用户名: 密码: 验证码:
基于地质异常的矿产资源定量化预测与不确定性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今找矿难度日益增大,如何提高找矿效果一直是国内外地质学者关注的焦点问题之一。阻碍当前矿产勘查取得突破性进展的主要原因之一是成矿理论和勘查技术方法的滞后。因而,必须加强成矿地质理论探索和实验研究,深入了解各类矿床形成的环境和条件以及矿床分布规律与产出特征;同时,加强找矿技术方法研究,进一步查明指示矿床存在的各种标志和现象,有针对性地开发识别、获取、加工、分析和解释海量找矿信息的手段、工具和软件,研究深层次、隐性及难以识别的找矿信息的识别及提取方法。这不仅仅是一个技术问题,其中还隐含了基础理论问题,如支持弱信息识别、复合信息及混杂信息分离的基础理论等,而这些问题无疑正是制约当今找矿突破的世界性难题。赵鹏大等(1991)提出的以“求异”思维为基础的“地质异常”成矿预测理论突破了矿产勘查中“相似类比”思维的约束,并经过十余年的不断完善和发展,逐渐形成了以“地质异常”、“成矿多样性”和“矿床谱系”为核心的“三联式”定量成矿预测理论与方法,业已应用于固体矿产预测评价和油气资源勘探开发,并在山东、云南等地的找矿实践中取得了成效。
     进入21世纪,矿产资源勘查面临新形势:传统的矿产资源短缺,尤其是战略性、支柱性矿产,如石油、富铁、锰、铬、钾盐等形势更为严峻,出现了一批传统资源面临枯竭的“危机矿山和矿业城市”;未发现矿产很多属于难识别、难发现和难利用的复杂矿床(赵鹏大等,2002)。当前,主要以找深部矿和难识别矿为主,尤其在勘探程度较高的中、东部地区。因此,如何识别、提取和圈定新型的、隐型(式)的和深层次的成矿地质信息成为当前矿产预测评价的关键。在这种形式下,研发在“三联式”成矿预测理论与方法指导下的能有效识别、提取和圈定地质异常的专业GIS软件就显得格外重要。
     此外,由于地质本身的变化性和复杂性,如矿床类型的多样性,矿床成因的复杂性,控矿因素的隐蔽性和找矿信息的多解性(赵鹏大,2007)以及人类认识的不完备性等因素,导致了矿产预测结果具有不确定性并常常因人而异。矿产定量预测与评价是在不确定性下制定最优决策的工作,是在各种可能的决策和所对应的可能结果(或称“决策谱”)中选择一个最佳结果,即在不漏失或最少漏失成矿远景区或矿体的前提下最大限度的缩小需要进行详细工作的地区范围,达到成功和收益最大,损失和消耗最小(赵鹏大,2007)。因此,矿产定量预测与评价的主要目的之一是查明矿产预测不确定性的来源,寻求有效的方法与途径减少不确定性,使其矿产预测的正面结果概率最大,负面结果概率最小。20世纪90年代以来,世界各地的地质学家已开始注意并致力于研究矿产预测与评价的不确定性问题,该项研究业已成为探索“热点”。
     本文以国土资源大调查重大项目“全国矿产资源潜力评价”下属“矿产资源定量化预测新方法研究”为依托,在“三联式”定量成矿预测理论与方法的指导下,紧密围绕地质异常理论和不确定性评价这个主题,开展了地质异常的地质基础和数学基础,地质异常识别、提取和圈定技术与方法,矿产预测不确定性评价的途径与方法等研究,研发了基于地质异常的矿产预测与评价GIS软件,并以西藏冈底斯斑岩型铜矿为例,圈定了斑岩铜矿找矿远景区并评价了其不确定性。本研究主要包括以下一些内容。
     ①探讨了地质异常的地质基础和数学基础
     地质异常是地质异常事件作用的结果,而反过来,地质异常又是各种事件的策源地和诱因,因此,可认为地质异常的地质基础为地质异常事件。极值和异常值相对地质背景来说都可认为是地质异常,地质异常的观测值位于分布的尾部,而极值分析正是研究在超常大(或小)水平上量化过程的随机性状,并估计比任何已观测水平更为极端事件的概率,因此,地质异常属于极值理论研究的范畴。
     ②搭建了矿产预测不确定性评价主流程
     基于GIS矿产预测不确定性分为矿产定位预测不确定性(包括数据的不确定性、预测模型与预测方法的不确定性、矿床产出空间位置的不确定性)和资源潜力预测不确定性(包括未发现矿床(点)数的不确定性,未发现矿床(点)品位、吨位及资源量的不确定性),总结每种类型的不确定性主要来源和研究内容;并用模糊集评价矿产预测中的不确定性,引入了隶属度的概念,从量上把握和处理矿产预测中复杂性和模糊不确定性等问题,可反映矿产预测结果的可靠性、可能性、误差和风险的大小。研究了矿产预测不确定性表达模型和传播模型及相应的计算方法,提出了降低矿产预测评价不确定性的途径。从而初步搭建了矿产预测不确定性评价体系,该体系包括矿产预测不确定性来源、分类→矿产预测不确定性评价→矿产预测不确定性表达与传播→降低矿产预测不确定性途径与方法。
     ③探讨了矿产预测中定性数据的不确定性评价方法
     以“全国重要成矿区带数据库”为例,对各类型数据的字段数和存储空间进行了统计分析,研究发现定性数据在字段总数和存储空间都占主导地位,可见研究定性数据的不确定性是矿产预测不确定性评价中关键,并把定性数据分为文字描述型、分类码和顺序码等3类,统计分析这3类数据的字段数和存储空间,发现文字描述型数据和分类码数据是定性不确定性评价的重点。运用语言学算子对描述型数据进行不确定性评价,采用定性排序和定量转化方法评价分类码和顺序码数据不确定性,并以地层和断裂方位为例评价了定性数据的不确定性。
     ④发展了地质异常识别、提取与圈定技术并研发基于地质异常的矿产预测与评价GIS系统
     基于GIS开发了极值理论、模糊数学及C-A法等圈定地质异常方法,发展了地质异常识别、提取与圈定技术,并研发了基于地质异常矿产预测评价GIS软件。该系统基本实现了矿产预测评价主流程的信息化与定量化,它具有地质异常识别与提取、变量变换、变量构置与优化、异常圈定、预测远景区圈定与优选等功能,实现了对矿产定位预测与矿产潜力预测的不确定性评价。这些对提取与圈定新型的、隐型(式)的和深层次的成矿地质信息和评价矿产预测的风险有一定的帮助。
     ⑤圈定了西藏冈底斯斑岩型铜矿找矿远景区并评价其不确定性
     收集西藏冈底斯东段1:50万地理、地质、矿产地、地球化学、遥感、航磁和重力数据,建立了矿产预测基础空间数据库。在此基础上,利用基于地质异常的矿产预测评价系统对冈底斯斑岩型铜矿进行地质异常信息识别、提取与圈定;利用非线性方法-奇异性指数绘制法进行了Cu等异常信息提取;利用不对称模糊关系分析计算了预测变量的权重;利用多层模糊综合预测了斑岩型铜的找矿远景区,为在该区进行进一步矿产资源勘查与评价提供了参考依据。研究结果表明(1)奇异性指数能有效提取不同地质背景下的弱缓异常;(2)模糊不对称关系考虑了变量间的对称与不对称关系,其计算的预测变量的权重更能反映地质变量的关系,减少了预测变量权重的不确定性;(3)多层次模糊关系可有效的综合多层次多种类预测变量,并可评价预测结果的不确定性。
     综上所述,对基于地质异常的矿产预测与不确定性评价的理论、方法与技术做了有益探索。在地质异常理论与方法方面,研究了地质异常的地质与数学基础,发展了地质异常识别、提取与圈定技术,实现了基于地质异常的矿产预测与评价系统;在矿产预测不确定性评价方面,搭建了矿产预测不确定性评价的主流程,探讨了评价矿产预测不确定性的方法与技术,并圈定了西藏冈底斯斑岩型铜矿的找矿远景区并评价了其模糊不确定性,检验了基于地质异常的矿产预测与评价系统的实用性及矿产预测不确定性评价主流程的可操作性。上述工作的开展,为更广泛的应用地质异常理论开展矿产预测及不确定性评价提供理论、方法与软件支持,以期对提取与圈定新型的、隐型(式)的和深层次的成矿地质信息和减小矿产预测不确定性有一定的帮助。
Given the increasing difficulties in exploring for mineral resources, improving exploration efficiency has become a major objective. The traditional exploration theories and methods are useful but also a major factor impeding mineral resources exploration. Therefore, we need to develop new geological exploration theory and methods to gain a better understanding of the processes that control ore body formation and mineralization, spatial and temporal rules of deposit distributions, and the economic properties of deposits. We also need to improve prospecting techniques so as to identify various indicators of mineralization, as well as software packages that can effectively identify, manipulate, analyze, and interpret massive mineralization information. Identification of deep and hidden information is not only a technical issue, but also an important scientific concern, such as the fundamental theory, identification of weak and complex information, and separation of hybrid data. Undoubtedly, these problems are worldwide and constrain the development of today's breakthroughs in mineral resources exploration. The geological anomaly theory proposed by Zhao (1991) breaks through the bound of the "similar analogy" theory, and has gradually led to a new theory and method of "Three Components" , which consists of geological anomaly, diversity of mineralization, and the spectrum of mineral deposits (Zhao et al., 2001) . The theory and method have been widely used for predicting solid mineral resources and oil and gas exploration, and have gained wide application to information from ore fields in Shandong and Yunnan Province, China.
     In recent years, mineral resources prospecting has encountered two new situations: (1) There is a shortage of traditional mineral resources, especially for strategic and support commodities such as oil, iron, manganese, chromium, and potassium, resulting in a group of crisis mines and crisis mine cities; and (2) many undiscovered mineral deposits are difficult to identify, detect, and use. At present, we focus mainly on finding the deep and difficult-to-identify mineral deposits, especially in better explored areas such as in mid-China and eastern China. The identification, extraction and delineation of new, hidden, and deep ore-forming information play an important role in the prediction and assessment of mineral resources. It is important therefore to develop an effective tool to identify, extract, and delineate geological anomalies based on GIS under the guidance of "Three Components Prediction Theory and Methods".
     In addition, mineral resources prediction and assessment entail high risk and uncertainty because of the complexity and variability of geological objects, such as the diversity of mineral deposit types, the complexity of mineral deposit genesis, the implicitness of mineral deposit controlling factors, and the non-unique understanding of exploration information and because most mineral deposits are located subsurface at variable depths. How to identify the sources of uncertainty and how to improve the efficiency of exploration is not only a goal of all geologists but also a major scientific issue. Only through a comprehensive analysis of the sources of uncertainty in mineral resources prediction and through the quantitative evaluation of uncertainty can we find the approach and method to reduce risks and increase efficiency in exploration.
     This research is supported by national mineral resources potential prediction and assessment. Using "Three Components Prediction Theory and Methods" and geological anomaly as a guide, I conduct research on the geological and mathematical foundation of geological anomaly, the technology and method to identify, extract, and delineate the new, hidden, and deep ore-forming information, and the uncertainty in mineral resources prediction and assessment; I also construct a mineral resources prediction and assessment model based on geological anomalies. For demonstration purposes, the Gangdese porphyry copper belt will be studied as an example.
     The following conclusions can be obtained from these studies:
     (1) Discussion of the geological and mathematical foundation of geological anomaly
     Geological anomaly is the product of the evolution of and the interaction between processes affecting the Earth's geological layers during different geological periods. The features of any geological anomaly and the type and size of mineral resources are determined by rock age, tectonic setting, geological environment, and rock type. With the evolution of geological history, the early formation of the geological anomalies will evolve. Therefore, the geological anomalies have an evolutionary sequence in space and time. All the geological characteristics related to mineralization, including the conditions of mineralization and spatial and temporal ore-controlling factors, are represented as the geological anomaly events in the process of geological evolution. Therefore, the foundation of geological anomaly is the geological event, and the geological anomaly is the result of the succession of geological events.
     Extreme value and anomaly value in geology can be regarded as geological anomalies, and their values often occur in the tail of the frequency distribution. Extreme analysis is used to quantify random characters at either ultra-large or small scale, and to estimate the probability of extreme events. Therefore, geological anomaly falls within the scope of extreme value theory.
     (2) Research on the method to identify, extract, and delineate geological anomaly, and development of the geoanomaly-based mineral resources prediction and assessment system
     Some indicators of ore, such as space morphology and spatial configuration features, are presented to identify geological anomalies; some methods, including extreme value theory (EVT, Fuzzy mathematic, and concentration-area(C-A), are used to delineate the geological anomalies; and some methods, such as evidence of weights and fuzzy logic, are used to integrate multi-variables. Then the GIS-based mineral resources prediction and evaluation are constructed. The system, comprising eight modules, for geological anomaly identification and extraction, variables transformation, mineral resources prediction and assessment, evaluation of uncertainty, etc., has paved the main information course in mineral resources prediction and assessment. These are undoubtedly helpful to extract and delineate the new, hidden, and deep-mineralization information and evaluate the uncertainty.
     (3) Set up the main flow of uncertainty evaluation in the mineral resources prospecting
     The main sources of uncertainty arise from two factors. The first is known as the geological uncertainty, including the variability and complexity of natural phenomena. The second known as the process of mineral resources prediction and assessment. The uncertainty is transformed from the previous stage to the next stage, resulting in a considerable amount of uncertainty accumulation and dissemination. The uncertainty can be classified as the uncertainty in mineral resources location prediction and the uncertainty in mineral resources potential prediction. Both of the uncertainties have been categorized into the uncertainty of spatial data, the uncertainty of prediction model, the uncertainty of undiscovered deposits, and the uncertainty of grade and tonnage. All these uncertainties are introduced in details and evaluated by fuzzy sets, where the fuzzy numbers are used to express the reliability, probability, and variance of the results. Then the expression and propagation model of uncertainty, and some methods to reduce the uncertainty in mineral resources exploration, are proposed. Based on previous research, the main flow of the uncertainty evaluation in the mineral resources prediction was set up, including the sources and classification of uncertainty, evaluation of uncertainty, the expression and propagation of uncertainty, and how to reduce the uncertainty.
     (4) Preliminary study of uncertainty evaluation in geological qualitative data
     Taking the "National mineral resources database" as an example, the types of data fields and storage space are calculated. The results show that the qualitative data are still dominant in the massive data. Therefore, how to evaluate uncertainty in qualitative data is vital for mineral resources exploration. The qualitative data can be classified into two types. The first relates to description type, which is evaluated by using operators of the linguistic variables. The second is codes type, which is evaluated by qualitative sorting and quantitative transformation. Two examples, permissive strata and faults, demonstrate these methods.
     (5) Mineral resources prospecting, and evaluating its uncertainty for Gangdese porphyry copper deposits
     Basic spatial databases, including geology database, ore deposit database, geophysics database, geochemistry database, and remote sensing database, were established at the scale of 1:500,000, and the geoanomaly-based mineral resources prediction and assessment system was used to identify and extract geological anomalies, and to integrate multi-geovariables and evaluate the uncertainty. The results demonstrate that (1) the mapping singularity technique is a useful tool to separate weak anomalies from complex background; (2) asymmetric fuzzy association analysis can uncover both direct and indirect relations between variables, which generally more closely reflects the real relationships between geosciences variables, and can lead to better results; (3) the multilevel fuzzy comprehensive evaluation can efficiently efficiently integrate multilevel and multi-sources variables and handle uncertainty due to vagueness of classification in mineral prospectivity mapping.
     In a word, this dissertation mainly focuses on the theroy and method of both geoanomaly-based and uncertainty evaluation in mineral resources prediction and assessment. For the theory and method of geological anomaly, this paper (1) discusses the geological and mathematical foundation of geological anomaly; (2) develope of the methods to identify, extract, and delineate the new, hidden, and deep ore-forming information; and (3) develop geoanomaly-based mineral resources prospecting system. For the theory and method of uncertainty evaluation, this paper (1) sets up the main information flow for the evaluation of uncertainty in mineral resources prospecting and (2) discusses how to evaluate the uncertainty. The Gangdese porphyry copper belt in Tibet is then chosen as a study area to demonstrate that the geoanomaly-based mineral resources prospecting system is a practical and operational tool to map prospectivity and evaluate its uncertainty.
引文
[1]Agterberg,F.P.,Bonham-Carter,G.F.,Cheng,Q.,and Wright,D.F.,1993.Weights of evidence modeling and weighted logistic regression in mineral potential mapping,in Davis,J.C,and Herzfeld,U.C,eds.,Computers in Geology:Oxford Univ.Press,New York,13-32.
    [2]Agterberg,F.P.,1970.Multivariate prediction equations in geology:Journal of the International Association for Mathematical Geology,Vol.2,pp.319-324.
    [3]Agterberg,F.P.,1989a.Computer programs for mineral exploration,Sciences,245 (4913):76-81.
    [4]Agterberg,F.P.,1989b.Systematic approach to dealing with uncertainty of geoscience information in mineral exploration.Application of Computers and Operations Research in the Mineral Industry,165-178.
    [5]Agterberg,F.P.,1992.Combining indicator patterns in weights of evidence modeling for resource evaluation:Nonrenewable Resources,1(1):39-50.
    [6]Agterberg,F.P.,and Cheng,Q.,2002.Conditional independence test of weights-of-evidence modeling:Natural Resources Research,11 (4):249-255.
    [7]Agterberg,F.P.,Bonham-Carter,G.F.,and Wright,D.F.,1990.Statistical pattern integration for mineral exploration,in Gaal,G.,and Merriam,D.F.,eds.,Computer Applications in Resource Estimation:Pergamon Press,Oxford,1-21.
    [8]An,P.,1992.Spatial reasoning techniques and integration of geophysical and geological information for resource exploration,Ph.D.dissertation.The University of Manitoba,Manitoba.
    [9]An,P.,Moon,W.M.,Bonham-Carter,G.F.,1994a.An object oriented knowledge representation structure for exploration data integration.Nonrenewable Resources.(3):132-145.
    [10]An,P.,Moon,W.M.,Bonham-Carter,G.F.,1994b.Uncertainty management integration of exploration data using the belief function.Nonrenewable Resources,3:60-71.
    [11]Balkema A.A.and de Haan,L.,1974.Residual life time at great age,Ann.Probab.2,pp.792-804
    [12]Bardossy,G.,Fodor,J.,2000.Handling uncertainty in geology by new mathematical methods.Budapest Polytechnic Hungarian Fuzzy Association,Budapest,Hungary,93-109.
    [13]Bardossy,G.,Fodor,J.,2001.Traditional and new ways to handle uncertainty in geology.Natural resources research,179-187.
    [14]Bardossy,G.,Fodor,J.,2004.Evaluation of uncertainty and risks in geology,Springer.
    [15]Bedford,T.,Roger M.Cooke.,2001.Probabilistic risk analysis:foundations and method.UK:Cambridge University press,15-38.
    [16]Bingham et al.,1987 Bingham,N.H.,Goldie,C.M.and Teugels,J.L..1987.Regular Variation,Cambridge University Press,Cambridge.
    [17]Bonham-Carter,G.F.,1991.Integration of geoscientific data using GIS,in Maguire,D.J.,Goodchild,M.F.,and Rhind,D.W.,eds.,Geographic Information Systems:Principles and Applications:Longman,London,2:171-184.
    [18]Bonham-Carter,G.F.,1994.Geographic information systems for geoscientists,modeling with GIS:Pergamon,Press,Ontario,398.
    [19]Bonham-Carter,G.F.,Agterberg,F.P.,and Wright,D.F.,1988.Integration of geological datasets for gold exploration in Nova Scotia:Photogrammetric Engineering and Remote Sensing,54 (11):1585-1592.
    [20]Bonham-Carter,G.F.,Agterberg,F.P.,and Wright,D.F.,1989.Weights of evidence modelling:a new approach to mapping mineral potential,in Agterberg,F.P.,and Bonham-Carter,G.F.,eds.,Statistical Applications in the Earth Sciences:Geol.Survey Canada Paper 89-9,171-183.
    [21]Bonham-Carter,G.F.,and Agterberg,F.P.,1990.Application of a microcomputer-based geographic information system to mineral potential mapping,in Hanley,T.,and Merriam,D.F.,eds.,Microcomputers in Geology,2,Pergamon Press,Oxford,49-74.
    [22]Carlson,C.A.,1991.Spatial distribution of ore deposits.Geology 19,111-114.
    [23]Carranza,E.J.M,Woldai,T.and Chikambwe,E.M.2005.Application of Data-Driven Evidential Belief Functions to Prospectivity Mapping for Aquamarine-Bearing Pegmatites,Lundazi District,Zambia.Natural Resources Research,14 (1):47-63.
    [24]Carranza,E.J.M.,and Hale,M.,2002.Evidential belief functions for geologically constrained mapping of gold potential,Baguio district,Philippines.Ore Geology Reviews,22 (1-2):117-132.
    [25]Chen,Y.,Zhang S.,Liu H.,2005.Application of Multi-fractal Methods in Extracting GeochemicalAnomalies in Western Yunnan Province,Southwestern China with GeoDAS3.0 Software.Proceedings of IAMG'05:GIS and Spatial Analysis.
    [26]Chen,Y.,Chen,J.,Liu,J.,et al.,1998.Geo-anomaly unit methods for synthetic quantitative assessments of undiscovered gold deposits,5th International Symposium for Mineral Exploration,Australia,Brisbane.
    [27]Chen,Y.,Xia,Q.,Chen,J.,2005.Quantitative Assessment of Prospecting Target Areas for Base and Precious Metal Deposits in Western Yunnan Terrain,Southwestern China Using MORPAS2.0 Software.Proceedings of IAMG'05:GIS and Spatial Analysis.
    [28]Cheng,Q.,1990.Order analysis method and its application in geology,In Proceedings of International Workshop on Statistical Mineral Resource Prediction,Chinese University of Geosciences,Wuhan,China,20-25 October,64-70.
    [29]Cheng,Q.,1991.Asymmetric association of qualitative variables and its applications in mineral resource appraisal,Journal of Statistics and Applied Probability 6,152-161 (In Chinese with English Abstract).
    [30]Cheng,Q.,1996.Asymmetric fuzzy relation analysis method for ranking geosciences variables.Nonrenewable Resources 5,169-180.
    [31]Cheng,Q.,2002.Geodata analysis system (GeoDas)for mineral exploration:User guide and exercise manual.Material for the training workshop on GeoDas held at York University,Novermber 1-3.289 (Http://www.gisworld.org/geodas)
    [32]Cheng,Q.,2007.Mapping singularities with stream sediment geochemical data for prediction of undiscovered miner al deposits in Gejiu,Yunnan Province,China.Ore Geology Reviews,(32):314-324.
    [33]Cheng,Q.,2008.Non-Linear Theory and Power-Law Models for Information Integration and Mineral Resources Quantitative Assessments,Mathemathical.Geosciences.40,503-532.
    [34]Cheng,Q.,Agterberg F.P.,Ballantyne,S.B.,1994.The separation of geochemical anomalies from background by fractal methods.Journal Geochemical Explore,51:109-130.
    [35]Cheng,Q.,Agterberg,F.P.,1999.Fuzzy weights of evidence method and its application in mineral potential mapping.Natural resources research,8(1):27-35.
    [36]Cheng,Q.,Agterberg,F.P.,Bonham-Carter,G.F.,1996.A spatial analysis method for geochemical anomaly separation.Journal Geochemical Exploration,56:183-195.
    [37]Cheng,Q.,Xu,Y.,and Grunsky,E.,2000,Multifractal power spectrum-area method for geochemical anomaly separation.Natural Resources Research 9,43-51.
    [38]Chung,C.F.,Fabbri,A.G.,1993.The representation of geoscience information for data integration.Nonrenewable Resources,(2):122-139.
    [39]Chung,C.F.,Moon,W.M.,1991.Combination rules of spatial geoscience data for mineral exploration.Geoinformatics,(2):159-169.
    [40]Coles,S.G.,2001.Introduction to Statistical Modelling of Extreme Values.Springer Series in Statistics,Springer,London.
    [41]Cox,D.P.,Singer,D.A.,1986.Mineral deposits models.USMS Bul,1693.
    [42]Cox,D.P.,Singer,D.A.,1992.Distribution of gold in porphyry copper deposits,in DeYoung,J.H.,and Hammerstrom,J.M.eds.,Contributions to commodity research:U.S.Geological Survey Bulletin 1877,C1-C14.
    [43]Davison,A.C.and Smith,R.L.,1990.Models for exceedances over high thresholds,J.Roy.Statist.Soc.Ser.B 52,pp.393-42.
    [44]Dempster,A.P.,1968.A generalization of Bayesian inference.J.Roy.Statist.Soc,(30):205-247.
    [45]Diehl,P.,1994.Classifying geological uncertainty by geostatistical methods:many questions,few answers.Bundesanstalt fuer Geowissenschaften und Rohstoffe,Hanover,Federal Republic of Germany,165-175.
    [46]Diehl,P.,1997.Quantification of the term “geological assurance” in coal classification using geostatistical methods.Schriftenreihe der GDMB,Klassifikation von lagerstatten,79:187-203.
    [47]Dominy,S.C.and Johansen,G.F.,2004.Reducing grade uncertainty in high-nugget effect gold veins;application of geological and geochemical proxies,Publication Series-Australasian Institute of Mining and Metallurgy,291-302.
    [48]Doubois,D.and Prade,H.,2000.Fundamentals of fuzzy sets (the handbook of fuzzy stes series 7),Kluwer Academic Publishers,Boston/London dordercht,647.
    [49]Duda,R.O.,Hart,P.E.,Barrett,P.,et al.,1978.Development of the PROSPECTOR Consultation System for Mineral Exploration.Stanford Research Institute International,SRI International,Artificial Intelligence Centre,Menlo Park,CA.193 pp.
    [50]Duval,J.S.,2001.A Microsoft Windows version of the Mark3 Monte Carlo mineral resource simulator:U.S.Geological Survey Open-File Report 00-415,1 CD-ROM.
    [51]Fisher,P.,2003.Data quality and uncertainty:ships passing in the light.Edited by Wenzhong Shi,Michael F.Goodch ild,Peter F.F isher.Proceedings of the 2nd International Symposium on Spatial Data Quality 2003.Hong Kong:The Hong Kong Polytechnic University,117-22.
    [52]Harris,D.P.,1984.Mineral Resource Appraisal.Clarendon Press,Oxford.
    [53]http://gis.nrean.gc.ca/sdm2001
    [54]http://www.avantra.com.cn/mi-sdm 2002
    [55]Kemp,L.D.,Bonham-Carter,G.F.and Raines,G.L.,1999.Arc-WofE:Arcview extension for weights of evidence mapping.Available online (July 2002)at:http://ntserv.gis.nrcan.gc.ca/wofe.
    [56]Kemp,L.D.,Bonham-Carter,G.F.,Raines,G.L.,and Looney,C.G.,2001.Arc-SDM:Arcview extension for spatial data modelling using weights of evidence,logistic regression,fuzzy logic and neural network analysis,http://ntserv.gis.nrcan.gc.ca/sdm/.
    [57]Kennecott Exploration 2007,About exploration.Http://www.kennecottexploration.com/.
    [58]Kill,G.,1990.A principle of uncertainty and information invariance.int.J.General system,(17):249-275.
    [59]Kwang-Hoon Chi,2002.Fuzzy Logic integration for Landside Hazard Mapping Using Spatial Data from Boeun,Korea.Symposium on Geospatial Theory,Processing and Application,Ottawa.
    [60]Li,C.,Ma,T.,and Shi,J.,2003.Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background,Journal of Geochemical Exploration,77,167-175.
    [61]Lord D.,Etheridge,M.A.,Willson,M.,Hall,G.& Uttley,P.J.2001,Measuring exploration success:an alternative to the discovery-cost-per-ounce method of quantifying exploration success.SEG Newsletter 45,1 & 10-16.
    [62]Luo,X.,Dimitrakopoulos,R.2003.Data-driven fuzzy analysis in quantitative mineral resource assessment,Computers & Geoscience,(29):3-13.
    [63]Mann C.J.,1993.Uncertainty in geology (in Computers in geology;25 years of progress)Studies in Mathematical Geology,241-254.
    [64]Pawalai,K.,Chun,C.F and Warick B.,2005.Uncertainty in Mineral Prospectivity Prediction.Assessment of Uncertainty in Mineral Prospectivity Prediction Using Interval Neutrosophic Set Computational Intelligence and Security,1074-1079.
    [65]Pickands,J.1975.Statistical inference using extreme order statistics,Ann.Statist.3,pp.119-131.
    [66]Ping A.,wooil.M.M.wooil.M.M,and Andy R.,1991.Application of fuzzy set theory to integrated mineral exploration.Canada of journal of exploration geophysics,27 (1):1—11.
    [67]Porwal,A.,Emmanuel,J.M.and Hale,A.,2006.A hybrid fuzzy weights of evidences model for mineral potential mapping.Natural resources research,12-19.
    [68]Raines,G.L.,2008.Are Fractal Dimensions of the Spatial Distribution of Mineral Deposits Meaningful? Nature resources research 17,87-97.
    [69]Rio Tinto,2007,Rio Tinto Exploration-annual business report 2006.
    [70]Root,D.H.,Menzie,W.D.,and Scott,W.A.,1992.Computer Monte Carlo simulation in quantitative resource estimation:Nonrenewable Resources,125-138.
    [71]Root,D.H.,Scott,Jr.,W.A.,and Seiner,G.I.,1996.Computer program for aggregation of probabilistic assessments of mineral resources:U.S.Geological Survey Open-File Report 96-94,1 diskette.
    [72]Root,D.H.,Scott,Jr.,W.A.,and Schruben,P.G.,1998.MARK3B Mineral Resource Assessment Program for Macintosh:U.S.Geological Survey Open File Report 98-0356,24.
    [73]Shafer,G.,1976.A Mathematical theory of Evidence.Princeton University Press,Priceton,NJ.
    [74]Singer,D.A.,1993.Basic Concepts in Three-Part Quantitative Assessments of Undiscovered Mineral Resources.Nonrenewable Resources,2(2):69-81.
    [75]Singer,D.A.,2001.资源定量评价发展方向展望[J].地球科学-中国地质大学学报,26(2):152-156.
    [76]Singer,D.A.,Berger,V.I.,Menzie,W.D.,et al.,2005.Porphyry Copper Deposit Density,Economic Geology,100:491-514.
    [77]Singer,D.A.and Kouda,R.,1999.Examining risk in mineral exploration.Natural Resources Research,8 (2):111-122.
    [78]Singer,D.A.and Menzie,W.D.,2005.Statistical guides to estimating the number of undiscovered mineral deposit:an example with porphyry copper deposits.Proceedings of IAMG'05:GIS and Spatial Analysis.
    [79]Singer,D.A.,1995.World class base and precious metal deposits-quantitative analysis.Economic Geology,90 (1):88-104.
    [80]Singer,D.A.,Kouda,R.,1996,Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku district,Japan.Math.Geol.28,1017-1023.
    [81]Singer,D.A.,Berger,V.I.,and Moring,B.C.,2008.Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models,U.S.Geological Survey Open-file Report 2008-1155.http://pubs.usgs.gov/of/2008/1155/
    [82]Singer,D.A.,Berger,V.I.,and Moring,B.C.,2005,Porphyry copper deposits of the world:database,map,and grade and tonnage models:U.S.Geological Survey Open-file Report 2005-1060,http://pubs.usgs.gov/of/2005/1060/
    [83]Singer,D.A.,et al.,2001.Mineral deposit density an update.USGS Profrssionnal Paper,1640-A,13.
    [84]Singer,D.A.,Kouda,R.,1997,Classification of mineral deposits into types using mineralogy with a probabilistic neural network.Nonrenewable Resources 6,69-81.
    [85]Tangestani,M.H.,Moore,F.,2002.The use of Dempster-Shafer model and GIS in integration of geoscientific data for porphyry copper potential mapping,north of Shahr-e-Babak,Iran International Journal of Applied Earth Observation and Geoinformation 4,65-74.
    [86]Tu,G.,1995.Some Problems pertaining to Superlarge Ore Deposits of China.Episodes,IUGS 18 (1-2):83-86.
    [87]Tutmez,B.,2007.An uncertainty oriented fuzzy methodology for grade estimation.Computers & Geosciences,33:280,33:280-288.
    [88]Wang,H.,Florentin,S,S.,Zhang,Y.,and Rajshekhar S.Interval Neutrosophic Sets and Logic:Theory and Applications in Computing.Neutrosophic Book Series,No.5.http://arxiv.org/abs/cs/0505014,May 2005.
    [89]Wei,M.,Zhao,P.,2000.Grade-tonnage model of large superlarge copper deposits of China.Geological Review,46 (Supp.):123-125.
    [90]Wright,D.F.,Bonham-Carter,G.F.,1996.VHMS favourability mapping with GIS-based integration models,Chisel Lake-Anderson Lake area.In:Bonham-Carter,Galley,Hall (Eds.),EXTECHI:A Multidisciplinary Approach to Massive Sulfide Research in the Rusty Lake-Snow Lake Greenstone Belts,Manitoba.Geol.Survey Can.Bull.426,339-376.
    [91]Xia,Q.,Zhao,P.,Zhang,S.,et al.,2005.GIS Spatial-Temporal Model of Geological Anomaly:A Case for Cenozoic Geology in Northwestern Yunnan Province,China.Proceedings of IAMG'05:GIS and Spatial Analysis.
    [92]Zadeh,L.A.,1965.Fuzzy sets:IEEE Information and Control,(8):338-353.
    [93]Zhao,P.,Chen J.,Zhang S.,et al.,2005.Mineral Deposits:Geological Anomalies with High Economic Value.Proceedings of IAMG'05:GIS and Spatial Analysis.
    [94]Zhao,P.,Chen,J,Chen,J.,et al.,2004.“Three-Component” Digital Prospecting Method:A New Approach for Mineral Resources Quantitative Prediction and Assessment.Journal of China University of Geosciences,15 (3):245-252.
    [95]Zhao P.,Chen Y,2001.Geo-anomaly:The Extreme Value in Geology and Its Application in Quantitative Assessment of Mineral Resources,477-480.
    [96]Zimmermann,H.J.,1985.Fuzzy set theory and its application,Kliwer-Nijhoff publishing,Boston-dordrecht-lancaster.
    [97]Zimmermarm,H.J.,2000.An application oriented view of modeling uncertainty.European Journal of Operational Research,122:199-249.
    [98]Zuo,R.,Xia,Q.,2007.Monte Carlo simulations the grade-tonnage model of the contact metasomatic Tin deposits in china.Proceeding of the IAMG'07:Geomathematics and GIS analysis of resources,environment and hazards,110-113.
    [99]Zuo,R.,Zhao,P.,Xia,Q.,2007.Delineating geological anomaly by Extreme Value Theory,Proceeding of the IAMG'07:Geomathematics and GIS analysis of resources,environment and hazards,795-799.
    [100]Zuo,R.,Cheng,Q.,Agterberg,F.P.and Xia,Q.,2008.Evaluation of the uncertainty in estimation of metal resources of skarn tin in Southern China.Ore Geology Reviews.(DOI:10.1016/j.oregeorev.2008.12.001)
    [101]Zuo,R.,Cheng,Q.and Agterberg,F,P.,2009a.Application of a hybrid method combining multilevel fuzzy comprehensive evaluation with asymmetric fuzzy relation analysis to mapping prospectivity.Ore Geology Reviews 35,101-108
    [102]Zuo,R.,Cheng,Q.,Agterberg,F.P.and Xia,Q.,2009b.Application of singularity mapping technique to identification local anomalies using stream sediment geochemical data,a case study from Gangdese,Tibet,Western China.Journal Geochemical Exploration 101,225-235.
    [103]曹瑜,胡光道,杨志峰,等,2003.GIS环境下地质变量自动提取与地质异常的圈定[J].计算机工程与应用,13(14):81-85.
    [104]陈守余,周宗桂,1999.陕西勉略宁地区致矿地质异常场结构及找矿预测[J].地球科学-中国地质大学学报,24(5):472-475.
    [105]陈永清,刘红光,2001.初论地质异常数字找矿模型[J].地球科学-中国地质大学学报,26(2):129-134.
    [106]陈永清,夏庆霖,1999.应用地质异常单元圈定矿产资源体潜在地段[J].地球科学-中国地质大学学报,24(5):459-463.
    [107]陈毓川,1994.矿床成矿系列[J].地学前缘,(3):90-94.
    [108]成秋明,2006.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J].地球科学,31(3):337-348.
    [109]成秋明,2007.成矿过程的奇异性与矿产资源定量化的新理论与新方法[J].地学前缘,14(5):42-53.
    [110]程裕琪,1979.初论矿床的成矿系列问题[J].中国地质科学院院报,(1).
    [111]程裕琪,赵一鸣,陈松年,1978.中国几组主要铁矿类型[J].地质学报,63(4):205-224.
    [112]程裕琪等,1983.再论矿床的戍守系列问题-兼论中生代某些砂矿床的成矿系列[J].地质沦评.
    [113]池顺都,周顺平,1997.GIS支持下的地质异常分析及金属矿产经验预测[J].地球科学-中国地质大学学报,22(1):99-103.
    [114]池顺都,赵鹏大,1998.应用GIS圈定找矿可行地段和有利地段-以云南元江地区大红山群铜矿预测为例[J].地球科学,23(2):125-128.
    [115]段忠东,周道成,2004.极值概率分布参数估计方法的比较研究[J].哈尔滨工业大学学报,36(12):1605-1609.
    [116]高建新,2006.GIS不确定性研究与现状[J].地理空间信息,4(5):4-7.
    [117]高顺宝,2005.西藏冈底斯斑岩铜矿地球化学特征及成矿机理研究[D].中国地质大学(武汉)硕士论文.
    [118]何彬彬,方涛,郭达志,2004..空间数据挖掘不确定性及其传播[J].数据采集与处理,19(4):475-481.
    [119]侯增谦,曲晓明,黄卫,2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,28(10):27-29.
    [120]胡光道,陈建国,1998.金属矿产资源评价分析系统设计[J].地质科技情报,17(1):45-49.
    [121]胡圣武,李长春,王新洲,等,2005.基于多层次模糊综合评判的GIS质量综合评价[J].长江科学院院报,22(3):21-24.
    [122]胡圣武,潘正风,王新洲,等,2004.地理信息系统不确定性的研究[J].测绘通报,9:13-16.
    [123]黄晓霞,胡光道,2000.基于MAPGIS的遥感特征线分析方法设计[J].物探化探计算技术,22(2):165-167.
    [124]黄志英,李光明,2004.西藏雅鲁藏布江成矿区斑岩型铜矿基本特征与找矿潜力[J].地质与勘探,40(1):1-6.
    [125]季克俭,王立天,1994.热液源研究的重要进展和“三源”交代热液成矿学说[J].地学前缘,1(4):126-131.
    [126]金友渔,1998.定性地质变量分维数估计与显微地质异常[J].地球科学-中国地质大学学报,23(2):153-157.
    [127]金友渔,赵鹏大,2000.分形-判别非线性数学模型及勘探线剖面致矿地质异常分析[J].地质科技情报,19(2):99-102.
    [128]李长江,麻士华,1999.矿产勘查中的分形、混沌与ANN[M].北京:地质出版社,39-73.
    [129]李长江,徐有浪,蒋叙良,1994.论矿床的分形性质[J].浙江地质,10(2):25-32.
    [130]李光明,冯孝良,黄志英,等,2000.西藏冈底斯构造带中段多岛弧-盆系及其演化[J].沉积与特提斯地质,20(4):38-46.
    [131]李光明,潘贵棠,2002a.西藏矿产资源远景评价与展望[J].资源科学,24(4):16-23.
    [132]李光明,潘桂棠,王高明,等,2002.西藏铜矿资源的分布规律与找矿前景初探[J].矿物岩石,22(2):30-34.
    [133]李军,姜作勤,童小华,2006.地质数据的抽样检查方法研究[J].地理信息世界,4(2):8-11.
    [134]李庆谋,成秋明,2004.分形奇异(特征)值分解方法与地球物理和地球化学异常重建[J].地球科学—中国地质大学学报,29(1):109-118.
    [135]李裕伟,1998.空间信息技术的发展及其在地球科学中的应用[J].地学前缘,5(1-2):335-341.
    [136]李裕伟,赵精满,李景阳,2007.基于GMS、DSS和GIS的潜在矿产资源评价方法[M].北京:科学出版社。
    [137]刘星,胡光道,2003.应用MORPAS系统证据权重法进行多源信息成矿预测-以澜沧江南段地区为例[J].地质与勘探,39(4):65-68.
    [138]柳会珍,2006.统计极值理论及其应用研究进展[J].统计与决策,8:150-153.
    [139]吕鹏,陈建平,张路锁,等,2006.基于矿床规模模型的西南三江北段区域资源潜力定量预测与评价[J].地质与勘探,42(5):66-71.
    [140]吕新彪,姚书振,1998a.大冶—九瑞地区局部地质异常特征与成矿[J].地球科学—中国地质大学学报,23(2):115-119.
    [141]吕新彪,赵鹏大,1998b.长江中下游地区地质异常与成矿[J].地质学报,27(3):260-266.
    [142]潘桂棠,陈智梁,李兴振,等,1997.东特提斯地质构造形成演化[M].北京:地质出版社.
    [143]裴荣富,等,2001.难识别及隐伏大矿、富矿资源潜力的地质评价[M].北京:地质出版社.
    [144]裴荣富,熊群尧,1999.金属成矿省等级体制成矿与矿产勘查评价[J].当代矿产勘查评价的理论与方法.北京:地震出版社,120-130.
    [145]曲晓明,侯增谦,黄卫,2001.冈底斯斑岩铜矿成矿(化)带:西藏第二条“玉龙”铜矿带[J].矿床地质,20(4):355-366.
    [146]施俊法,王春宁,1998.中国金矿床分形分布及对超大型矿床的勘查意义[J].地球科学-中国地质大学学报,23(6):616-618.
    [147]史文中,2005.空间数据与空间分析不确定性原理[M].北京:科学出版社.
    [148]史文中,王树良,2001.GIS数据之属性不确定性的研究[J].中国图象图形学报,6(9):918-924.
    [149]宋国耀,张晓华,1999.矿产资源潜力评价的理论GlS技术[J].物探化探计算技术,21(3):199-205.
    [150]孙华山,赵鹏大,张寿庭,等,2004.滇西北喜山期富碱斑岩区域矿产成矿多样性表现[J].地质与勘探,40(3):15-19.
    [151]孙启祯,1986.论边缘成矿-关于金属矿床的时空分布及其成因联系[J].地质与勘探,1:7-14.
    [152]孙启祯,1990.论我国金矿边缘成矿[J].地质与勘探,9:1-5.
    [153]孙启祯,1993.论我国铁矿边缘成矿[J].地质与勘探,8:13-18.
    [154]孙启祯,1994.边缘成矿与成矿预测[J].地学前缘,1(3-4):176-182.
    [155]涂光炽,1998.试论非常规超大型矿床物质组成、地质背景、形成机制的某些独特性-初谈非常规超大型矿床.中国科学(D辑)28(增刊):1-6.
    [156]汪培庄,1983.模糊集合论及其应用[M].上海:上海科学技术出版社.
    [157]王世称,2002.综合信息预测理论与方法[M].北京:科学出版社
    [158]王世称,王於天,1989.综合信息解泽原理与矿产预测图的编制方法[M].长春:吉林大学出版社.
    [159]王学平,魏民,杨丽沛,等,1999.中国接触交代型铜矿床品位、吨位模型[J].地质科技情报,18(1):67-70.
    [160]王学平,魏民,杨丽沛,等,2000.中国斑岩型铜矿床品位—吨位模型[J].地质与勘探,36(1):57-59.
    [161]王中宇,等,2000.测量不确定度的非统计理论[M].国防工业出版社.
    [162]王自杰,赵鹏大,1996.基于地质异常研究的矿产预测[J].华东地质学院学报,19(2):133-138.
    [163]魏民,刘红光,王学平,等,2000.中国砂金矿床吨位—品位模型[J].地质科技情报,19(2):43-44.
    [164]邬伦,于海龙,高振纪,等,2002.GIS不确定性框架体系与数据不确定性研究方法[J].地理学与国土研究,18(4):1-5.
    [165]吴冲龙,汪新庆,刘刚,等,2004.地质矿产点源信息系统设计原理及应用[M].武汉:中国地质大学出版社.
    [166]夏庆霖,成秋明,左仁广,等,2009.基于GIS矿产勘查靶区优选技术[J].地球科学-中国地质大学学报,34(2):490-495.
    [167]夏庆霖,2006.“三联式”成矿预测理论在非传统矿产资源评价中的应用[D].中国地质大学博士学位论文.
    [168]夏庆霖,2008.矿产勘查靶区优选理论与方法[C].主攻深部,挺进西部,放眼世界-第九届全国矿床会议论文集,737-738
    [169]夏庆霖,陈永清,2001.鲁西龙宝山金矿致矿地质异常浅析及成矿预测[J].地质找矿论丛,16(2):108-111.
    [170]夏庆霖,张寿庭,赵鹏大,等,2003.幂律度与成矿预测[J].成都理工大学学报-自然科学版,30(5):453-456.
    [171]肖克炎,李景朝,陈郑辉,等,2004.中国铜矿床品位吨位模型[J].地质论评,50(1):50-56.
    [172]肖克炎,王勇毅,陈郑辉,等,2006.中国矿产资源评价新技术与评价新模型[M].北京:地质出版社.
    [173]肖克炎,张晓华,李景朝,等,2007.全国重要矿产总量预测方法[J].地学前缘,14(5):20-26.
    [174]刑国才,逄建东,刘华,等,2004.地质异常理论在油气勘探中的应用[J].中国海上油气工程,16(1):22-25.
    [175]邢学文,胡光道,2006a.模糊逻辑法在秦岭一松潘成矿区金矿潜力预测中的应用[J],吉林大学学报,36(2):298-303.
    [176]邢学文,胡光道,王正海,等,2006b.模糊逻辑法在云南中甸地区铜矿潜力预测中的应用[J].地质科技情报,25(6):53-58.
    [177]薛顺荣,丁俊,2001.成矿预测研究现状及发展趋势[J].云南地质,20(4):411-416
    [178]叶天竺,陈永清,2003.矿产资源评价示范指南[M].中国地质调查局,基于SIG的资源环境空间信息共享与应用服务课题组.
    [179]叶天竺,肖克炎,严光生,2007.矿床模型综合地质信息预测技术研究[J].地学前缘,14(5):11-19.
    [180]叶天竺,朱裕生,夏庆霖,等,2004.固体矿产预测评价方法技术[M].北京:中国大地出版社.
    [181]殷鸿福,张文淮,张志坚,等,1999.生物成矿系统论[M].武汉:中国地质大学出版社.
    [182]於崇文,2003.地质系统的复杂性[M].北京:地质出版社.
    [183]於崇文,2006.矿床在混沌边缘的生长[M].合肥:地质出版社.
    [184]於崇文,岑况,鲍征宇,等,1998.成矿作用动力学[M].北京:地质出版社,1-23.
    [185]于宏义,孙顺庚,刘杰,1987.定性排序与定量转换研究[J].模糊数学.3-4:
    [186]翟裕生,1998.成矿系统的结构框架和基本类型[J].中国可持续发展的资源环境科学学术讨论会论文集,北京:科学出版社.
    [187]翟裕生,1999.论成矿系统[J].地学前缘,6(1):13-28.
    [188]翟裕生,2003a.成矿系统研究与找矿[J].地质调查与研究,26(2):65-71.
    [189]翟裕生,2003b.成矿系统研究与找矿[J].地质调查与研究,26(3):129-135.
    [190]翟裕生,熊永良,1987.关于成矿系列的结构[J].地球科学—中国地质大学学报,32(4):375-380.
    [191]翟裕生,姚书振,林新多,等,1992.长江中下游铁、铜等成矿规律研究[J].矿床地质,11(1):1-12.
    [192]翟裕生.秦长兴,1987.关于成矿系列与成矿模式[M].矿床学参考书(下册).北京:地质出版社,214-222.
    [193]张海荣,2001.GIS中数据不确定性研究综述[J].徐州师范大学学报(自然科学版),19(4):66-68.
    [194]张进滔,李竹渝,2006.极端事件下尾部风险度量的比较分析[J].统计与决策,6,7-10.
    [195]张均,张晓军,2001.川西北地区金成矿的地质异常控制[J].地质找矿论丛,15(1):30-38.
    [196]章泽军,2004.地学研究中的不确定性问题-以华南前震旦纪浅变质岩区为例[J].华南地质与矿产,(1):43-47.
    [197]赵鹏大,2001.矿产勘查理论与方法[M].武汉:中国地质大学出版社.
    [198]赵鹏大,2002.“三联式”资源定量预测与评价-数字找矿理论与实践探讨[J].地球科学-中国地质大学学报,27(5):483-489.
    [199]赵鹏大,2007.成矿定量预测与深部找矿[J].地学前缘,14(5):1-10.
    [200]赵鹏大,陈建平,1996.地质异常理论与遥感地质研究[J].大自然探索,15(56):29-34.
    [201]赵鹏大,陈建平,张寿庭,2003.“三联式”成矿预测新进展[J].地学前缘,10(2):455-463
    [202]赵鹏大,陈永清,1999.基于地质异常单元金矿找矿有利地段圈定与评价[J].地球科学—中国地质大学学报,24(5):443-448.
    [203]赵鹏大,池顺都,陈永清,1996.查明地质异常:成矿预测的基础[J].高校地质学报,2(4):361-373.
    [204]赵鹏大,地顺都,1991.初论地质异常[J].地球科学一中国地质大学学报,16(3):241-248.
    [205]赵鹏大,胡旺亮,李紫金,1994.矿床统计预测[M],武汉:中国地质大学出版社.
    [206]赵鹏大,孟宪国,1993.地质异常与成矿预测[J].地球科学-中国地质大学学报,18(1):39-47.
    [207]赵鹏大,汤军,2002.油气地质异常与非传统油气资源勘探研究[J].地质与勘探,38(2):1-5.
    [208]赵鹏大,王京贵,饶明辉,等,1995.中国地质异常[J].地球科学-中国地质大学学报,20(2):117-127.
    [209]郑有业,王保生,樊子珲,等,2002.西藏冈底斯东段构造演化及铜金多金属成矿潜力分析[J].地质科技情报,21(2):55-60.
    [210]郑有业,薛迎春,程力军,等,2004a.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义[J].地球科学,29(1):1-6.
    [211]郑有业,高顺宝,程力军,等,2004b.西藏冲江大型斑岩铜(钼金)矿床的发现及意义[J].地球科学,29(3):333-339.
    [212]郑有业,高顺宝,张大全,等,2006.西藏朱诺斑岩铜矿床发现的重大意义及启示[J].地学前缘,13(4):233-239.
    [213]朱国庆,张维,张小薇,等,2001.极值理论应用研究进展评析[J].系统工程学报,16(1):72-77.
    [214]朱裕生,1984.矿产资源评价方法导论[M].北京:地质出版社.
    [215]左仁广,夏庆霖,2009.矿产资源潜力预测不确定性评价[J].地球物理学进展,24(1):315-320.
    [216]左仁广,2009.基于多层次模糊综合优选找矿远景区[J].地质与勘探,45(2):88-92.
    [217]左仁广,夏庆霖,2008a.基于地质异常矿产预测与评价子系统实现与应用.第九届全国矿床会议论文集,756-757.
    [218]左仁广,夏庆霖,2008b.矿产预测评价中不确定性传播模型[J].地球物理学进展,23(4):1282-1285.
    [219]左仁广,夏庆霖,2007.矿产预测评价中定性数据不确定性评价[J].金属矿山,8:7-10.
    [220]左仁广,夏庆霖,谭宁,2007a.基于MapGIS成矿地质信息提取系统的开发与应用[J].矿业研究与开发,4:51-53.
    [221]左仁广,夏庆霖,谭宁,2007b.基于MapGIS图形参数检索模块的开发与应用[J].测绘科学,32(4):86-88.
    [222]左仁广,夏庆霖,谭宁,郑有业,2007.西藏冈底斯斑岩铜矿综合信息预测[J].中南大学学报-自然科学版,38(2):368-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700