用户名: 密码: 验证码:
狭鳕鱼皮胶原蛋白结构和物理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了充分利用水产品加工废弃物,本文以资源丰富并且资源集中的水产品加工下脚料—狭鳕鱼鱼皮为原料,研究其中胶原纤维的分布和形态,并采用先进的分离技术和手段提取纯化鱼皮中的主要成分—胶原蛋白,主要进行胶原蛋白分子结构和物理特性的研究。
     1.组织切片观察发现狭鳕鱼皮中主要含有胶原纤维,没有观察到肌纤维的存在,并且其类型主要为Ⅰ型胶原。胶原纤维表现周期性的明暗相间的条带,但是纤维的直径分布是不均匀的。
     2.通过醋酸法提取了狭鳕鱼皮中的酸溶性胶原蛋白,经分析确定其为Ⅰ型胶原蛋白,并较好地保持了螺旋结构。但是,该胶原蛋白具有不同于哺乳动物胶原蛋白的热稳定性,其热变性温度和热收缩温度分别为24.6℃和47℃。
     3.经DEAE-52纤维素柱和Sephacryl S-300 HR凝胶柱层析,得到进一步纯化的狭鳕鱼皮酸溶性胶原蛋白。该蛋白冻干样品为丝状纤维结构,并较好地保持了三螺旋结构,纤维中分子链之间的距离为1.18nm,螺旋结构上相邻氨基酸残基之间的距离为0.27nm。经肽质量指纹图谱分析发现狭鳕鱼皮胶原蛋白与纤维堆囊菌So ce 56的假定蛋白sce1263具有良好的同源性,肽段匹配度达31%。
     4.不同浓度和不同温度下的狭鳕鱼皮胶原蛋白溶液的弹性模量G’和粘性模量G’’均表现剪切频率依赖性,并且高浓度的溶液中胶原蛋白分子间表现明显的缠结现象;30℃的溶液中由于分子原有结构的破坏,G’和G’’交点对应的频率较其它温度的高,而40℃和50℃的溶液中由于分子的聚集而表现明显的缠结现象。通过对狭鳕鱼皮胶原蛋白功能特性的研究分析发现该胶原蛋白溶解度良好,乳化性稍差但是稳定性较好。
     5.狭鳕鱼皮胶原蛋白在溶液中表现自聚集的特性,与样品的质量浓度、pH和离子强度密切相关。当质量浓度高于0.6g/L时,胶原蛋白表现明显的聚集行为; pH7.2比较适合于胶原蛋白的聚集;而离子强度可延缓胶原蛋白的聚集,但当NaCl浓度为30和60mmol/L时,较容易形成大的聚集体。
     芘荧光探针法研究了狭鳕鱼皮胶原蛋白的聚集行为,发现该胶原蛋白的聚集特性表现明显的浓度效应,存在质量浓度临界点(即临界聚集质量浓度,CAMC)。通过芘荧光探针I1/I3值与溶液中胶原蛋白质量浓度对数的关系,确定该胶原蛋白的CAMC为0.48g/L。通过测定胶原蛋白的聚集数(Nagg)发现,Nagg不是一定值,它随着质量浓度的变化而变化,在较低的胶原蛋白质量浓度下,Nagg随着质量浓度的增加而明显增加,当质量浓度达到1.2g/L时,Nagg增长缓慢。
     此外,将芘荧光探针用来监测胶原凝胶的动态形成过程。在6.67%明胶溶液中,选用芘探针分子浓度为40μmol/L,以I1/I3值的变化来表征凝胶的交联情况。
     6.天然植物多酚—没食子酸和芦丁用于狭鳕鱼皮凝胶的交联研究中。当没食子酸添加量为20mg/g gelatin时,凝胶的凝胶强度最大;而芦丁添加量为8 mg/g gelatin时,凝胶强度达到最大,并且具有显著性,但是二者对凝胶的凝胶点和溶胶点的影响均不显著。6mg/g gelatin和8mg/g gelatin的芦丁均使凝胶的热稳定性明显提高,热收缩温度增加了10℃,但是没食子酸对凝胶的热稳定几乎没有影响。凝胶微观结构观察发现没食子酸和芦丁均使凝胶发生了交联,以芦丁的交联现象更为明显。X—射线衍射实验表明,没食子酸和芦丁可与凝胶分子链发生相互作用。经红外光谱分析,没食子酸和芦丁主要与凝胶分子链中的C-N-C基团和羧基发生相互作用。
     没食子酸和芦丁对鱼皮凝胶的溶胀性是有影响的。20和30mg/g gelatin的没食子酸以及6和8mg/g gelatin的芦丁均使凝胶的平衡溶胀度降低,以芦丁的影响更为显著。在凝胶溶胀初期,鱼皮凝胶和20mg/g gelatin没食子酸以及6和8mg/g gelatin芦丁交联的凝胶均表现非Fick扩散过程,而30mg/g gelatin的没食子酸交联凝胶表现Fick扩散过程。通过对整个溶胀过程动力学分析发现,没食子酸和芦丁均使凝胶到达平衡溶胀的时间缩短,而芦丁效果尤为明显。无论是鱼皮凝胶还是多酚交联凝胶,在溶胀过程中均是凝胶高分子链的松弛过程为速控步骤。
     狭鳕鱼皮水凝胶以及多酚交联水凝胶中的水按照水凝胶的“三态水”模型可分为自由水、中间水和结合水,其中以自由水含量最高。没食子酸和芦丁的加入对凝胶的平衡水分含量没有明显影响,但可改变凝胶中可冻结水和非冻结结合水的分布。20和30mg/g gelatin的没食子酸的加入使水凝胶中非冻结结合水含量降低,而6和8mg/g gelatin的芦丁的加入却使水凝胶中非冻结结合水含量升高。
To make more effective use of underutilized resources, the distribution and morphology of collagen fiber was studied in the leftover in aquatic product processing-walleye pollock (Theragra chalcogramma) skin, from which, acid-soluble collagen was isolated to investigate the molecular structure and physical properties.
     1. Histological observation clarified the presence of collagen fibre in walleye pollock skin. The results of picric acid-sirius red stain indicated that typeⅠcollagen was found in pollock skin. And electron microscopic observation revealed that skin of pollock consisted of bundles of collagen fibrils with a repeating period composed of one dark segment plus one light segment, but collagen fibrils differed in diameter.
     2. Acid-soluble collagen (ASC) was successfully extracted from the skin of pollock. It was identified as typeⅠcollagen with the existence of helical arrangements of collagen. The denaturation temperature (Td) and shrinkage temperature (Ts) were 24.6℃and 47℃, respectively, both lower than those of mammalian collagens.
     3. Acid-soluble collagen from pollock skin was further purified using a combination of DEAE-52 cellulose and Sephacryl S-300 HR gel filtration chromatography. The purified collagen showed a structure of filamentary fibril with helical arrangements that the distance between the molecular chains was 1.18nm, and the unit height, typical of the triple helical structure, was 0.27nm. Peptide mapping revealed that the collagen exhibited the homology with the hypothetical protein sce1263 of sporangium cellulosum‘So ce 56’with the sequence coverage of 31%.
     4. Dynamic viscoelastic properties of collagen solutions with concentrations of 0.1~1.0% (w/w) were characterized by means of oscillatory rheometry at temperatures ranging from 20 to 50℃. Results showed that both storage modulus (G’) and loss modulus (G’’) increased with the increase of frequency. According to a three-zone model, dynamic modulus of collagen solutions in the studied concentrations and temperatures showed terminal-zone and plateau-zone behavior. Entanglements could be viewed when the concentration of collagen solution was higher, as well as the temperature reaching 40 and 50℃. But there were no significant entanglements in collagen solution at the temperature of 30℃. On the other hand, the functional properties of collagen from pollock skin were evaluated. Results showed that pollock skin collagen showed the better solubility and worse emulsifying activity, but its emulsion was stable.
     5. Aggregation kinetics of collagen from pollock skin was studied. The main factors including mass concentration of collagen, pH value and ionic strength, which affect the aggregation property, were discussed. The results proved that the aggregation characterization of collagen was closely related to the factors mentioned above. When mass concentration of collagen was increased to 0.6g/L and above, evident aggregation behavior was found in solution. And collagen showed higher aggregation rate at pH7.2. Ionic strength slowed down the collagen aggregation, but when the NaCl concentration reaching 30 or 60mmol/L, it was easier to form large aggregates. So these factors could be considered when the aggregation property of collagen from pollock skin was studied and applied.
     The aggregation behavior of collagen from pollock skin was investigated by the fluorescence probe pyrene. Results showed that the aggregation property of collagen showed mass concentration dependence, and the threshold mass concentration was found, namely the critical aggregation mass concentration (CAMC). Using plots of pyrene I1/I3 ratio versus logarithm of different mass concentration of collagen, the CAMC was found to be at 0.48g/L. The subsequent dynamic fluorescence decaying study revealed that the aggregation number of collagen was not a constant, varying with different mass concentrations. The structure of aggregates tended to be integrated, when collagen mass concentration reaching 1.2g/L and above.
     The fluorescence probe pyrene was also used to monitor the dynamic gelatin formation process. The concentration of pyrene was chosen as 40μmol/L in 6.67% (w/w) gelatin from pollock skin. It was shown that the changes of I1/I3 ratio in pyrene fluorescence spectra were well related to the cross-linking of gelatin.
     6. Gelatin from pollock skin was cross-linked, respectively, by the natural plant polyphenols-gallic acid and rutin. Results showed that the maximal gel strength of gelatin could be obtained when the content of gallic acid was 20mg/g gelatin, or when the content of rutin was 8mg/g gelatin, but the gelling and melting point of gelatin showed no significant increase after gallic acid or rutin added. The shrinkage temperature of gelatin was about 10℃higher with the introduction of 6mg/g gelatin and 8mg/g gelatin rutin, while there were no obvious effects on the thermal stability of gelatin with addition of 20mg/g gelatin and 30mg/g gelatin gallic acid. Scanning electron microscopy (SEM) revealed that greater cross-linking of gelatin was found after gallic acid or rutin added, but it was evident in rutin-gelatin. There were two peaks in the X-ray diffraction diagrams of gelatin with and without ingredients (gallic acid or rutin). But the distance between the molecular chains of gelatin was smaller after the addition of gallic acid or rutin, revealing that they could cross-linked with the polypeptide chains of gelatin. FTIR investigations suggested that gallic acid and rutin mainly interacted with C-N-C group and carboxyl group.
     The effect of gallic acid and rutin on swelling behavior of gelatin was investigated. It was shown that the equilibrium swelling ratio decreased with the introduction of 20mg/g gelatin and 30mg/g gelatin gallic acid, as well as 6mg/g gelatin and 8mg/g gelatin rutin, but it was evident in rutin-gelatin. In the primary swelling process, the swelling behavior of gelatin with and without cross-linking agent (20mg/g gelatin gallic acid, 6mg/g gelatin and 8mg/g gelatin rutin) followed the Fick’s law of diffusion, while that of gelatin containing 30mg/g gelatin gallic acid obeyed the non-Fick’s law of diffusion. Besides, the relaxation of polypeptide chains was the rate-determining step in the whole swelling process of gelatin with and without cross-linking agents.
     Differential scanning calorimetry (DSC) was employed to probe the state of water in the hydrogel, and the effect of gallic acid and rutin on the state of water was discussed. The results indicated that there were freezing free, freezing bound and nonfreezing bound water in gelatin, when the swelling equilibrium was reached. Addition of gallic acid and rutin did not show obvious effect on equilibrium water content of gelatin, but produced much effect on the distribution of frozen and non-frozen water. The non-frozen water was lower after addition of 20mg/g gelatin and 30mg/g gelatin gallic acid, while it was higher after addition of 6mg/g gelatin and 8mg/g gelatin rutin.
引文
Aguiar J., Carpena P., Molina-Bolivar J. A., et al. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. Journal of Colloid and Interface Science, 2003, 258: 116-122.
    Andrew W. Textbook of Comparative Histology. New York: Oxford University Press; Gross J. Collagen. Scientific American, 1961, 204: 120-130.
    Anfinsen C. B. Principles that govern the folding of the protein chains. Science, 1973, 181: 223-227
    Arnesen J. A., & Gildberg A. Extraction and characterization of gelatine from Atlantic salmon (Salmo salar) skin. Bioresource Technology, 2007, 98: 53-57.
    Asghar A., & Henrickson R. L. Chemical, biochemical, functional, and nutritional characteristics of collagen in food systems. In Advances in food research (Vol. 28) London: Academic Press, 1982: 232-372.
    Balange A., Benjakul S. Enhancement of gel strength of bigeye snapper (Priacanthus tayenus) surimi using oxidized phenolic compounds. Food Chemistry, 2009, 113: 61-70.
    Boulet M, Britten M, Lamarche F. Aggregation of some food proteins in aqueous dispersions: effects of concentration, pH and ionic strength [J]. Food Hydrocolloids, 2000, 14: 135-144.
    Cao H., & Xu S.Y. Purification and characterization of typeⅡcollagen from chick sternal cartilage. Food Chemistry, 2008, 108: 439-445.
    Cao N., Fu Y.H., He J.H. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids, 2007, 21: 575-584.
    Chambi H., Grosso C. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Research International, 2006, 39(4): 458-466
    Chiou B., Avena-Bustillos R. J., Shey J., Yee E.a, Bechtel P. J., Imam S. H., Glenn G. M., Orts W. J. Rheological and mechanical properties of cross-linked fish gelatins. Polymer, 2006, 47: 6379-6386.
    Cho S. M., Gu Y. S., & Kim S. B. Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids, 2005, 19, 221-229
    Condell R. A., Sakai N., Mercado R. T., & Larenas E. Quantitation of collagen fragments andgelatin by deconvolution of polarimetry denaturation curves. Collagen and Related Research, 1988, 8, 407-418.
    Cui F. X., Xue C. H., Li Z. J., Zhang Y. Q., Dong P., Fu X. Y., et al. Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus. Food Chemistry, 2007, 100, 1120-1125.
    Dupont-Gillain C C, Jacquemart I, Rouxhet P G. Influence of the aggregation state in solution on the supramolecular organization of absorbed type collagen layers, Colloids and Surfaces B: Biointerfaces, 2005, 43: 179-186.
    Egli GA, Zollinger A, Seifere B. Effect of progressive haemodilution with hydroxyethyl starch, gelatin and albumin on blood coagulation. British Journal of Anaesthesia, 1997, 78:684- 689.
    Eyre D.R. Collagen: Molecular diversity in the body’s protein scaffold. Science, 1980, 207:1315-1322.
    Fathima N. N., Balaraman M., Rao J. R., Nair B. U. Effect of zirconium (Ⅳ) complexes on the thermal and enzymatic stability of typeⅠcollagen. Journal of Inorganic Biochemistry, 2003, 95, 47-54.
    Fathima N. N., Madhan B., Rao J. R., Nair B. U., Ramasami T. Interaction of aldehydes with collagen: effect on thermal, enzymatic and conformational stability. International Journal of Biological Macromolecules, 2004, 34, 241-247.
    Fernández-Díaz, M.D., Montero, P., Gómez-Guillén, M.C. Gel properties of collagens from skins of cod (Gadus morhua) and hake (Merluccius merluccius) and their modification by the coenhancers magnesium sulfate, glycerol and transglutaminase. Food Chemistry, 2001, 74: 161-167.
    Fuchsbauer H. L., Gerber U., Engelmann J., Seeger T., Sinks C., Hecht T. Influence of gelatin matrices cross-linked with transglutaminase on the properties of an enclosed bioactive material using beta-galactosidase as model system. Biomaterials, 1996, 17: 1481-1488.
    Fujimori E., & Shambaugh N. Cross-linking and fluorescence of pyrene-labeled collagen. Biochimica et Biophysica Acta, 1983, 742(1), 155-161
    Gelse K., P?schl E., Aigner T. Collagens-structure, function and biosynthesis. Advanced Drug Delivery Reviews, 2003, 55: 1531-1546.
    Gilsenan P. M., & Ross-Murphy S. B. Rheological characterization of gelatins from mammalianand marine sources. Food Hydrocolloids, 2000, 14, 191-195.
    Giraud-Guille M. M., Besseau L., Chopin C., et al. Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states. Biomaterials, 2000, 21: 899-906.
    Gómez-Guillén M. C., Turnay J., Fernández-Díaz M. D., Ulmo N., Lizarbe M. A., Montero P. Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloids, 2002, 16, 25-34.
    Haug I. J., Draget K. I., Snidsr?d O. Physical behaviour of fish gelatin-κ-carrageenan mixtures. Carbohydrate Polymers, 2004, 56: 11-19.
    Hierrezuelo J. M., Aguiar J., & Ruiz C. C. Interactions in binary mixed systems involving a sugar-based surfactant and different n-alkyltrimethylammonium bromides. Journal of Colloid and Interface Science, 2006, 294, 449-457.
    Holmes D.F., Graham H.K., Trotter J.A., Kadler K.E. STEM/TEM studies of collagen fibril assembly. Micron, 2001, 32: 273-285.
    Huelin S. D., Baker H. R., Poduska K. M., et al. Aggregation and adsorption of typeⅠcollagen near an electrified interface. Macromolecules, 2007, 40: 8440-8444.
    Hwang J.H., Mizuta S., Yokoyama Y., Yoshinaka R. Purification and characterization of molecular species of collagen in the skin of skate (Raja kenojei). Food Chemistry, 2007, 100: 921–925.
    Ikoma T., Kobayashi H., Tanaka J., Walsh D., & Mann S. Physical properties of typeⅠcollagen extracted from fish scales of Pagrus major and Oreochromis niloticas. International Journal of Biological Macromolecules, 2003, 32, 199-204
    Jamilah B., & Harbinder K. G. Properties of gelatins from skins of fish—black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chemistry, 2002, 77: 81-84.
    Jarial M. S., Ganion L. R., Verhoestra B. A. Ultrastructure of the collagen fibrils in the coelacanth. Journal of Fish Biology, 1999, 55: 1119-1122.
    Javadian S., Gharibi H., Sohrabi B., Bijanzadeh H., Safarpour M. A., Behjatmanesh-Ardakani R. Determination of the physical-chemical parameters and aggregation number of surfactant in micelles in binary alcohol-water mixtures. Journal of Molecular Liquids, 2008, 137: 74-79.
    Jiang F. Z., H?rber H., Howard J., et al. Assembly of collagen into microribbonds: effects of pH and electrolytes. Journal of Structural Biology, 2004, 148: 268-278.
    Jongjareonrak A., Benjakul S., Visessanguan W., Nagai T., Tanaka M. Isolation and characterizationof acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food Chemistry, 2005, 93: 475-484.
    Kadler K. E., Hojima Y., Prockop D. J. Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen Cproteinase. Assay of critical concentration demonstrates that collagen selfassembly is a classical example of an entropy-driven process. Journal of Biological Chemistry, 1987, 262: 15696-15701.
    Karim A. A. & Bhat R. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, 2009, 23: 563–576.
    Karim A. A., & Bhat R. Gelatin alternatives for the food industry: recent developments, challenges and prospects. Trends in Food Science & Technology, 2008, 19, 644-656.
    Kim J. S., & Park J. W. Partially purified collagen from refiner discharge of pacific whiting surimi processing. Food chemistry and toxicology, 2005, 70(8): 511-516.
    Kim S. K., Jeon Y. J., Lee B. J., Lee C. K. Purification and characterization of the gelatin from the bone of cod, Gadus macrocephalus. Korean Journal of Life Science, 1996, 6: 14-26.
    Kimura S. Wide distribution of the skin typeⅠcollagenα3 chain in bony fish. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1992, 102: 255-260.
    Kimura S., Takema Y., Kubota M. Octopus skin collagen—isolation and characterization of collagen comprising two distinctαchains. The Journal of Biological Chemistry, 1981, 256(24): 13230-13234.
    Kittiphattanabawon P., Benjakul S., Visessanguan W., Nagai T., Tanaka M. Characterization of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chemistry, 2005, 89: 363-372.
    Kjellin U. R. M., Reimer J., Hansson P. An investigation of dynamic surface tension, critical micelle concentration, and aggregation number of three nonionic surfactants using NMR, time-resolved fluorescence quenching, and maximum bubble pressure tensiometry. Journal of Colloid and Interface Science, 2003, 262: 506–515.
    Kolodziejska I., Sikorski Z. E., Niecikowska C. Parameters affecting the isolation of collagen from squid (Illex argentinus) skins. Food Chemstry, 1999, 66: 153-157.
    Komsa-Penkova R., Koynova R., Kostov G., Tenchov B. G. Thermal stability of calf skin collagentypeⅠin salt solution. Biochimica et Biophysica Acta, 1996, 1297: 171-181.
    Kronick P. L.,& Buechler P. R. Effect of beaming and tanning on collagen stability studied by differential scanning calorimetry. Journal of the American Leather Chemists Association, 1986, 81(7): 213-220.
    Kuznetsova N., Chi S. L., Leikin S. Sugars and polyols inhibit fibrillogenesis of typeⅠcollagen by disrupting hydrogen-bonded water bridges between the helices. Biochemistry, 1998, 37: 11888-11895.
    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685.
    Lai G. L., Li Y., Li G.Y. Effect of concentration and temperature on the rheological behavior of collagen solution. International Journal of Biological Macromolecules, 2008, 42: 285-291.
    Leuenberger B. H. Investigation of viscosity and gelatin properties of different mammalian and fish gelatins. Food Hydrocolloids, 1991, 5(4): 353-361.
    Li X. H., Li Y., Hua Y. F., et al. Effect of concentration, ionic strength and freeze-drying on the heat-induced aggregation of soy proteins. Food Chemistry, 2007a, 104: 1410-1417.
    Li X., Agrawal C. M., Wang X. Age dependence of in situ thermo stability of collagen in human bone. Calcified Tissue International, 2003, 72(4): 513-518.
    Li Y. Y., Chen X. G., Liu C. S., et al. Effect of the molecular mass and degree of substitution of oleoylchitosan on the structure, rheological properties, and formation of nanoparticles. Journal of Agricultural and Food Chemistry, 2007b, 55: 4842-4847.
    Li, H., Liu, B. L., Gao, L. Z., Chen, H. L. Studies on bullfrog skin collagen. Food Chemistry, 2004, 84: 65-69.
    Lim L. T., Mine Y., Tung M. A. Barrier and tensile properties of transglutaminase cross-linked gelatin films as affected by relative humidity, temperature, and glycerol content. Journal of Food Science, 1999, 64: 616-622.
    Lin Y K, Liu D C. Effects of pepsin digestion at different temperatures and times on properties of telopeptide-poor collagen from bird feet. Food Chemistry, 2006a, 94: 621-625.
    Lin Y. K., Liu D. C. Comparison of physical-chemical properties of typeⅠcollagen from different species. Food Chemistry, 2006b, 99: 244-251.
    Liu H. Y., Li D., Guo S. D. Studies on collagen from the skin of channel catfish (Ictalurus punctaus).Food Chemistry, 2007, 101: 621-625.
    Lundsguared-Hansen P., Tschirren B. Clinical experience with 120 000 units of modified fluid gelatin joint WHOPIABS symposium on the standardization of albumin, plasma substitutes and plasma pheresis genera. Developments in Biological Standardization, 1980, 48: 251.
    Ma Vdeli S. N., Saunders F. M., Allen H. Reduced quality of clot formation with gelatin-based plasma substitutes. British Journal of Anaesthesia, 1998, 80: 204–207.
    Madhan B., Subramanian V., Rao J. R., Nair B. U., Ramasami T. Stabilization of collagen using plant polyphenol: role of catechin. International Journal of Biological Macromolecules, 2005, 37: 47-53.
    Miller E. Investigation of drying silica gel by fluorescence methods. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 152: 249-257.
    Miller E., Wysocki S., Józwik D. Fluorescence studies on the sol-gel transition using aminopyrene. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169: 221-228.
    Mizuta S., Fujisawa S., Nishimoto M., Yoshinaka R. Biochemical and immunochemical detection of types I andⅤcollagens in tiger puffer Takifugu rubripes. Food Chemistry, 2005, 89: 373–377.
    Mizuta S., Hwang J.H., Yoshinaka R. Molecular species of collagen in pectoral fin cartilage of skate (Raja kenojei). Food Chemistry, 2003a, 80: 1–7.
    Mizuta S., Isobe S., Yoshinaka R. Existence of two molecular species of collagen in the muscle layer of the ascidian (Halocynthia roretzi). Food Chemistry, 2002a, 79: 9-13.
    Mizuta S., Miyagi T., Nishimiya T., Yoshinaka R. Partial characterization of collagen in mantle and adductor of pearl oyster (Pinctada fucata). Food Chemistry, 2002b, 79: 319-325.
    Mizuta S., Tanaka T., Yoshinaka R. Comparison of collagen types of arm and mantle muscles of the common octopus (Octopus vulgaris). Food Chemistry, 2003b, 81: 527-532.
    Mizuta S., Yoshinaka R., Sato M., Itoh Y., Sakaguchi M. Subunit composition of distinct types of collagens in the muscle of the kuruma prawn Penaeus Japonicus. Comparative biochemistry and physiology, 1992, 102B(4): 803-811.
    Montero P., & Gómez-Guillén M.C. Extracting conditions for megrim (Lepidorhombus boscii) skin collagen affect function properties of the resulting gelatin. Food Chemistry and toxicotogy, 2000, 65 (3): 434-438.
    Montero P., Fernández-Díaz M. D., Gómez-Guillén M. C. Characterization of gelatin gels induced by high pressure. Food Hydrocolloids, 2002, 16: 197-205.
    Montero P., Gómez-Guillén M. C., Borderías A. J. Functional characterization of muscle and skin collagenous material from hake (Merluccius merluccius L.). Food Chemistry, 1999, 65: 55-59.
    Muyonga J. H., Cole C. G. B., Duodu K. G. Characterization of acid soluble collagen from skins of young and adult Nile perch (Lates nilotics). Food Chemistry, 2004a, 85: 81-89.
    Muyonga J.H., Cole C.G.B., Duodu K.G. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemistry, 2004b, 86: 325-332.
    Na G. C., Butz L. J., Bailey D. G., et al. In vitro collagen fibril assembly in glycerol solution: evidence for a helical cooperative mechanism involving microfibrils. Biochemistry, 1986, 25: 958-966.
    Na G. C., Phillips L. J., Freire E. I. In vitro collagen fibril assembly: thermodynamic studies. Biochemistry, 1989, 28: 7153-7161.
    Nagai T., Araki Y., Suzuki N. Collagen of the skin of ocellate puffer fish (Takifugu rubripes). Food Chemistry, 2002, 78: 173-177.
    Nagai T., Ogawa T., Nakamura T., Ito T., Nakagawa H., Fujiki K., et al. Collagen of edible jellyfish exumbrella. Journal of the Science of Food and Agriculture, 1999, 79: 855-858.
    Nagai T., & Suzuki N. Isolation of collagen from fish waste material—skin, bone and fins. Food Chemistry, 2000, 68: 277-281.
    Nagai T., & Suzuki N. Preparation and partial characterization of collagen from paper nautilus (Argonauta argo Linnaeus) outer skin. Food Chemistry, 2002, 76: 149-153.
    Nagai T., Worawattanamateekul W., Suzuki N., Nakamura T., Ito T., Fujiki K., Nakao M., Yano T. Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilema asamushi). Food Chemistry, 2000, 70: 205-208.
    Nagai T., Yamashita E., Taniguchi K., Kanamori N., Suzuki N. Isolation and characterization of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chemistry, 2001, 72: 425-429.
    Nalinanon S., Benjakul S., Visessanguan W., Kishimura H. Use of pepsin for collagen extraction from the skin of bigeye snapper (Priacanthus tayenus). Food Chemistry, 2007, 104: 593-601.
    Nam K., Kimura T., Kishida A. Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels. Biomaterials, 2007, 28: 1-8.
    Nishimoto M., Mizuta S., Yoshinaka R. Characterization of molecular species of collagen in muscles of Japanese amberjack, Seriola quinqueradiata. Food Chemistry, 2004, 84: 127–132.
    Nishimoto M., Sakamoto R., Mizuta S., Yoshinaka R.I. Identification and characterization of molecular species of collagen in ordinary muscle and skin of the Japanese flounder. Food Chemistry, 2005, 90: 151–156.
    Ogawa M., Portier R. J., Moody M. W., et al. Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonia cromis) and sheepshead seabream (Archosargus probatocephalus). Food Chemistry, 2004, 88: 495-501.
    Omura Y., Urano N., Kimura S. Occurrence of fibrillar collagen with structure of (α1)2α2 in the test of sea urchin Asthenosoma ijimai. Comparative Biochemistry and Physiology Part B: Biochemistry, 1996, 115B (1): 63-68.
    Pace J. M., Corrado M., Missero C., Byers P.H. Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biology, 2003, 22(1): 3-14.
    Parry D. A. D. Quantitative electron microscope observation of the collagen fibrils in rat-tail tendon. Biopolymers, 1977, 16: 1015-1031.
    Pekcan ?., & Kaya D. Fast transient flurescence technique for monitoring free-radical crosslinking copolymerization of styrene with various divinylbenzene contents. Polymer, 2001, 42: 7865-7871.
    Raspanti M., Viola M.a, Sonaggere M., Tira M. E., Tenni R. Collagen fibril structure is affected by collagen concentration and decorin. Biomacromolecules, 2007, 8: 2087-2091.
    Ray G B., Chakraborty I, Moulik S P. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. Journal of Colloid and Interface Science, 2006, 294: 248-25.
    Reddy G. K., & Enwemeka C. S. A simplified method for the analysis of hydroxyproline in biological tissues. Clinical Biochemistry, 1996, 29 (3): 225-229.
    Rigby, B. J. Amino-acid composition and thermal stability of the skin collagen of the Antarctic ice-fish. Nature, 1968, 219(1): 166-167.
    Sadowska M., Kolodziejska I.a, Niecikowska C. Isolation of collagen from the skin of Baltic cod(Gadus morhua). Food Chemistry, 2003, 81: 257-262.
    Sai K. P, Babu M. Studies on Rana tigerina skin collagen. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2001, 128: 81-90.
    Saito H., Taguchi T., Aoki H., Murabayashi S., et al., pH-responsive swelling behavior of collagen gels prepared by novel crosslinkers based on naturally derived di- or tricarboxylic aicds. Acta Biomaterialia, 2007, 3: 89-94.
    Saito M., Kunisaki N., Urano N., Kimura S. Collagen as the major edible component of sea cucumber (Stichopus japonicus ). Journal of Food Science, 2002, 67(4): 1319-1322.
    Saito M., Takenouchi Y., Kunisaki N., Kimura S. Complete primary structure of rainbow trout type Ⅰcollagen consisting ofα1(Ⅰ)α2(Ⅰ)α3(Ⅰ) heterotrimers. Europe Journal of Biochemistry, 2001, 268: 2817-2827.
    Sarabia A. I., Gómez-Guillén M. C., Montero P. The effect of added salts on the viscoelastic properties of fish skin gelatin. Food Chemistry, 2000, 70: 71-76.
    Sato K, Yoshinaka R, Sato M, et al. Collagen content in the muscle of fishes in association with their swimming movement and meat texture. Bulletin of the Japanese Society of Scientific Fisheries, 1986, 52: 1595-1600.
    Sato K., Tanahashi-Shiina T., Jun F., Watanabe-Kawamura A., Ichinomiya M., Minegishi Y., Tsukamasa Y., Nakamura Y., Kawabata M., Ohtsuki K. Simple and rapid chromatographic purification of typeⅤcollagen from a pepsin digest of porcine intestinal connective tissue, an unmanageable starting material for conventional column chromatography. Journal of Chromatography B, 2003, 790: 277-283.
    Sato K., Yoshinaka R., Sato M., Shimizu Y. Isolation of native acid-soluble collagen from fish muscle. Nippon Suisan Gakkaishi, 1987, 53: 1431-1436.
    Schott H. J. Swelling dynamics of polymers. Journal of Macromolecular Science-Physics, 1992, 31B: 1-9.
    Senaratne L. S., Park P., Kim S. Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresource Technology, 2006, 97: 191-197.
    Shen X. R., Kurihara H., Takahashi K. Characterization of molecular species of collagen in scallop mantle. Food Chemistry, 2007, 102: 1187-1191.
    Shi X. Y., Ma W. Y., Sun C. M., et al. The aggregation behavior of collagen in aqueous solution andits property of stabilizing liposomes in vitro. Biomaterials, 2001, 22: 1627-1634.
    Silver F. H., Freemen J. W., Seehra G. P. Collagen self-assembly and the development of tendon mechanical properties. Journal of Biomechanics, 2003, 36: 1529-1553.
    Sivakumar P, Chandrakasan G. Occurrence of a novel collagen with three distinct chains in the cranial cartilage of the squid Sepia officinalis: comparison with shark cartilage collagen. Biochimica et Biophysica Acta, 1998, 1381: 161-169.
    Sivakumar P., Arichandran R., Suguna L., Mariappan M., Chandrakasan G. The composition and characteristics of skin and muscle collagens from a freshwater catfish grown in biologically treated tannery effluent water. Journal of Fish Biology, 2000, 56: 999-1012.
    Strasser S., Zink A., Janko M., Heckl W. M., Thalhammer S. Structural investigations on native collagen typeⅠfibrils using AFM. Biochemical and Biophysical Research Communications, 2007, 354: 27-32.
    Swatschek D., Schatton W., Kellermann J., Muller W. E. G., Kreuter J. Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 53: 107-113.
    Tenni R., Sonaggere M., Viola M., et al. Self-aggregation of fibrillar collagensⅠandⅡinvolves lysine side chains. Micron, 2006, 37: 640-647.
    Usha R., Ramasami T. The effects of urea and n-propanol on collagen denaturation: using DSC, circular dicroism and viscosity. Thermochimica Acta, 2004, 409: 201-206.
    Wang M. Q., Qian G. D., Wang M., Fan X. P., Hong Z. L. The influence of the matrix on the fluorescence properties of pyrene. Materials Science and Engineering, 1996, B40: 67-71.
    Wilson G. J., Courtman D. W., Klement P, et al. A cellular matrix:a bio-materials approach for coronary artery bypass an heart valve replacement. AnnThoracSurg, 1995, 60: 353-358.
    Woo J.W., Yu S.J., Cho S.M., Lee Y.B., Kim S.B. Extraction optimization and properties of collagen from yellowfin tuna (Thunnus albacares) dorsal skin. Food hydrocolloids, 2008, 22(5): 879-887.
    Yata M., Yoshida C., Fujisawa S. Identification and characterization of molecular species of collagen in fish skin. Journal of Food Science, 2001, 66: 247-251.
    Yu L. L., Tian M. Y., Ho B., Ding J. L., Wohland T. Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: aggregation of alipopolysaccharide. Analytica Chimica Acta, 2006, 556: 216-225.
    Yunoki S., Nagai N., Suzuki T., et al. Novel biochemical from reinforced salmon collagen gel prepared by fibril formation and cross-linking. Journal of bioscience and bioengineering, 2004, 98: 40-47.
    Zhang G. F., Sun A., Li W. J., Liu T., Su Z. G. Mass spectrometric analysis of enzymatic digestion of denatured collagen for identification of collagen type. Journal of Chromatography A, 2006, 1114: 274-277.
    Zhang X. Z., Zhuo R. X. Synthesis of temperature-sensitive poly (N-isopropylacrylamide) hydrogel with improved surface property. Journal of Colloid and Interface Science, 2000, 223: 311-314.
    Zhang X. Z., Zhuo R., Yang Y. Using mixing solvent to synthesize temperature sensitive poly(N-isopropylacrylamide) with rapid dynamics properties. Biomaterials, 2002, 23: 1313-1318.
    Zhang Y., Liu W. T., Li G. Y., Shi B., Miao Y. Q., Wu X. H. Isolation and partial characterization of pepsin-soluble collagen from the skin of grass carp (Ctenopharyngodon idella). Food Chemistry, 2007, 103: 906-912.
    毕琳.刺参(Stichopus japonicus)体壁胶原蛋白的理化性质和生物活性研究[硕士学位论文]. 中国海洋大学,2006
    陈冬英.胶原蛋白与化妆品.香料香精化妆品,2001,6:18-19.
    陈亮,吴重亮,陈东辉.芘荧光探针法研究壳聚糖絮凝机理.环境保护科学,2002,28(114):34-37.
    陈秀金,曹健,汤克勇.胶原蛋白和明胶在食品中的应用.郑州工程学院学报,2002,33(l): 66-70.
    崔凤霞.海参胶原蛋白生化性质及胶原肽活性研究[博士学位论文].中国海洋大学,2007.
    但卫华,曾睿.生物质与生物质工程.中国皮革,2002,31(11): 31-35.
    丁素丽,朱以华,杨晓玲.以明胶为模板制备复合空腔微球.无机材料学报,2004,19(5):991-996.
    董方霆,杨松成.质量肽谱在蛋白质结构研究中的应用.生物工程进展, 2000, 20(6): 84-87.
    段蕊,张俊杰,陈玲,叶超,今野久仁彦.鲤鱼鱼皮和鱼骨酶溶性胶原蛋白的性质比较.食品与发酵工业,2008,34(5):10-13.
    方云,刘雪峰,夏咏梅,杨扬,蔡琨,徐廷穆,赵宪英.稳态荧光探针法测定临界胶束聚集数,物理化学学报,2001,17(9), 828-831.
    付雪艳.鱿鱼氧化三甲胺和蛋白的生化特性研究[博士学位论文].中国海洋大学,2006
    顾肖慈,罗明道.界面化学.北京:化学工业出版社,2005.
    关静,叶萍,武继民.胶原海绵的羟脯氨酸含量测定.氨基酸和生物资源,2000,22(1):52-54.
    郭瑞超.罗氏海盘车体壁胶原蛋白的分离纯化及其部分生物学功能的研究[硕士学位论文].中国海洋大学,2006.
    郭兴凤,阮诗丰.影响大豆分离蛋白乳化稳定性测定的几种因素的研究.食品研究与开发,2006,27(6):59-61.
    郝林华,李八方.多棘海盘车体壁胶原蛋白的研究.中国水产科学. 1999, 6(2), 18-21.
    何曼君,陈维孝,董西侠.高分子物理,上海:复旦大学出版社,2000.
    鸿巢章二,桥本周久,编.郭晓峰,邹正祥,译.水产利用化学.北京:中国农业出版社,1992.
    胡胜,李志强,陈敏.皮胶原蛋白的酶法提取及在高附加值领域的应用.皮革科学与工程,2002,12(5):38-43.
    户业丽,吴洁,张瑞,吕中,程波,齐磊,蓝泽桥.酸法提取人工养殖鲟鱼皮中胶原蛋白工艺的研究.食品科技,2008,2:209-212.
    黄友加,华欲飞,裘爱泳.大豆分离蛋白功能性质及其影响因素.粮食与油脂,2003,5: 12-15.
    回九珍,杨云霞.利用阿斯巴甜制作明胶果冻.食品科学,1992,(2):26-28.
    吉静,黄明智.明胶—异丙基丙烯酰胺水凝胶的溶胀性.石油化工,2002,31(7):523-526.
    贾鹏翔.皮革中胶原的聚集态结构及热稳定性[硕士学位论文].郑州大学, 2006.
    姜涛,樊宝昌,崔连军,王海江,盖金海,陈玉林.复方胶原、葡聚糖、二甲基亚砜制剂对烧伤创面愈合影响的实验研究.山东医药,1994,(2):22.
    姜永才,叶建平,吴世康.表面活性剂溶液预胶束的形成及其聚集数的测定.化学学报,1992,50:1080-1084.
    蒋挺大.胶原与胶原蛋白.北京:化学工业出版社,2006.
    金成.草鱼鱼鳞胶原蛋白的提取及特性研究[硕士学位论文].华中农业大学,2005.
    金桂仙,陈丽娟,彭必先.胶原/明胶的结构(构象)与性能研究.感光科学与光化学,1994,12(l):11-16.
    李改仙,李建晴,卫艳丽,董川.芘荧光探针法研究环糊精与有机溶剂的极性微环境性质.光谱实验室,2005,22(2):416-421.
    李贺,郑庚修,王秋芬,董海军,刘白玲.生物医学材料胶原蛋白的研究进展(Ⅰ)—胶原的分离纯化及交联.中国皮革,2005,34(11):24-27.
    李新宝,徐丽,孟校威,韩智慧,雒廷亮,刘国际.稳态荧光探针法测定三聚季铵盐表面活性剂的胶束聚集数.物理化学学报, 2005, 21(12): 1403-1406.
    李昀.胶原蛋白在食品和化妆品中的应用.天津农学院学报,2005,12(2):54-57.
    林琳.鱼皮中胶原蛋白的制备及胶原蛋白多肽活性的研究[博士学位论文].中国海洋大学,2006
    林智辉,吴文辉,王建全,靳昕.高强度水凝胶P(HEMA-co-NEVER)溶胀特性的研究.精细化工,2007,24(11):1043-1046.
    刘秉慈,许增禄,虞瑞尧,王家璧,王增芳.医用美容胶原注射剂除皱的实验研究及临床验证.中国医学科学院学报,1994,16(3):197-200.
    刘慧玲,王栋,章金刚.胶原蛋白在临床医学中的应用.北京生物医学工程,2005,24(3):329-241.
    刘琼,范晓东.快速溶胀pH敏感明胶水凝胶的研究.精细化工,2005,22(10):739-743.
    刘石生,易美华,黄文艳.热水提取罗非鱼鱼鳞胶原蛋白的研究.现代食品科技,2006, 22(4): 139-141.
    刘苏锐,王坤余,琚海燕.猪皮Ⅰ型胶原蛋白的提取及其结构表征.中国皮革,2007,36(7):43-46.
    刘郁杨,范晓东,曹哲.β-环糊精/环氧氯丙烷水凝胶中水的存在状态及其溶胀特性.功能高分子学报,2001,14:169-173.
    卢伟丽.卡拉胶和褐藻胶流变学特性及凝胶特性的研究[硕士学位论文].中国海洋大学,2008
    陆璐.Ⅰ型胶原的提取及其组装和表征[硕士学位论文].东南大学,2006.
    栾明明,邬建敏.溶胶凝胶膜包埋的胰蛋白酶用于高通量蛋白质肽谱分析.分析化学,2006,12(34): 1707-1710.
    马晓轩,范代娣,王晓军,骆艳娥,米钰.批量离子交换层析和凝胶过滤层析在类人胶原蛋白Ⅰ纯化中的应用.离子交换与吸附,2006,22(1):47-52.
    钱曼,武贤壮,邱承光,熊善柏.热力法和酶解法提取鱼鳞胶原蛋白的工艺及性质研究.食品工业科技,2007,10:70-72.
    强俊超,王明珍,房喻,胡道道,崔亚丽,王元勤.荧光探针法研究壳聚糖水凝胶形成过程及其性能.化学学报,2000,58(6):627-630.
    裘炳毅.化妆品化学与工艺技术大全.北京:中国轻工业出版社,1997:197-198.
    任国艳.海蜇口腕部糖蛋白理化性质及生物活性研究[博士学位论文].中国海洋大学,2008.
    谭帼馨,崔英徳. HEMA共聚物水凝胶中水的存在状态.膜科学与技术,2004,24(5): 25-28.
    谭帼馨,崔英徳. N-乙烯吡咯烷酮/甲基丙烯酸-β-羟乙酯/甲基丙烯酸酯共聚物水凝胶中吸附水的状态.高分子材料科学与工程,2005,21(2):253-256.
    唐传核,彭志英.胶原的开发及利用.肉类研究,2000,3:41-43.
    童林芸,申宝剑.超分子化学研究中的物理方法.北京:科学出版社,2004.
    王碧,贾冬英,舒子斌,张铭让.色谱法在胶原蛋白分离、分析中的应用(Ⅰ).化学通报,2002,65(9),w070.
    王碧,贾冬英,张铭让,等.色谱法在胶原蛋白分离分析中的应用.化学通报,2001,65(1):1-6.
    王碧,林炜,马春辉,张铭让.皮革废弃物资源回收—胶原蛋白的利用基础、现状及前景.皮革化工,2001,18(3):10-14.
    王川,李燕,马志英,蓝蔚青.几种酶法从猪皮中提取胶原蛋白的对比研究.食品科学,2007,28(1):201-204.
    王飞镝,周智鹏,崔英德,余林,李品高,郭宝春. DSC研究大豆蛋白凝胶中水的状态.功能材料,2006,37:933-93.
    王镜岩,朱圣庚,徐长法.生物化学(第三版),高等教育出版社,2002.
    王琳,刘宇,魏泓.高效液相色谱法制备Ⅰ型胶原蛋白及其性质研究.氨基酸和生物资源, 2004, 26(2),35-37
    王荣春,徐德昌,秦兰霞.胶原蛋白与Ⅵ型胶原蛋白的结构概述.生物信息学,2004, 2(4): 30-33.
    王姗娟,杭燕南.血浆代用品的临床应用进展.国外医学(麻醉学与复苏分册),1995,16(2) :95–97.
    王韦,郇京宁,陈玉林,葛绳德,王龙邨.戊二醛胶原人工皮的特点和临床应用.中国整形烧伤外科杂志,1995,11(1):29-31.
    王小燕,蔡继业,梁志红,赵涛.应用原子力显微镜对不同来源Ⅰ性胶原蛋白溶液聚集行为的研究.山东生物医学工程,2001,21(4):17-20.
    王星.用甘草甜素(Glycyrrhizin)制作明胶果冻.江西食品工业,2001,(2):29-30.
    王彦宏,朱平,冷南等.离子交换色谱一步法纯化Ⅱ型胶原蛋白.细胞与分子免疫学杂志,2000,16(6):538.
    吴国选,伍津津,朱堂友,鲁元刚,毕建军.人肌腱胶原蛋白的提取及凝胶制备.实用医药杂志,2005,33(3):227-229.
    吴世康.高分子光化学导论:基础和应用.北京:科学出版社,2003.
    徐润,梁庆华.明胶的生产及应用技术.北京:中国轻工业出版社. 1988.
    杨国龙,赵谋明,杨晓泉,彭志英.改性大豆蛋白的凝胶流变性.中国粮油学报,2007,22(6):43-46.
    杨穆,黄明智.丁二酰化明胶的合成研究.化工科技,2002,10(3):17-19.
    杨穆,黄明智.明胶酰化改性的应用.化学工业与工程,2003,20(2):108-111.
    杨芃原,钱小红,盛龙生.生物质谱技术与方法.北京:科学出版社,2003.
    易国斌,杨少华,康正,郭建维,崔亦华,谭帼馨,崔英徳.聚乙烯吡咯烷酮/壳聚糖共混水凝胶的制备与水的状态.化工学报,2006,57(11):2761-2765.
    永井裕,藤本大三郎.胶原蛋白实验方法.上海:上海中医学院出版社,1992.
    余海,廖小宜,周志瑜.鼠尾肌腱胶原蛋白提取及凝胶的制备.海南医学,2000,11(3):64-65.
    曾庆祝,许庆陵,郭恒斌.鱿鱼皮胶原蛋白的功能特性.水产学报,2009,33(1):139-145
    张高奇,查刘生,周美华,马敬红,梁伯润.海藻酸钠和聚N-异丙基丙烯酸胺半互穿网络水凝胶的溶胀动力学研究.高分子学报,2005, 1: 35-39.
    张高奇.海藻酸钠/聚(N-异丙基丙烯酸胺)pH/温度敏感水凝胶的制备及结构与性能的研究[博士学位论文].东华大学,2004.
    张根生,岳晓霞,李继光,陈林琳.大豆分离蛋白乳化性影响因素的研究.食品科学,2006,27(7):48-51.
    张慧君,罗仓学,张新申,宋秘钊,蒋小萍.胶原蛋白的应用.皮革科学与工程, 2003, 13(6): 37-46.
    张铭让,林炜.皮胶原蛋白在化妆品与蛋白饮料中的应用.北京皮革,2000,(10):42-44.
    张新知.胶原蛋白食品倍受青睐.中国保健营养,2003,7:32.
    赵苍碧,黄玉东,李艳辉.从牛腱中提取胶原蛋白的研究.哈尔滨工业大学学报,2004,36(4):516-519.
    赵双平,察宏伟,刘钟淑,等.急性等容血液稀释在手术中的应用.湖南医科大学学报,2000,25(1): 83– 84.
    钟朝辉,李春美,顾海峰,等.原子力显微镜研究鱼鳞胶原蛋白的溶液聚集行为.精细化工,2006,23(10):983-987.
    钟朝辉,李春美,顾海峰,窦宏亮,周丽明.温度对鱼鳞胶原蛋白二级结构的影响.光谱学与光谱分析,2007a,27(10):1970-1976.
    钟朝辉,李春美,顾海峰,窦宏亮.草鱼鱼鳞酶溶性胶原蛋白的提取及基本特性.水产科学,2007b,26(2):91-94.
    周丽珍,陈玲,李琳,李冰,张喜梅.胶原蛋白的制备及用作生物医用材料的研究进展.中国医药工业杂志,2004,35(12):761-763.
    周英辉,黄明智.明胶/海藻酸钠复合体系用于pH敏感智能药物释放体系的研究.北京化工大学学报,2003,30(5):75-78.
    朱铁成.胶原蛋白在系列化妆品中的应用.北京日化,2000,4: 18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700