000,67(12):1507-15.
    [9]de Wit H,Dudish S,Ambre J.Subjective and behavioral effects ofdiazepam depend on its rate of onset[J].Psychopharmacology,1993,112(2-3):324-30.
    [10]Lile JA,Wang Z,Woolverton WL,France JE et al.The reinforcing efficacy of psychostimulants in rhesus monkeys:The role of pharmacokinetics and pharmacodynamics[J].J Pharmacol Exp Ther,2003,307(1):356-66.
    [11]Winger G,Hursh SR,Casey KL,Woods JH.Relative reinforcing strength of three N-methyl-d-aspartate antagonists with different onsets of action[J].J Pharmacol Exp Ther,2002,301(2):690-7.
    [12]Wee S,Carroll FI,Woolverton WL.A reduced rate of in vivo dopamine transporter binding is associated with lower relative reinforcing efficacy of stimulants[J].Neuropsychopharmaeology,2006,31(2):351-62.
    [13]Samaha AN,Robinson TE.Why does the rapid delivery of drugs to the brain promote addiction[J]? Trends Pharmacol Sci,2005,26(2):82-7.
    [14]Crombag HS,Ferrario C,Myc PP,Robinson TE.The rate of intravenous drug infusion does not affect psychomotor stimulant-taking or seeking[J].Behav Pharmacol,2003,14:S56.
    [15]Liu Y,Roberts DCS,Morgan D.Sensitization to the reinforcing effects of self-administered cocaine in rats:Effects of dose and intravenous injection speed[J].Eur J Neurosci,2005,22(1):195-200.
    [16]Samaha AN,Mallet N,Ferguson SM,Gonon F et al.The rate of cocaine administration alters gene regulation and behavioural plasticity:implications for addiction[J].J Neurosci,2004,24(28):6362-70.
    [17]Samaha AN,Yau WYW,Yang P,Robinson TE.Rapid delivery of nicotine promotes behavioural sensitization and alters its neurobiological impact[J].Biol Psychiatry,2005,57(4):351-60.
    [18]Porrino LJ.Functional consequences of acute cocaine treatment depend on route of administration[J].Psychopharmacology,1993,112(2-3):343-51.
    [19]Ko MC,Terner J,Hursh S,Woods JH et al.Relative reinforcing effects of three opioids with different durations of action[J].J Pharmacol Exp Ther,2002,301(2):698-704.
    [20]梁建辉,韩容.行为敏化动物模型在药物依赖性评价中的应用[J].中国药理学通报,2004,20(7):726-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700