用户名: 密码: 验证码:
基于植被和冻土协同影响的江河源区水循环研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变化和人类活动下的江河源区水文和能量过程成为维系江河源区作为“中华水塔”的控制要素,土地利用和气候变化对江河源区高寒生态系统的水文和水热过程平衡造成了严重的影响。本论文探讨了江河源区气候变化,分析了土地利用变化及生态系统的稳定性,利用SWAT模型研究了土地利用变化对黄河生态源区径流过程的影响。在长江源区和黄河源区分别选择典型的小流域,进行水文、能量和生态过程各环节不同时期的实验和观测,开发了一个耦合水热过程的分布式冻土水文过程模型,基于定点和模型观测数据探讨大气、土壤与植被水热传输与交换(SVAT)及流域水文过程。
     1.江河源区的降水整体呈现缓慢增加的趋势,降水增加量4.3mm/10年;黄河源区南区的8个站点存在降水量下降的趋势,而其他站点的降水量增加;降水变化跟海拔的关系不明显。江河源区及周边气温存在着明显增高的趋势,平均气温增幅为0.318℃/10yr,高于整个青藏高原整体的增幅水平,气温变化与海拔之间的关系不明显。
     作为江河源区最重要的生态系统草地,20世纪中期特别是1986年以来高覆盖草地的面积减少,生态系统稳定性减弱;而低覆盖草地的面积增加,生态系统稳定性增强。水域系统退化中,湖泊的萎缩主要发生在长江源区,而河流的萎缩主要发生在黄河源区。
     20世纪80年代中期以来,黄河生态源区流量减少的速度越来越快,以玛多站最为明显;同时汛期的洪峰减少速率小于基流。研究表明,LUCC对流量变化的影响平均为19%,对枯水期的影响较大,为28%左右。
     2.在多年冻土区,径流过程存在春汛和夏汛两个明显的汛期,春汛由降水、积雪融化和冻土活动层融化水组成,而夏汛主要由降雨组成,春末夏初(5-6月)和秋季(9-10月)的径流系数远高于年均值,有些甚至超过了1,夏季径流系数较小。
     通过在风火山流域的实验研究表明,SRM融雪径流模型可以成功地应用于该地区。模拟结果表明:在气温升高2℃情况下,流域积雪消融期明显提前,改变了径流在时间分布上的原有形式,整个水文过程线在时间上明显前移。在降水增加和减少10%的情况下,流域融雪径流量也随之不同程度的增加和减少,则当降水增加或者减少10%时,其峰值有较明显的变化。
     冻土水文模型对土壤温度的模拟的整体模型效率系数达到了0.85以上,模拟的径流的模型效率系数达到了0.731。不同气候情景下的模拟表明未来气候在温度增加1℃和降水增加10%的情境下,蒸散发增幅最大,比现在提高8.1%;温度不变,降水量减少10%,蒸散发减幅最大,比现在减少3.1%。不同植被盖度下的模拟表明,植被盖度的退化,使得蒸发量减少,径流增加,同时径流组成发生了变化,地表径流的比例增大,壤中流的比率减少。
     3.随着植被盖度的降低,冻结过程和融化过程变得迅速,季节冻土冻结开始时间和多年冻土活动层的融化开始时间显著提前,从而形成了季节冻土冻结深度积分增加而多年冻土活动层冻结深度积分减少两种相反的趋势。冻结期负等温线和未冻结期正等温线的最大侵入深度和持续时间随着盖度的降低而增加;但季节冻土融化期温度≥10℃等温线却随植被盖度的降低而减小,季节冻土冻结期温度≤5℃等温线对植被盖度的响应不明显。
     多年冻土活动层土壤剖面在40cm和120cm左右都存在着高含水层,70cm左右为低含水层;季节冻土在10cm和80cm左右为高含水层,30cm左右为低含水层。植被盖度的降低,导致多年冻土活动层土壤剖面20~60cm土壤水分减少,60~120cm土壤水分含量在除了冻结期外的三个阶段而增加;而季节冻土整个土壤剖面的水分含量随植被盖度的降低而减小。
     基于冻土水文模型的模拟表明,植被盖度的退化,吸收的能量减少,净辐射减少。潜热减少,地热的绝对值增加,从而促使了深层冻土的融化和活动层厚度的增加。
The process of hydrology and energy under the global change and humanactivities are the control factors which retain the source region of Yangtze and Yellowriver as the "Chinese water tower". The LUCC and climate change seriously affect thebalance of hydrology and heat-water on the high-cold ecosystems of the Yangtze andYellow river. This thesis discuss the climate change and LUCC in the source region ofYangtze and Yellow river, and the influence of LUCC on streamflow in theeco-environment source region are studied by the SWAT model. Two typical smallwatershed are selected in the source region of Yangtze and Yellow river respectivelyfor the examination and observation on the process of hydrology, energy and ecologyin different stages. A SRM (snow melt runoff model) are used to discuss the responseof stream process to climate change. A frozen soil hydrology process model is built,and the heat-water process is discussed under different vegetation coverage based onmodel simulation and observation.
     1. The precipitation has slowly increasing trends in the whole source region ofYangtze and Yellow river, with 4.3mm every l0 years. However, the eight gaugingstation in the south region of Yellow river has a decreasing tendency, and the otherstations increase, the elevation dependency of precipitation changing is not significant.The temperature of 32 stations in and near the source region reflects significantwarming, with average warming amplitude of 0.318℃/10yr which is higher than theglobal Qinghai-Tibet Plateau. The elevation dependency of climatic warming is notsignificant.
     The grassland ecosystem is the most import ecosystem in the source region ofYangtze and Yellow river. The area of the high cover grassland decrease since 1950sespecially from 1986, and its ecosystem stability reduce; however, the area of the lowcover grassland increased, and its ecosystem stability increased. The degeneration oflake is mainly happened in the source region of Yangtze river, and the degeneration ofriver is mainly happened in the source region of Yellow river.
     The runoff gradually decreases since 1985s, and the Maduo is the most obvious.The decreased of the flood is smaller than the baseflow. The impact of the LUCC onstreamflow is about 19% over the whole year, but nearly 28% in the low water period.
     2. There are two obvious floods which are spring flood and summer flood in thepermafrost region. The spring flood is mainly consist by the precipitation, snowmelting and thawing water of frozen soil, while the summer flood is mainly consist bythe precipitation. The runoff coefficient in the stage of latter spring and autumn ishigher than the average and sometimes higher than 1 and the runoff coefficient inspring is much smaller.
     The SRM model is successfully used in the Fenghuoshan watershed. Whentemperature increase 2℃, the snowmelt season significantly shift towards earlier datesand the spatial distribution of annual runoff has also obviously been redistributedwhich present a trend of increase in spring. Increase or decrease in annual precipitationof 10% result in corresponding changes in annual runoff and peak flow.
     The frozen soil hydrology model simulate the process of hydrology and energy well,the model efficient coefficients of the simulated soil temperature at different depth areall over 0.85 and the streamflow is efficient coefficient is 0.731. The simulation underdifferent climate scenarios indicate that evapotranspiration is highest at the scenario oftemperature increase 1℃and the precipitation increase 10%, while it is the lowest atthe scenario of temperature unchanged and the precipitation decrease 10%. Thesimulation under different vegetation coverage reveal that with the decrease ofvegetation coverage, the evapotranspiration decrease and the runoff increase, and thenthe composition of runoff changed, with the proportion of surface runoff increased andsubrunoff decreased.
     3. The freeze-thaw process was sped up by the reduc-tion in vegetation cover, withthe date of onset of freez-ing for the seasonally frozen soil and of onset of thawing forthe permafrost soil being clearly earlier. With de-clining cover the integral of freezingdepth for the sea-sonally frozen soil increased, but decreased for the per-mafrost soil.The maximum invasion depth and duration of the negative isotherm for the frozenstage and of the positive isotherm for non-frozen stage increased with declining vegetation cover, however, positive isotherms (≥10℃) of seasonally frozen soil at thenon-frozen stage de-creased with declining vegetation cover, whereas the influence ofnegative isotherms (≤-5℃) for frozen soils is not obvious.
     There were two high soil moisture layers (0.40 and 1.20 m depths) and a lowmoisture layer (0.70 m) in the profile of the active layer of permafrost. Compara-tively,in the seasonally frozen soil the two high mois-ture layers occurred at depths of 0.10and 0.80 m, and a low moisture layer at a depth of 0.30 m. With a decline in vegetationcover, the permafrost soil moisture decreased in the top (0.2-0.60 m) of soil profile,but increased at greater depths. Comparatively, a decline in cover of the seasonallyfrozen soil resulted in a decrease in soil moisture over the entire soil profile.
     The simulation of the frozen soil hydrology model reveal that with the decrease ofvegetation coverage the latent heat decrease and the absolute value of ground heatincrease, which then accelerate the thawing process of the deepen frozen soil and theincrassation of the active layer.
引文
1. A.R. Hibbert, "Forest Treatment Effects on Water Yield", In: W. E.Sopper and H. W. Lull (Editors), Int. SVmp. For. Hydro Pennsylvania, September 1965[c]. Pergamon, Oxford.
    2. Ari Venalainen, Heikki Tuomenvirta, Riikka Lahtinen, et al. The influence of climate warming on soil frost on snow-free surfaces in Finland[J]. Climatic Change, 2001, 50(1-2): 111-128.
    3. Arnold J.G., J.R Williamsand, D.R. Maidment. Continuous-time water and sediment-routingmodel for large basins[J]. Journal of Hydraulic Engineering, 1995, 121(2): 171-183.
    4. Arnold J.G., R. Srinivasan, R.S. Muttiah et al. Large area hydrologic modeling and assessment Part Model development[J]. Journal of the American Water Resources Association, 1998, (34): 73-89.
    5. Beniston, M., and M. Rebetez. Regional behavior of minimum temperatures in Switzerland for the period 1979-1993[J]. Theoretical and Applied Climatology, 1996, 53(4): 231-243.
    6. Camill P. Patterns of boreal permafrost peatland vegetation across environmental gradients sensitive to climate warming[J]. Canadian Journal of B otany, 1999, 77(5): 721-33.
    7. Carey S. K., Woo M. K.. Slope runoff processes and flow generation in a subarctic, subalpine catchment[J]. Journal of Hydrology, 2001, 253: 110-129.
    8. Catherine Stocker-Mittaz, Martin Hoelzle, Wilfried Haeberli. Modelling Alpine Permafrost Distribution Based on Energy-Balance Data: a First Step[J]. Permafrost Periglac. Process, 2002, 13(4): 271-282.
    9. Charles Harrisa, Daniel Vonder Muhll, Ketil Isaksen,et al. Wanning permafrost in European mountains[J]. Global and Planetary Change, 2003, 39(3): 215-225.
    10. Chen J M, Liu J, Cihlar J and Goulden M. L.. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications [J]. Ecological Modelling, 1999, 124:99-119.
    11. Cheng H Y, Wang G X, Hu H C, et al. The variation of soil temperature and water content of seasonal frozen soil with different vegetation coverage in the headwater region of the Yellow River, China[J]. Environ Geol, 2008, 54(8): 1755—1762.
    12. D.A.Walker, G J. Jia, H. E. Epstein, M. K. Raynolds,et al. Vegetation Soil Thaw Depth Relationships along a Low-Arctic Bioclimate Gradient, Alaska: Synthesis of Information from the ATLAS Studies[J]. Permafrost Periglacial Process, 2003, 14(2): 103-123.
    13. Deardorff J. W. Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation[J]. Journal of Geophisical Research, 1978, 83(C4): 1889-1903.
    14. Diaz, H. F., and R. S. Bradley. Temperature variations during the last century at high elevation sites[J]. Climatic Change, 1997, 36(3): 253-279.
    15. Kane D. L. High-latitude hydrology, what do we know? [J]. Hydrol. Process, 2005, 19(12):2453-2454.
    16. Entekhabi D, Eagleson P. Land surface hydrology parameterization for atmospheric general circulation models including subgrid-scale spatial variability[J]. Journal of Climate, 1989, 2(8): 816-831.
    17. Feng Zhiming, Ang Yanzhao,Ding Xiaoqiang, and Lin Zhonghui. Optimization of the spatial interpolation methods for climate resources[J]. Geographical Research, 2004, 23(3),357-364.
    18. Fyfe, J. C., and G M. Flato. Enhanced climate change and its detection over the Rocky Mountains[J]. Journal of Climate, 1999, 12(l):230-243.
    19. Gerald N. Flerchinger. The Simultaneous Heat and Water (SHAW) Model:User's Manual[EB/OL]. http://www.nwrc.ars.usda.gov/Models/SHAW.htmK 2000.
    20. Giacomo Bertoldi, Davide Tamanini, Fabrizio Zanotti, Riccardo Rigon. GEOTOP A Hydrological Balance Model Technical Description and Programs Guide[EB/OL]. http://www.geotop.org, 2004.
    21. Giorgi, F., et al. Elevation dependency of the surface climate change signal: A model study[J]. Journal of Climate, 1997, 10(2): 288-296.
    22. Goran Lindstrom, Kevin Bishop, Mikaell Ottosson Lofvenius. Soil frost and runoff at Svartberget, northern Sweden — measurements and model analysis[J]. Hydrol. Process, 2002, 16(17): 3379-3392.
    23. Gu S, Tang Y H, Gui X Y, et al. Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibet Plateau[J]. Agric For Meteorol, 2005, 129(3-4): 175—185.
    24. Guglielmin M, Evans C J, Cannone N. Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica)[J]. Geoderma, 2008, 144(1-2): 73-85
    25. H. J. Jin, G. D. Cheng, Y. L. Zhu. Chinese Geocryology at the Turn of the Twentieth Century[J]. Permafrost Periglac. Process, 2000, 11(1): 23-33.
    26. Hayashi M, Quinton W L, Pietroniro A, et al. Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures[J]. Journal of Hydrology, 2004, 296: 81-97.
    27. Hayashi M, van der Kamp G, Schmidt R. Focused infiltration of snowmelt water in partially frozen soil under small depressions[J]. Journal of Hydrology, 2003, 270(3-4): 214-229.
    28. Hongchang Hu, Genxu Wang, Guangsheng Liu, Taibing Li, Dongxing Ren, Yibo Wang, Huiyan Cheng, Junfeng Wang[J]. Environmental Geology, 2009, 57: 1391-1397.
    29. Hotaka Matsumoto, Yoshimasa Kurashige, Kazuomi Hirakawa. Soil Moisture Conditions during Thawing on a Slope in the Daisetsu ountains, Hokkaido, Japan[J]. Permafrost Periglac. Process, 2001, 12(2): 211-218.
    30. Hu Hongchang, Wang Genxu, Wang Yibo, Liu Guangsheng, Li Taibing & Ren Dongxing. Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers[J]. Chinese Science Bulletin, 2009, 54(7): 1225-1233.
    31. Izuru Takayabu, Kumiko Takata, Takeshi Yamazaki, Hironori Yabuki, Shigenori Haginoya. Comparison of the four land surface models driven by a common forcing data prepared from GAME/Tibet POP'97 products-snow accumulation and soil freezing processes[J]. Journal of the Meteorological Society of Japan. 2001, 79(1B): 535-554.
    32. James P. McNamara, Douglas L. Kane. An analysis of streamflow hydrology in the Kuparuk River Basin, Arctic Alaska: a nested watershed approach [J]. Journal of Hydrology, 1998, 206: 39-57
    33. James P. McNamara, Kane D L, Hinzman L D. Hydrograph separations in an Arctic watershed using mixing model and graphical techniques[J]. Water Resour Research, 1997, 33(7): 1707-1719.
    34. James P. McNamara, Kane DL, Hinzman LD. An analysis of streamflow hydrology in the Kuparuk River Basin, arctic Alaska: a nestedwatershed approach [J]. Journal of Hydrology, 1988, 206(1-2): 39-57.
    35. Jansson P E, Karlberg L. Coupled Heat and Mass Transfer Model for Soil-Plant-Atmosphere systems[M]. Stockholm: Royal Institute of Technology, Dept of Civil and Environmental Engineering, 2001.
    36. Jianqing XU, Kooiti Masuda, Rikie SUZUKI. Heat and water balance estimates over the Tibetan Plateau in 1997-1998[J]. Journal of the Meterorological society of Japan, 2005, 83(4): 577-593.
    37. Jianqing Xu, Shigenori Haginoya. An estimation of water Balances in the Titbean Plateau[J]. Journal of the Meteorological Society of Japan, 2001, 79(1B): 485-504.
    38. Jin Huijun, Zhao Lin, Wang Shaoling, et al. Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway[J]. Science in China Series D: Earth Sciences, 2006, 49(11): 1170-1183.
    39. Jingshi Liu, Norio Hayakawa, Mingjiao Lu, et al. Hydrological and geocryological response of winter streamflow to climate wanning in Northeast China[J]. Cold Regions Science and Technology, 2003, 37(1): 15-24.
    40. Jin-Yong Lee, Sang-Ho Moon, Kang-Kun Lee. Determining the condition of groundwater in evaluating the need for corrective measures: a case for the national groundwater-monitoring network in South Korea[J]. Hydrogeology Journal, 2008, 16: 123-137
    41. K. Warrach, H.-T. Mengelkamp, E. Raschke. Treatment of frozen soil and snow cover in the land surface model SEWAB [J]. Theor. Appl. Climatol, 2001, 69(1-2): 23-37.
    42. Klein J. A., Hade J., Zhao X. Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing on the Tibetan Plateau [J]. Ecology Letters, 2004, 7(12): 1170-1179.
    43. Kun Yang, Toshio Koike, Hirohiko ISHIKAWA, Yaoming Ma.Analysis of the surface energy budget at a site of GAME/Tibet using a Single-Source Model [J]. Journal of the Meteorological Society of Japan, 2004, 82(1): 131-153.
    44. Kuchment L.S., A.N. Gelfan, V.N. Demidov. A distributed model of runoff generation in the permafrost regions [J]. Journal of Hydrology, 2000, 240(1): 1-22.
    45. Li Qian, Sun Shufen. Development of the universal and simplified soil model coupling heat and water transport [J]. Science in China Series D: Earth Sciences, 2008, 51(1): 88-102.
    46. Lin Zhao, Chien-Lu Ping, Daqing Yang, Guodong Cheng, Yongjian Ding, Shiyin Liu. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China[J]. Global and Planetary Change, 2004, 43: 19-31.
    47. Ling F, Zhang T J. Impact of the Timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic[J]. Permafrost Periglacial Process, 2003, 14(2): 141 — 150.
    48. Litong Zhao, Donald M. Gray, David H. Male. Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground[J]. Journal of Hydrology, 1997 , 200(1-4): 345-363.
    49. Liu Xiaodong, Chen Baode. Climatic warming in the tibetan plateau during recent years[J]. InternationalJournal of Climatology, 2000, 20: 1729-1742.
    50. Mamoru Ishikawa, Natsagdorj Sharkhuu, Yinsheng Zhang,et al. Ground Thermal and Moisture Conditions at the Southern Boundary of Discontinuous Permafrost, Mongolia[J]. Permafrost and Periglac. Process, 2005, 16(2): 209-216.
    51. Manfred Stahli, Lars Nyberg, Per-Erik Mellander, Per-Erik Jansson, Kevin H. Bishop. Soil frost effects on soil water and runoff dynamics along a boreal transect: 2. Simulations [J]. Hydrol. Process, 2001,15(6): 927-941.
    52. Mariano Hernandez, Scott n Miller, David c. Goodrich, et al. Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds [J]. Environmental Monitoring and Assessment, 2000, 64: 285-298.
    53. Mark Nuttall, Terry V. Callaghan. The Arctic: Environment, People, Policy [M]. Harwood Academic, 2000, 76-82.
    54. Martinec J, Rango A, Roberts R. The Snowmelt Runoff Modle(SRM) User' s Manual (Updated Edition 1998, Version 4.0) [M]. Berne: University of Berne, 1998.
    55. Matsumoto H, Kurashige Y, Hirakawa K. Soil Moisture Conditions during Thawing on a Slope in the Daisetsu Mountains, Hokkaido, Japan[J]. Permafrost Periglacial Process, 2001, 12(22): 211-218
    56. Mengelkamp H.T., Warrach K., Raschke E. Sewab - a parametrization of the surface energy and water balance for atmospheric and hydrologic models[J]. Advances in Water Resurces, 1999, 23: 165-175.
    57. Ming-ko Woo, Kathy L. Young. Hydrology of a Small Drainage Basin with Polar Oasis Environment, Fosheim Peninsula, Ellesmere Island, Canada[J]. Permafrost and Periglacial Processes, 1997, 8(3): 257-277.
    58. Ming-Ko Woo, Philip Marsh. Snow, frozen soils and permafrost hydrology in Canada, 1995-1998[J]. Hydrol. Process, 2000, 14(9): 1591-1611.
    59. Ming-Ko Woo, Xiu-Juan Guan. Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian High Arctic [J]. Permafrost and Periglac. Process, 2006, 17(4): 309-323.
    60. N. Fohrer, S. Haverkamp, H.-G. Frede. Assessment of the effects of land use patterns on hydrologic landscape functions: development of sustainable land use concepts for low mountain range areas [J]. Hydrological processes, 2005, (19): 659 - 672.
    61. Neitsch S.L., J.G. Arnold, J.R. Kiniry, et al. Soil and Water Assessment Tool theoretical documentation, 2000[EB/OL]. http://www.brc.tamus.edu/swat/2001, 2002a.
    62. Ning SUN, Xiubin LI. A Summary of the effects of afforestation and deforestation on annual water yields[C]. The proceedings of IGARSS 2005, Seoul, Korea, 25-29 July 2005.
    63. Niu G Y, Z L Yang. Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale[J]. Journal of Hydrometeorology, 2006, 7(5): 937-952.
    64. Nyberg L, Stahli M, Mellander P, et al. Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations[J]. Hydrol Process, 2001, 15(6): 909—926.
    65. Oleg A. Anisimov, Nikolai I. Shiklomanov, Frederick E. Nelson. Global warming and active-layer thickness: results from transient general circulation models[J]. Global and Planetary change ,1997, 15(3): 61-77.
    66. Osterkamp T E, Romanovsky V E. Freezing of the Active Layer on the Coastal Plain of the Alaskan Arctic[J]. Permafrost Periglaciai Process, 1997, 8(1): 23—44.
    67. Pepin, N.C., D. J.Seidel.A global comparison of surface and free-air temperatures at high elevation [J]. Journal of Geophysical Research, 2005, 110, D03104, doi: 10.1029/2004JD005047.
    68. Per-Erik Mellander, Manfred Stahli, David Gustafsson and Kevin Bishop. Modelling the effect of low soil temperatures on transpiration by Scots pine[J]. Hydrol. Process, 2006, 20(9): 1929-1944.
    69. Peter A.C. Raats. Developments in soil-water physics since the mid 1960s[J]. Geoderma, 2001, 100(3): 355-387.
    70. Post DA, GE Grant and JA Jones. New developments in ecological hydrology expand research opportunities[J]. EOS, 1998, 79 (43): 517-526.
    71. Raimo Sutinen, Pekka H(?)nninen, Ari Ven(?)l(?)inen. Effect of mild winter events on soil water content beneath snowpack[J]. Cold Regions Science and Technology, 2008, 51(1): 56-67.
    72. Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and abovegroud plant growth to ecosystem warming[J]. Oecologia. 2001, 126: 543-562.
    73. Carey S. K., Ming-ko Woo. Hydrology of two slopes in subarctic Yukon, Canada[J]. Hydrol. Process, 1999, 13(16): 2549-2562.
    74. Carey S. K., Ming-ko Woo. Spatial variability of hillslope water balance, wolf creek basin, subarctic Yukon [J]. Hydrol. Process, 2001, 15(6): 3113-3132.
    75. Sharon L. Smith, Margo M. Burgess, Dan Riseborough, et al. Recent Trends from Canadian Permafrost Thermal Monitoring Network Sites [J]. Permafrost and Periglacial Processes, 2004, 16(1): 19-30.
    76. Sheng Yue, ChunYuan Wang. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test [J]. Water Resources Research, 2002, 38(6): 1068, 10.1029/2001WR000861
    77. Shoop S A, Bigl SR. Moisture migration during freeze and thaw of unsaturated soils: modeling and large scale experiments [J]. Cold Reg Sci Tech, 1997, 25(1): 33-45.
    78. Shur Y L, Jorgenson M T. Patterns of Permafrost Formation and Degradation in Relation to Climate and Ecosystems [J]. Permafrost Periglacial Process, 2007, 18(1): 7-19.
    79. Song Gu, Yanhong Tang, Xiaoyong Cui, Tomomochi Kato, Mingyuan Du, Yingnian Li, Xinquan Zhao. Energy exchangge between the atmospherre and a meadow ecosystem on the Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2005, 129: 175-185.
    80. Sugimoto, D. Naito, N. Yanagisawa, et al. Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water[J]. Hydrol. Process, 2003, 17(6): 1073-1092.
    81. Osterkamp T. E., J. C. Jorgenson. Warming of Permafrost in the Arctic National Wildlife Refuge, Alaska [J]. Permafrost and Periglac. Process, 2006, 17(1): 65-69.
    82. Osterkamp T. E. Establishing Long-term Permafrost Observatories for Active-layer and Permafrost Investigations in Alaska: 1977—2002[J]. Permafrost and Periglac. Process, 2003, 14(4): 331-342.
    83. Vuille, M., et al. 20th Century Climate Change in the Tropical Andes: Observations and Model Results [J]. Climatic Change, 2003, 59(1): 75-99.
    84. Genxu Wang, Yibo Wang, Yuanshou Li, Huiyan Cheng. Influences of alpine ecosystem responses to climatic changge on soil properties on the Qinghai-Tibet Plateau, China [J]. CATENA, 2007, 70(506-514).
    85. W. Genxu, H. Hongchang, L.Guangsheng, and L.Na. Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China [J]. Hydrology and Earth System Sciences, 2009, 13: 1-15.
    86. W. L. Quinton, P. Marsh. A Conceptual Framework for Runo. A Conceptual framework for runoff generation in a permafrost environment [J]. Hydrological Processes, 1999, 13(16): 2563-2581.
    87. W.L.Quinton, P.Marsh. A conceptual framework for runoff generation in a permafrost environment [J]. Hydrological Processes, 1999, 13: 2563-2581.
    88. Wang G X, Li Y S, Hu H C, et al. Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet [J]. Hydrol Processes, 2008, 22: 3310-3320.
    89. Wu Q B, Liu Y Z. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau [J]. Cold Reg Sci Tech, 2004, 38(2-3): 85-92.
    90. Wu Qingbai, Lu Zijian, Liu Yongzh. Permafrost Changes in the Tibetan PIateau[J]. Advance in Climate Change Research, 2006, 2(1): 77-80.
    91. X. Ma, T. Yasunari, T. Ohata,et al. Hydrological regime analysis of the Selenge River basin, Mongolia [J]. Hydrol. Process, 003, 17(14): 929-2945.
    92. Xu Liang, Dennis P.Lettenmaier, Eric F. Wodd, et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models [J]. Journal of Geophysical Research. 1994, 99(7): 14415-14428.
    93. Xu Liang, Eric F. Wood, Dennis P.Lettenmaier. Modeling ground hewat flux in land surface parameterization schemes [J]. Journal of Geophysical Research, 1999, 104(8): 9581-9600.
    94. Xu Z.X., K. Takeuchi, H. Ishidaira. Monotonic trend and step changes in Japanese precipitation [J]. Journal of Hydrology, 2003, 279: 144-150
    95. Y.B.Liu, S.Gebremeskel, F. De Smedt, L.Hoffmann, L.Pfister. Adiffiisive transport approacf for flow routing in GIS-based flood modeling. Journal of Hydrology, 2003, 283: 91-106.
    96. Y. Ma, S. Fan, H. Ishikawa, O. Tsukamoto, T. Yao, T. Koike, H. Zuo, Z. Hu, Z. SU. Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area [J]. Theoretical and Applied Climatology, 2005, 80: 259-273.
    97. Yaoming Ma, Zhongbo Su, Toshio Koike, Tandong Yao, Hirohiko Ishikawa, Ken'ichi Ueno, Massimo Menenti. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau-from GAME/Tibet to CAME/Tibet [J]. Physics and Chemistry of the Earth, 2003, 28: 63-47.
    98. Yinsheng Zhang, T. Ohata, Kang Ersi, Yao Tandong. Observation and estimation of evaporation from the ground surface of the cryophere in eastern Asia [J]. Hydrological Processes, 2003, 17: 1135-1147.
    99. Yinsheng Zhang, T. Ohata, Kang Ersi,et al. Observation and estimation of evaporation from the ground surface of the cryosphere in eastern Asia[J]. Hydrol. Process, 2003, 17(6): 1135-1147.
    l00.Yinsheng Zhang, T. Ohata, T. Kadota. Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau [J]. Journal of Hydrology, 2003, 283(1-4): 41-56.
    l0l.Yinsuo Zhang, Shusen Wang, Alan G. Barr, T.A. Black. Impact of snow cover on soil temperature and its simulation in a boreal aspen forest [J]. Cold regions science and technology, 2008, 52(3): 355-370.
    102.You Qinglong, Kang Shichang, Nick Pepin, Yan Yuping, Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961-2005[J]. GEOPHYSICAL RESEARCH LETER, 2008, 35, L04704, doi: 10.1029/2007GL032669.
    103.Yusuke Yamazaki. Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountainous region of eastern Siberia [J]. hydrological process, 2006, 20: 453-467.
    104.B.A.库德里雅采夫主编(郭东信,马世敏,丁德文,等译).工程地质研究中的冻土预报原理[M].兰州:兰州大学出版社,1992,111-118.
    105.陈军锋,陈秀万.SWAT模型的水量平衡及其在梭磨河流域的应用[J].北京大学学报(自然科学版),2004,40(2):265-270.
    106.陈军锋,李秀彬,张明.模犁模拟梭磨河流域气候波动和土地覆被变化对流域水文的影响[J].中国科学D辑地球科学,2004,34(7):668-674.
    107.陈军锋,李秀彬.土地覆被变化的水文响应模拟研究[J].应用生态学报,2004,15(5):833-836.
    108.陈利群,刘昌明.黄河源区气候和土地覆被变化对径流的影响[J].中国环境科学,2007,27(4):559-565.
    109.陈利群,刘昌明,郝芳华.黄河源区基流变化及影响因子分析[J].冰川冻土,2006,28(2):141-148.
    110.陈仁升,康尔泗,吉喜斌.黑河源区高山草甸的冻土及水文过程初步研究[J].冰川冻土,2007(6):387-396.
    111.陈孝全,苟新京.三江源自然保护区生态环境[M].2002,西宁:青海人民出版社.
    112.程国栋.序言[J].冰川冻土,1996,18(增刊):1-3.
    113.程国栋,王根绪,王学定.江河源区生态环境变化与成因分析[J].地球科学进展,1998,13(增刊):24-31.
    114.邓慧平.气候与土地利用变化对水文水资源的影响研究[J].地球科学进展,2001,16(3):436-441.
    115.丁晶,正文圣,金菊良.论水文学中的尺度分析[J].四川大学学报(工程科学版),2003,35(3):9-13.
    116.丁永健,叶佰生,刘时银.青藏高原大尺度冻土水文检测研究[J].科学通报.2000,45(2):208-214.
    117.丁永建,刘时银,叶柏生,赵林近,2006.50a中国寒区与旱区湖泊变化的气 候因素分析.冰川冻土,28(5):623-632
    118.董锁成,周长进,王海英.“三江源”地区主要生态环境问题与对策.自然资源学报,2002,17(6):713-720.
    119.董文杰.陆.气相互作用对我国气候变化的影响--亚洲季风区海-陆-气相互作用对我国气候变化的影响(第二卷)[M].气象出版社,2005.
    120.杜军.西藏高原近40年的气温变化[J].地理学报,2001,56(61):682-690.
    121.高荣,韦志刚,董文杰.20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系[J].高原气象,2003,22(2):191-196.
    122.黄明斌,康绍忠,李玉山.黄土高原沟壑区森林和草地小流域水文行为的比较研究[J].自然资源学报,1999,14(3):226-231.
    123.黄明斌,刘贤赵.黄土高原森林植被对流域径流的调节作用[J].应用生态学报,1999,14(3):226-231.
    124.金会军,李述训,王绍令.气候变化对中国多年冻土和寒区环境的影响[J]。地理学报.2000,55(2):161-173.
    125.金会军,于少鹏,吕兰芝.大小兴安岭多年冻土退化及其趋势初步评估[J].冰川冻土,2006,28(4):467-476.
    126.康世昌,张拥军,秦大河,任贾文,张强弓,Bjorn Grigholm,Paul Mayewski.近期青藏高原长江源区急剧升温的冰芯证据[J].科学通报,2007,52(4):457-462.
    127.赖祖铭,叶佰生.高寒山区流域的水量平衡模型及气候变暖趋势下径流的可能变化-以天山乌鲁木齐河为例[J].中国科学B辑,1991,21(6):652-654.
    128.李栋梁,钟海玲,吴青柏,张拥军,侯依玲,汤懋苍(2005),青藏高原地表温度的变化分析[J].高原气象,24(3):291-298.
    129.李述训,程国栋.气候变暖条件下青藏高原高温冻土热状况变化趋势数值模拟[J].冰川冻土(增刊),1996:190-196.
    130.李述训,南卓铜,赵林.冻融作用对地气系统能量交换的影响分析[J].冰川冻土,2002,24(5):506-511.
    131.李述训,吴通华.青藏高原地气温度之间的关系[J].冰川冻土,2005,27(5):627-632.
    132.李硕,曾志远,张运生.数字地形分析技术在分布式水文建模中的应用[J].地球科学进展,2002,17(5):769-775.
    133.李秀彬.全球环境变化研究的核心领域-土地利用/土地覆被变化的国际研究动向[J].地理学报.1996,51(6):553-558.
    134.李英年,关定国,赵亮,等.海北高寒草甸的季节冻土及在植被生产力形成过程中的作用[J].冰川冻土,2005,27(3):311-319.
    135.李元寿,王根绪,沈永平,王军德,王一博.长江源区不同植被覆盖下产流产沙效应初步研究[J].冰川冻土.2005,27(6):869-875.
    136.林振耀,赵晰栾.青藏高原气温降水变化的空间特征[J].中国科学(D辑),1996,26(40):354-358.
    137.刘昌明,夏军,郭生练,郑红星,王中根,吴险峰,郝芳华.黄河流域分布式水文模型初步研究与进展[J].水科学进展,2004,15(4):495-500
    138.刘昌明,李道峰,田英,等.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5):437-445.
    139.刘建梅,裴铁磻.水文尺度转换研究进展[J].应用生态学报,2003,14(12):2305-2310
    140.刘俊峰,杨建平,陈仁生.SRM融雪径流模型在长江源区冬克玛底河流域的应用[J].地理学报,2006,61(11):1149-1159.
    141.刘晓东,张敏锋,惠晓英,康兴成.青藏高原当代气候变化特征及其对温室效应的响应[J].地理科学,1998,18(2):113-121.
    142.刘晓东,侯萍.青藏高原及其邻近地区近30年气候变化与海拔高度的关系[J].高原气象,1998,17(3):245-249.
    143.刘晓燕,常晓辉.黄河源区径流变化研究综述[J].人民黄河,2005,27(2):7-8.
    144.刘彦随,陈百明.中国可持续发展问题与土地利用/覆被变化研究[J].地理研究.2002,21(3):324-330.
    145.鲁振宇,杨太保,郭万钦.降水空间插值方法应用研究-以黄河源区为例[J].兰州大学学报(自然科学版),2006,42(4):11-14.
    146.陆子建,吴青柏,盛煜,等.青藏高原北麓河附近不同地表覆被下活动层的水热差异研究[J].冰川冻土,2006,28(5):642-647.
    147.吕一河,傅伯杰.生态学中尺度及尺度转换方法[J].生态学报,2001,21(12):2096-2105.
    148.胡光印,董治宝,魏振海,满多清,王文丽.江河源区沙漠化研究进展与展望[J].干旱区资源与环境,2008,22(7):41-45.
    149.马虹,程国栋.SRM融雪径流模型在西天山巩乃斯河流域的应用研究[J].科学通报,2003,48(19):2088-2093.
    150.马耀明,姚檀栋,王介民.青藏高原能量和水循环试验研究-GAME/Tibet与CAMP/Tibet研究进展.高原气象,2006,25(2):344-351.
    151.南卓铜,离述训,程国栋.未来50与100a青藏高原多年冻土变化情景预测[J].中国科学D辑:(地球科学),2004,34(6):528-534.
    152.牛玉国,张学成.黄河源区水文水资源情势变化及其成因初析[J].人民黄河,2005,27(3):32-34.
    153.杨针娘.祁连山冰沟流域冻土水文过程[J].冰川冻土,1993,15(2):235-241.
    154.秦大河,效存德,丁永建.国际冰冻圈研究动态和我国冰冻全研究的现状与展望[J].应用气象学报,2006,17(6):649-656.
    155.青海省农业资源区划办公室.青海土壤[M].北京:中国农业出版社,1997:11.
    156.任立良,刘新仁.数字高程模型信息提取与数字水文模拟研究进展[J].水科学进展,2000,11(4):463-469
    157.沈永平,王根绪,吴青柏.长江黄河源区未来气候情景下的生态环境变化[J].冰川冻土,2002,24(3):308-314.
    158.施雅风.中国冰川与环境-现在、过去和未来[M].北京:科学出版社,2000.
    159.施雅风.气候变化对西北华北水资源的影响[M].济南:山东科学技术出版社,1995.130-135.
    160.孙菽芬.陆面过程的物理、生化机理和参数化模型[M].气象出版社,2005.
    161.陶辉,王国亚,邵春等.开都河源区气候变化及径流响应[J].冰川冻土.2007,29(3):413-417.
    162.汤懋苍,程国栋,林振耀.青藏高原近代气候变化及对环境的影响[M].广州:广东科技出版社,1998.121-139.
    163.万洪涛,周成虎,万庆.流域水文模型计算域离散方法[J].地理科学进展,2001,20(4):347-354
    164.王澄海,师锐.青藏高原西部陆面过程特征的模拟分析[J].冰川冻土,2007,29(1):73-81
    165.王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望[J].地球科学进展,2001,16(3):314-323.
    166.王根绪,李琪,程国栋,沈永平.40年来江河源区的气候变化特征及其生态环境效应[J].冰川冻土,2001,23(4):346-352.
    167.王根绪,程国栋,沈永平.江河源区的生态环境与综合保护研究[M].兰州:兰州大学出版社,2001.
    168.王根绪,程国栋,沈永平.土地覆盖变化对高山草甸土壤特性的影响.科学通报,2002,47(23):1771-1777.
    169.王根绪,丁永建,王建,刘时银.近15年来长江黄河源区的土地覆被变化[J].地理学报,2004,59(2):163-173.
    170.王根绪,李元寿,吴青柏,王一博.青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J].中国科学D辑:地球科学,2006,36(8):743-754.
    171.王根绪,李元寿,王一博.长江源区高寒生态与气候变化对河流径流过程的影响分析[J].冰川冻土,2007,29(2):159-167.
    172.王建,丁永建,许君利.西天山科其喀尔冰川消融径流的水化学分析[J].环境科学,2006,27(7):1305-1311.
    173.王可丽,程国栋,丁永健,沈永平,江灏.黄河、长江源区降水变化的水汽输送和环流特征[J].冰川冻土,2006,28(1):8-14.
    174.王绍令.青藏高原冻土退化的研究[J].地球科学进展,1997,12(2):164-167
    175.王书功,康尔泗,金博文,王新平.黑河山区草地蒸散发量估算方法研究[J].冰川冻土,2003,25(5):558-565.
    176.王一博,王根绪,常娟.人类活动对青藏高原冻土环境的影响[J].冰川冻土.2004,26(5):523-527.
    177.吴青柏,沈永平,施斌.青藏高原冻土及水热过程与寒区生态环境的关系[J].冰川冻土,2003,5(3):250-255
    178.吴险峰,刘昌明.流域水文模型研究的若干进展[J].地球科学进展,2002,21(4):341-348
    179.武小波,王宁练,李全莲.黄河源区阿尼玛卿山耶和龙冰川表层雪化学组成[J].冰川冻土,2008,30(3):415-420.
    180.夏军,左其亭.国际水文科学研究的新进展[J].地球科学进展,2006,21(3):256-261.
    181.谢昌卫,丁永建,刘时银,等.长江-黄河源寒区径流时空变化特征对比[J].冰川冻土,2003,25(4):414-422.
    182.谢昌卫,丁永健,刘时银.近50年来长江-黄河园区气候及水文环境变化趋势分析[J].生态环境,2004,13(4):520-523.
    183.胥鹏海,冯永忠,杨改河,温秀卿,王得祥.江河源区水环境变化规律及其影响因素分析[J].西北农林科技大学学报,2004,32(3):10-14.
    184.杨建平,丁永建,陈仁升.长江黄河源区多年冻土变化及其生态环境效应[J].山地学报,2004,22(3):278-285.
    185.杨梅学,姚檀栋,Toshio KOIKE.藏北高原土壤温度的变化特征[J].山地学报.2002,18(1):13-17.
    186.杨梅学,姚檀栋,丁永建.藏北高原D110点不同季节土壤温度的日变化特征[J].地理科学.1999,19(6):570-574
    187.杨梅学,姚檀栋,丁永建.藏北高原土壤温度的日变化[J].Environmental Science.1999,20(3):5-8.
    188.杨梅学,姚檀栋,勾晓华.青藏公路沿线土壤的冻融过程及水热分布特征[J].自然科学进展.2000,10(5):443-450.
    189.杨梅学,姚檀栋,何元庆.2002.青藏高原土壤水热空间分布特征及冻融过程在季节转换中的作用[J].山地学报,20(5):553-558.
    190.杨梅学,姚檀栋,王绍令.藏北高原土壤的温湿特征[J].地理研究.1999,18(3):312-317.
    191.杨梅学,姚檀栋,小池俊雄.2000.藏北高原土壤温度的变化特征[J].山地学报,13(1):13-17
    192.杨梅学,姚檀栋,小池俊雄.藏北高原土壤温度分布的纬向效应和高度效应 [J].山地学报,1999,17(4):329-332.
    193.杨梅学,姚檀栋,何元庆.藏北高原地气之间的水分循环[J].地理科学,2002,22(1):29-33.
    194.杨梅学,姚檀栋,何元庆.青藏高原上壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报,2002,20(5):553-558.
    195.杨胜天,刘吕明,孙睿.近20年来黄河流域植被覆盖变化分析[J].地理学报,2002,57(6):679-684.
    196.杨昕,王明星.陆地碳循环研究中若干问题的评述[J].地球科学进展,2001,16(3):427-435.
    197.杨续超,张镱锂,张玮,阎宇平,王兆锋,丁明军,除多.珠穆朗玛峰地区近34年来气候变化[J].地理学报,2006,61(7):687-696.
    198.姚檀栋,刘晓东,王宁练.青藏高原地区的气候变化幅度问题[J].科学通报,2000,45(1):98-106.
    199.姚檀栋.青藏高原中部冰冻圈动态变化[M].北京:地质出版社,2002:1-308.
    200.于文颖,周广胜,迟道才,等.湿地生态水文过程研究进展[J].节水灌溉,2007,(1):19-23.
    201.曾群柱,谢应钦.青藏高原陆面过程可能蒸发量和干湿状况的研究[J].冰川冻土,1986,8(2):131-142.
    202.张菲,刘景时,巩同梁.喜马拉雅山北坡典型高山冻土区冬季径流过程[J].地球科学进展,2006,21(12):1333-1338.
    203.张国胜,李林,时兴合,徐维新,董立新,汪青春.黄河上游地区气候变化及其对黄河水资源的影响[J].水科学进展,2000,11(3):277-283.
    204.张世强,丁永健,卢健.青藏高原土壤水热过程模拟研究(Ⅰ):土壤湿度[J].冰川冻土,2004,26(4):384-388.
    205.张世强,丁永健,卢健.青藏高原土壤水热过程模拟研究(Ⅱ):土壤温度[J].冰川冻土,2005,27(1):95-99.
    206.张世强,丁永健,卢健.青藏高原土壤水热过程模拟研究(Ⅲ):蒸发量、短波辐射与净辐射通量[J].冰川冻土,2005,27(5):645-648.
    207.张寅生,蒲健辰,太田岳史.青藏高原中部地面蒸发量观测计算与特征分析. 冰川冻土,1994,16(2):166-172.
    208.张寅生,姚檀栋,蒲健辰等,青藏高原唐古拉山冬克玛底河流域水文过程特征分析[J].冰川冻土,1997,19(3):214-222
    209.张宇,吕世华.藏北高原陆面过程的模拟研究[J].大气科学,2002,26(3):387-393.
    210.赵林,程国栋,李述训,等.青藏高原五道梁附近多年冻土活动层冻结和融化过程[J].科学通报,2000,45(11):1205-1211.
    211.赵文智,程国栋.生态水文研究前沿问题及生态水文观测实验[J].地球科学进展,2008,23(7):671-674.
    212.钟哗,金昌杰,裴铁潘.水文尺度转换探讨[J].应用生态学报,2005,16(8):1537-1540.
    213.周广胜,张新时.全球变化的中国气候-植被分类研究[J].植物学报,1996,38(1):8-17.
    214.周幼吾,郭东信.我国多年冻土的主要特征[J].冰川冻土,1982,4(1):1-17.
    215.周幼吾,郭东信.中国冻土[M].北京.科学出版社.2000.
    216.周余华,叶伯生,胡和平.土壤冻融条件下的陆面过程研究综述[J].水科学进展.2005,16(6):887-891.
    217.朱文琴,陈隆勋,周自江.现代青藏高原气候变化的几个特征[J].中国科学D辑(增刊).2001,31:327-337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700