用户名: 密码: 验证码:
多膜纲纤毛虫的分子系统学研究及cDNA文库构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤毛虫分子系统学工作的开展将在很大程度上解决和完善某些缺乏发生学资料的关键类群在系统进化位置上的争议。近年来,由于引入分子系统学导致曾经被视为多膜纲重要类群的腹毛类和异毛类被置于不同进化分枝的旋唇纲和异毛纲。异毛类和腹毛类内大部分物种被分子数据所支持并保留在阶元内,但同时部分物种被移出本阶元。但多膜纲某些关键类群的分子信息,如异毛类突口虫属Condylostoma以及广义腹毛类重要类群的缺失,以至影响到系统进化树中异毛类及腹毛类各目的位置。
     深入分析纤毛虫基因信息,有利于研究真核生物(细胞)分裂过程中核质关系及遗传信息表达提供发生学模型,并可为阐述真核生物细胞器在分化与反分化、细胞分裂周期中新老结构的相承关系、亚细胞水平的信息传导机制及动力学等细胞生物学基本现象。
     本工作第一部分拟获得异毛类和腹毛类纤毛虫中重要类群中相对保守的SSU rRNA、α-tubulin基因和相对变异较大的ITS1-5.8S-ITS2基因序列,并构建系统发生树;同时结合形态学和细胞发生学的信息,进而探讨多膜纲中异毛类重要类群和腹毛类各目的系统地位。
     本工作第二部分利用海洋纤毛虫肉色伪角毛虫为材料,完成了对其cDNA文库的构建和部分基因表达序列标签的分析,以期为下一步功能基因的探讨铺就基础。
     本论文主要成果如下:
     1.游仆目纤毛虫系统关系:游仆目不是一个单源发生系;盘头虫类从游仆目中较早分化出来,呈现与排毛类、寡毛类平行的进化关系;腹棘虫科内的腹棘虫和拟游仆虫体现了密切的亲缘关系;游仆虫科、舍太虫科、楯纤虫科在所有分子树中均表现了十分稳定的拓扑结构;游仆虫属内可以细分为7个亚类群;尾刺虫科在游仆目内分化较早,支持前人有关其在系统演化时序中处于原始阶段的论断。
     2.尾柱目纤毛虫系统关系:基本上支持尾柱目和排毛类、寡毛类的姊妹群关系;尾柱目的Pseudourstylidae(伪尾柱虫科)、Pseudokeronopsidae(伪角毛虫科)聚类在一起,与尾柱虫科呈现姊妹群关系;全列虫为多源发生;曾经被视为尾柱类纤毛虫的伪小双虫,移出本阶元;Epiclintidae(额斜虫科)与寡毛类、散毛类的亲缘关系更为紧密,不支持Lynn(2008)在尾柱目下设立该科。根据分子系统树研究结果,尾柱目不再是个单源发生系。
     3.散毛目纤毛虫系统关系:尖颈虫、半腹柱虫和殖口虫从散毛目中较早分化出来;尖毛科除尖毛已有亚科、棘毛亚科外,应新建一亚科;尖毛虫属分类混淆,部分物种应该被移出本属;建议原腹柱虫属移出尖毛科,置于排毛亚纲某一新建的阶元内;弹跳虫科与尖毛虫关系紧密,但弹跳虫科置于散毛目需要分子和形态数据的进一步支持。
     4.测定了突口虫属的三个海洋种的SSU rRNA和ITS1-5.8S-ITS2基因序列,并在此基础上构建了突口虫属的系统发生树,讨论了该属在异毛纲(Heterotrichea)内的系统位置及其与纲内其它属的关系。
     5.利用α-tubulin基因对伪角毛虫属、突口虫属纤毛虫的分子系统学系统研究。基于α-tubulin蛋白并与SSU rRNA构建系统发生树的结果进行了比较,由于不同基因进化速率的差异,由特定基因构建系统树并对其相应物种进行系统进化地位讨论的结果可能会有较大不同。
     6.以海洋腹毛类纤毛虫--肉色伪角毛虫为材料开展了cDNA文库的构建和部分基因表达序列标签(EST)的分析。其中,利用Smart技术构建cDNA文库,质量检测表明该文库容量为1×106 pfu/mL,重组率为91%,表明所建文库能够满足后续的EST文库构建及从文库中分离筛选重要基因等研究工作。从该库中随机抽取了237个克隆进行5′端测序,拼接后得到189条非冗余基因(UniGene),Blast X比对分析后得到57条有功能注释的序列,这些功能基因片段多为首次发现。
Systematics and phylogenetics on the ciliated protozoa have been carried out for about 20 years. However, its phylogeny still remains confusing as regards the evolutionary relationships and systematic positions of many well-known groups. This is due to the high diversity of their morphology, the difficulty in recognizing which similarities are due to convergent evolution, the loss of intermediate forms during the long period of time and insufficient molecular information.
     Molecular marker gene were chosen e.g. SSU rRNA gene, ITS1-5.8S-ITS2 gene andα-tubulin gene as to study systemetics, phylogenetic position or relationships and evolutionary histories of some key and / or ambiguous taxa of ciliated protozoa. Based on the gene sequenceing and analyses, this work resolved some confusions of morphological taxonomy and phylogenetic positions of some key taxa within three calsses at the genetical level. We used multiple computer-assisitent algorithms inferred from combinations of molecular sequences and morphological and morphogenetic characterizations to supply important basis and parameters for molecular systematics, a reconstruction of phylogenetic positions and evolutionary relationships of key taxa ciliated protozoa.
     The technology of expressed tag (EST) was broadly applied in analysis of gene function and expression pattern. In this study, total rRNA of cDNA library of Marine Ciliate P. carnea was constructed using the Smart technique for the further studies, such as special nuclear dualism, complicated morphogenetic process and unique sexual reproduction (conjugation).
     The conclusions were confirmed:
     1. The order Euplotida:
     The typical euplotids belong to a paraphyletic group composed of three diverged clades (Uronychiidae, Euplotidae-Certesiidae-Aspidiscidae and Gastrocirrhidae); both clades formed by Euplotidae-Certesiidae-Aspidiscidae and Gastrocirrhidae were firmly supported with high bootstrap; the family Discocephalidae forms a sister group to the large clade containing Euplotidae-Certesiidae-Aspidiscidae and Gastrocirrhidae, though its position remains ambiguous due to low supports; Uronychiidae is clearly separated from the most other euplotids.
     2. The order Urostylida:
     The order Urostylida should be a paraphyletic group. (1) Pseudoamphisiella always branch firstly off the clade followed by Licnophorea which indicates that they might represent an ancestral form for urostylid species. (2) Pseudokeronopsis and Thigmokeronopsis may not share a recent common ancestor, casting doubt on the monophyly of the family Pseudokeronopsidae. (3) Our data justify the redefinition of Holosticha and confirm that Anteholosticha should be apart from Holosticha. (4) DNA sequence data can be harmonized with the CEUU (Convergent Evolution of Urostylids and Uroleptids) hypothesis which suggests that the urostylid midventral pattern evolved from an oxytrichine ancestor, developing a second time within the Oxytrichidae. (5) Epiclintidae clusters with Oligotrichida and Sporadotrichida, which against its establishment of the family in the order Urostylida.
     3. The order Sporadotrichida:
     (1) the oligotrichine family Halteriidae which has been transferred to the order Sporadotrichida Lynn (2008) invariably clusters within the oxytrichid clade. This contradicts the current ontogenetic findings; possibly, it is an artifact caused by taxa undersampling and/or special molecular evolutionary events. (2) The systematic position of one of the two key genera could be clarified with the SSU rRNA sequences: Gastrostyla is a stylonychine oxytrichid. (3) sequence analyses of several Oxytricha species resulted in a high molecular diversity, which does not support monophyly of this genus. (4) the molecular phylogenetic tree basically supports the establishment of the family Trachelostylidae Small & Lynn, 1985.
     4. Condylostoma species and other related Heterotrich ciliates:
     The systematically poorly-known ciliate genus Condylostoma was erected by Vincent in 1826. (1) all the trees have similar topologies with high supports; (2) Condylostoma is mostly related to the genus Condylostentor; and (3) three Condylostoma species as well as Condylostentor auriculatus cluster together and form a sister group with other heterotrichs. This is moderately consistent with the assessment of phylogenetic relationships of Condylostoma-related heterotrichs due to morphological information. The phylogenetic relationship of some other related heterotrichs, Peritromus, Folliculina, Stentor and Blepharisma, has been also discussed.
     5. The cDNA library of marine ciliate, Pseudokeronopsis carnea:
     The cDNA library was constructed using the SMART construction kit, from which totally 237 expressed sequence tags (ESTs) were randomly selected for analyses. The capacity of the library was 1×106 pfu/mL, in which more than 90% clones are recombinant. 189 unabridged cDNA sequences lacking X or N were made homology comparison using the Blast X search; 57 of which were nearly identical to known genes in the NCBI database. These data show that the full length cDNA library of P. carnea constructed using the Smart technique is of reasonably good quality for the further studies.
引文
Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., Xiao, H., Merril, C. R., Wu, A., Olde, B., Moreno, R. F., Kerlavage, A. R., McCombie, W. and Venter, J. C. (1991). Complementary DNA sequencing : expressed sequence tags and human genome project. Science, 252(5013): 1651-1656.
    Affa’a, F. M., Hickey, D. A., Strüder-Kypke, M. and Lynn, D. H. (2004). Phylogenetic position of species in the genera Anoplophrya, Plagiotoma, and Nyctotheroides (Phylum Ciliophora), endosymbiotic ciliates of annelids and anurans. J Euk Microbiol, 51: 301–306.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhuang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17) : 3389 - 3402.
    Baroin-Tourancheau, A., Delgado, P., Perasso, R. and Adoutte, A. (1992). A broad molecular phylogeny of ciliates: identification of major evolutionary trends and radiations within the phylum. Proc Natl Acad Sci U S A, 89(20): 9764–9768.
    Berger, H. (1999). Monograph of the Oxytrichidae (Ciliophora, Hypotrichia). Monographiae biol, 78: i–xii, 1–1080.
    Berger, H. and Foissner, W. (1997). Cladistic relationships and generic characterization of oxytrichid hypotrichs (Protozoa, Ciliophora). Arch Protistenk, 148: 125–155.
    Bernhard, D., Stechmann, A. and Foissner, W. (2001). Phylogenetic relationships within the class Spirotrichea (Ciliophora) inferred from small subunit rRNA gene sequences. Mol Phylogen Evol, 2001, 21: 86-92.
    Borror, A. C. (1972b). Revision of the order Hypotrichida (ciliophora, Protozoa). J Protozool, 19: 1-23.
    Borror, A. C. and Hill, B. F. (1995). The order Euplotida (Ciliophora): taxonomy, with division of Euplotes into several genera. J Eukaryot Microbiol, 42: 457-466.
    Borror, A. C., and Wicklow, B. J. (1983). The suborder Urostylina Jankowski (Ciliophora, Hypotrichida): morphology, systematics and identification of species. Acta Protozool, 22: 97-126.
    Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S.Y., and Alli, C. D. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast GcnSp linking histone acetylation to gene activation. Cell, 84: 843-851.
    Budin, K. and Philippe, H. (1998). New insights into the phylogeny of eukaryotes based on ciliateHsp70 sequences. Molecular Biology and Evolution, 15: 943-956.
    Chen, X. R., Song, W., Al-Rasheid, K., Warren, A., Long, H., Shao, C., Al-Farraj, S., Gong, J. and Hu, X. (2007). The morphology of three marine Heterotrichous Ciliates, Condylostentor auriculatus (Kahl, 1932) Jankowski, 1978, Condylostoma minutum Bullington, 1940 and Condylostoma spatiosum Ozaki and Yagiu in Yagiu, 1944 (Ciliophora: Heterotrichida). Acta Protozool, 46: 289-309.
    Chen, Z. and Song, W. (2001). Phylogenetic positions of Uronychia transfuga and Diophrys appendiculata (Euplotida, Hypotrichia, Ciliophora) within hypotrichous ciliates inferred from the small subunit ribosomal RNA gene sequences. Europ J Protistol, 37: 291-301.
    Chen, Z. and Song, W. (2002). Phylogenetic positions of Aspidisca steini and Euplotes vannus within the order Euplotida (Hypotrichia: Ciliophora) inferred from complete small subunit ribosomal RNA gene sequences. Acta Protozool, 41:1-9.
    Chen, Z., Song, W. and Warren, A. (2000). Studies on six Euplotes spp. (Ciliophora: Hypotrichida) using RAPD fingerpringting, including a comparison with morphometric analyses. Acta Protozool, 39:209-216.
    Cohn, F. (1866). Neue Infusorien im Seeaquarium. Z wiss Zool, 16: 253–302, Tafeln XIV, XV. Coleman, A.W. (2005). Paramecium aurelia revisited. J Euk Microbiol, 52: 68–77.
    Corliss, J. O. (1979). The Ciliated Protozoa: Characterization, Classification and Guide to the Literature. 2nd ed. New York: Pergamon Press.
    Croft, K. E., Dalby, A. B., Hogan, D. J., Orr, K. E., Hewitt, E. A., Africa, R. J., DuBois, M. L., Prescott, D. M. (2003): Macronuclear molecules encoding actins in Spirotrichs. J molec Evolut, 56: 341–350.
    Curds, C. R. (1975). A guide to the species of Euplotes (Hypotrichida, Ciliatea). Bul. Br Mus Nat Hist (Zool), 28: 3-61.
    Dalby, A. B. and Prescott, D. M. (2004). The scrambled actin I gene in Uroleptus pisces. Chromosoma, 112: 247–254.
    David, E. T. and Smith, K. E. (1981). Preparation and partial characterization of cell-free protein synthesizing extracts from Tetrahymena pyriformis. Biochem J, 194:761-770.
    de Puytorac, P., Grain, J. and Mignot, J. P. (1987). Précis de Protistologie. SociétéNouvelle des Editions Boubée, Paris.
    Doylej, J. (1992). Gene trees and species trees: mocular systematics as one character taxonomy. Syst Biol, 17: 144-163.
    Doylej, J. (1997). Trees within trees: genes and species, molecules and morphology. Syst Biol, 46: 537-553.
    Eigner, P. (1997). Evolution of morphogenetic processes in the Orthoamphisiellidae n. fam., Oxytrichidae, and Parakahliellidae n. fam., and their depiction using a computer method (Ciliophora, Hypotrichida). J Euk Microbiol, 44: 553–573.
    Eigner, P. (2001): Divisional morphogenesis in Uroleptus caudatus (Stokes, 1886), and the relationship between the Urostylidae and the Parakahliellidae, Oxytrichidae, and Orthoamphisiellidae on the basis of morphogenetic processes (Ciliophora, Hypotrichida). J Euk Microbiol, 48: 70–79.
    Eigner, P. and Foissner, W. (1992). Divisional morphogenesis in Bakuella pampinaria nov. spec. and reevaluation of the classification of the urostylids (Ciliophora, Hypotrichida). Europ J Protistol, 28: 460–470.
    Elwood, H. J., Olsen, G. J. and Sogin, M. L. (1985). The small subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytrichia nova and Stylonychia pustulata. Mol Boil Evol, 2: 399-410.
    Fauré-Fremiet, E. (1936), Condylostoma (Stentor) auriculatus (Gruber). Bull Soc Zool Fr, 61:511-519.
    Felsenstein, J. (1995) "PHYLIP: Phylogeny Inference Package," Version 3.57c. Department of Genetics, University of Washington, Seattle, WA.
    Fitch, W. M. and Margoliash, E. (1967). Construction of phylogenetic trees: A method base on mutation distances as estimated from cytochrome sequences is of general applicability. Science, 155: 279-284.
    Foissner, W. (1998). An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. Eur J Protistol, 34: 195-235.
    Foissner, W. and Berger, H. (1999). Identification and ontogenesis of the nomen nudum hypotrichs (Protozoa: Ciliophora) Oxytricha nova (= Sterkiella nova sp. n.) and O. trifallax (= S. histriomuscorum). Acta Protozool, 38: 215-248.
    Foissner, W. and W?lfl, S. (1994). Revision of the genus Stentor Oken (Protozoa, Ciliophora) and description of S. araucanus nov. spec. from South American lakes. J Plankt Res, 16:255-289.
    Foissner, W., Moon-van, der Staay, S. Y., van der Staay, G. W. M., Hackstein, J. H. P., Krautgartner, W. D. and Berger, H. (2004a). Reconciling classical and molecular phylogenies in the stichotrichines (Ciliophora, Spirotrichea), including new sequences from some rare species. Europ J Protistol, 40: 265–281.
    Foissner W., Agatha S., Berger H. (2002). Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib desert. Part I: Text and line drawings. Part II: Photographs. Denisia 5: 1–1459.
    Galtier, N. and Gouy, M. (1995). Inferring phylogenies from DNA sequences of unequal base compositions. Proc Natl Acad Sci USA, 92: 11317-11321.
    Gates, M. A. and Curds, C. R. (1979). The dargyrome of the genus Euplotes. Bull Br Mus Nat Hist (Zool), 35: 127-200.
    Gerassimova, Z. P. and Seravin, L. N. (1976). Ectoplasmic fibrillar system of infusoria and its role for the understanding of their phylogeny. Zool Zh, 55: 645-656.
    Gibson, I., and Martin, N. (1971). DNA amounts in the nuclei of Paramecium Aurelia and Tetrahymena pyriformis. Chromosoma, 35:374-382.
    Gilpin, B. J., McCallum, J. A., Frew, T. J. and Timmerman-Vaughan, G. M. (1997). A linkage map of the pea genome containing cloned sequence of know function and expressed sequence tags (ESTs). Theor Appl Genet, 95: 1289-1299.
    Gong, J., Kim S. J., Kim, S. Y., Min, G. S., Roberts, D. McL., Warren, A., Choi, J. K. (2007). Taxonomic redescriptions of two ciliates, Protogastrostyla pulchra n. g., n. comb. and Hemigastrostyla enigmatica (Ciliophora: Spirotrichea, Stichotrichia), with phylogenetic analyses based on 18S and 28S rRNA gene sequences. J Euk Microbiol. 54: 468-478.
    Greenwood, S. J., Schlegel, M., Sogin, M. L. and Lynn, D. H. (1991). Phylogenetic relationships of Blepharisma americanum and Colpoda inflata within the phylum Ciliiophora inferred from complete small subunit rRNA gene sequence. J Protozool, 38: 1-6.
    Greider, C. W, and Blackburn, E. H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 43:405-413.
    Grell, K. D. (1973). Protozoology. Springer Verlag, Berlin.
    Guindon, S. and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 52(5): 696-704.
    Hall, B. G. (2005). Comparison of the Accuracies of Several Phylogenetic Methods Using Protein and DNA Sequences. Mol Biol Evol, 22: 792-802.
    Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41:95-98.
    Hammerschmidt, B., Schlegel, M., Lynn, D. H., Leipe, D. D., Sogin, M. L. and Raikov I. B. (1996). Insights into the evolution of nuclear dualism in the ciliates revealed by phylogenetic analysis of rRNA sequences. J Eukaryot Microbiol, 43: 225-230.
    Hausmann, K. and Bradbury, P. C. (1996). Ciliates: Cells as Organisms. Gustav Fischer, Stuttgart. Heckmann, K. (1995). Towards a molecular understanding of conjugation:On pheromones and pheromone genes in Euplotes octocarinatus.Jap J Protozo, 28: 11-19.
    Hemberger, H. (1982). Revision der Ordnung Hypotrichida Stein (Ciliophora, Protozoa) an Handvon Protargolpr?paraten und Morphogenesedarstellungen. Dissertation Universit?t Bonn. I–IV, 296 pp (some authors cite this dissertation with 1981).
    Hewitt, E. A., Müller, K. M., Cannone, J., Hogan, D. J., Gutell, R., and Prescott, D. M. (2003): Phyloenetic relationships among 28 spirotrichous ciliates documented by rDNA. Molecular Phylogenetics and Evolution, 29: 258-267.
    Hill, B. F. and Borror, A. C. (1992). Redefinition of the genera Diophrys and Paradiophrys and establishment of the genus Diophryopsis n. g. (Ciliophora, Hypotrichida): Implication for the species problem. J Protozool, 39: 144-153.
    Hills, D. M. and Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analysis. Journal of Heredity, 83:189-195.
    Hirt, R., Dyal, P. L., Wilkinson, M., Finlay, B. J., Roberts, D. M. and Embley, T. M. (1995). Phylogenetic relationships among karyorelictids and heterotrichs inferred from small subunit rRNA sequences: resolution at the base of the ciliate tree. Mol Phylogenet Evol, 4: 77-87.
    Hong, Y. K., Kim, S. D., Polne– Fullerm, M. and Gibor, A. (1995). DNA extraction conditions from Porphyra perforata using LiCl. J App l Phycol, 7(4) : 413 - 420.
    Hruby, D. E., Maki, R. A., and Cummings, D. J. (1977). Isolation and characterization of mRNA from Paramecium Aurelia. Bichim Biophys Acta, 477: 89-96.
    Hu, X. and Song, W. (2000a). Infraciliature of Pseudokeronopsis qingdaoensis sp. nov. from marine biotope (Ciliophora: Hypotrichida). Acta Zootaxo Sin, 25: 361-364.
    Hu, X. and Song, W. (2000b). Morphology and morphogenesis of a marine ciliate, Gastrostyla pulchra (Perejaslawzewa, 1885) Kahl, 1932 (Ciliophora, Hypotrichida). Europ J Protistol, 36: 201-210.
    Hu, X. and Song, W. (2003). Redescription of two known species, Gastrocirrhus monilifer (Ozaki et Yangiu, 1942) and Gastrocirrhus stentoreus Bullington, 1940, with reconsideration of the genera Gastrocirrhus and Euplotidium. Acta Protozool, 42: 345-355.
    Huelsenbeck, J. P. and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754-755.
    Jankowski, A. W. (1979). Revision of the Hypotrichida Stein, 1859. Genetic catalogue, phylogeny, taxonomy. Dokl Akad Nauk SSSR, 86: 48–85.
    Jankowski, A. W. (1980). Conspectus of a new system of the phylum Ciliophora. Proc Zool Inst Acad Sci USSR, Leningrad, 94: 102-121.
    Jerome, C. A., and Lynn, D. H. (1996). Identifying and distinguishing sibling species in the Tetrahymena pyriformis complex (Ciliophora, Oligohymenophorea) using PCR/RFLP analysis of nuclear ribosomal DNA. J Euk Microbiol, 43: 492-497.
    Ji, D., Lin, X. and Song, W. (2004). Complementary notes on a‘well-known’marineheterotrichous ciliates, Folliculinopsis producta (Wright, 1895) Frauré-Fremiet, 1936 (Protozoa, Ciliophora). J Ocean Univ Chi, 3: 65-69
    Kahl, A. (1932). Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 3. Spirotricha. Tierwelt Dtl, 25:399-650.
    Kaufman, F., Florian, V. and Klein, A.(1992). TGA cysteine codons and intron sequences in conserved and nonconserved positions are found in macronuclear RNA polymerase genes of Euplotes octocarinatus. Nucl Acids Res, 20: 5985-5989.
    Kelminson, K., Hewitt, E., Arkind, C., Kneel, P., DuBois, M. L. and Prescott, D. M. (2002). Histone H4 genes in some stichotrichous ciliates. Europ J Protistol, 38: 235–246.
    Kraut, H., Lipps, H. J. and Prescott, D. M. (1986). The genome of hypotrichous ciliates. In “Molecular Approaches to the Study of Protozoan Cells”(Ed. by K. W. Jeon), Inter Rev Cytol, 99:1-28.
    Kruger, K., Grabowski, P. J., Zaug, A.J., Sands, J., Goiischling, D.E., and Cech, T.R. (1982). Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31: 147-157.
    Kusch, J. and Heckmann, K. (1996). Population structure of Euplotes ciliates revealed by RAPD fingerprinting. Ecoscience, 3: 378-384.
    Li, L. and Song, W. (2006). Phylogenetic position of the marine ciliate, Certesia quadrinucleata (Ciliophora; Hypotrichida) inferred from the complete small subunit ribosomal RNA gene sequence. Europ J Protistol, 42: 55-61.
    Liang, A., and Heckmann, K. (1993). The macronuclearγ-tubulin-encoding gene of Euplotes octocarinatus contains two-introns and an in-frame TGA. Gene, 136: 319-322.
    Liang, P., and Pardee, A. B. (1992). Differential display of eukaryotic messenger RNA by means of the Polymerase chain reaction, Science. 257: 967-971
    Lin, X. and Song, W. (2004). Redescription of the marine ciliate, Certesia quadrinucleata (Protozoa, Ciliophora) from Qingdao, China. J Mar Biol Ass U K, 84: 1131-1136. Lynn, D. H, and Small, E. B. (1997). A revised classification of the phylum Ciliophora Doflein 1901. Rev Soc Mex Hist Nat, 47: 65-78.
    Lynn, D. H. and Sogin, M. L.. (1988). Assessment of phylogenetic relationships among ciliated protists using partial ribosomal RNA sequences derived from reverse transcripts. BioSystems, 21:249-254.
    Lynn, D. H. (2008). The ciliated protozoa. Characterization, classification and guide to the literature. Third edition. Spinger Press.
    Lynn, D. H. and Small, E. B. (2002). Phylum Ciliophora Doflein, 1901. In: An Illustrated Guide tothe Protozoa, 2nd ed., (Eds. J. J. Lee, G. F. Leedale, P. Bradbury). Society of Protozoologists, Allen Press, Lawrence, Kansas, 371-656.
    Lynn, D. H. and Strüder-Kypke, M. (2002). Phylogenetic position of Licnophora, Lechriopyla, and Schizocaryum, three unusual ciliates (phylum Ciliophora) endosymbiotic in echinoderms (Phylum Echinodermata). J Eukaryot Microbiol, 49: 460-468.
    Martin, J., Fedriani, C. and Nieto, J. (1981).étude comparée des processus morphogénétiques d’Uroleptus sp. (Kahl, 1932) et de Holosticha (Paruroleptus) musculus (Kahl, 1932) (Ciliés hypotriches). Protistologica, 17: 215–224.
    Medlin, L., Elwood, H. J., Stickel, S. and Sogin, M. L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene, 71: 491-499. Mehlhorn, H., and Ruthmann, A. (1992). Allgemeine Protozoologie. Gustav Fischer Verlag, Jena, 335pp.
    Meyer, F., Schmidt, H. J., Plumper, E., Hasilik, A., Mersmann, G., Meyer, H. E., Engstrom, A. and Heckmann, K. (1991). UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. Proc Natl Acad Sci US, 88: 3758-3761.
    Miao, W., Simpson, A. G., Fu, C. and Lobban, C. S. (2005). The giant zooxanthellae-bearing ciliate Maristentor dinoferus (Heterotrichea) is closely related to Folliculinidae. J Eukaryot Microbiol, 52: 11-16.
    Petz, W. and Foissner, W. (1992). Morphology and morphogenesis of Strobilidium caudatum (Fromentel), Meseres corlissi n. sp., Halteria grandinella (Müller), and Strombidium rehwaldi n. sp., and a proposed phylogenetic system for oligotrich ciliates (Protozoa, Ciliophora). J Protozool, 39: 159–176.
    Petroni, G., Dini, F., Verni, F. and Rosati, G. (2002). A molecular approach to the tangled intrageneric relationships underlying phylogeny in Euplotes (Ciliophora, Spirotrichea). Mol Phylo Evol, 22: 118-130.
    Posada, D. and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics, 14:817-818.
    Prescott, D. M., Bostock, C. J., Murti, K. G., Lauth, M. R. and Gamow, E. (1971). DNA of ciliated protozoa. I. Electron microscopic and sedimentation analyses of macronuclear and micronuclear DNA of Stylonychia mytilus. Chromosoma. 34: 355-366.
    Prescott, M. (1994). The DNA of ciliated protozoa. Microbiol Rev, 58: 233-267.
    Raikov, I. B. (1982). The Protozoan Nucleus. Morphology and Evolution. Springer, Wien, NY. Ronquist, F. and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572-1574.
    Rosati, G., Modeo, L., Melai, M., Petroni, G. and Verni, F. (2006). A multidisciplinary approach to describe protists: a morphological ultrastructural, and molecular study on Peritromus kahli Villeneuve-Brachon, 1940 (Ciliophora, Heterotrichea). Protist, 158: 139-145.
    Rounsley, S. and Linx, K. K. (1998) Large scale sequencing of plant genome. Curr Opin Plant Biol, 1(2): 136-141.
    Saitou, N. and Nei, M. (1987). The neighbor–joining method: a new method for reconstructing phylogenetic trees. Mol Boil Evol, 4: 406-425.
    Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular cloning, a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press.
    Sambrook,J., Fitch, E. F. and Maniatis, T. (1992). Molecular cloning: A Laboratory Manua1. 2nd ed [M]. Beijing: Science Press.
    Schlegel, M. and Eisler, K. (1996). Evolution of ciliates. In: Hausmann, K. and Bradbury, P. C. (ed.), Ciliates: Cells as Organisms. Gustav Fischer, Stuttgart. p., 73-94.
    Schlegel, M., Elwood, H. J. and Sogin, M. L. (1991). Molecular evolution in hypotrichous ciliates: sequence of the small subunit RNA genes from Onychodromus quadricornutus and Oxytricha granulifera (Oxytrichidae, Hypotrichida, Ciliophora). J Mol Evol, 32: 64-69.
    Schlegel, M., Kramer M., Hahn K. (1988). Taxonomy and phylogenetic relationship of eight species of the genus Euplotes (Hyportrichida, Ciliophora) as revealed by enzyme electrophoresis. Europ. J. Protistol., 24: 22-29.
    Schmidt, S., Bernhard, D., Schlegeland, M. and Foissner, W. (2007). Phylogeny of the Stichotrichia (Ciliophora; Spirotrichea) Reconstructed with Nuclear Small Subunit rRNA Gene Sequences: Discrepancies and Accordances with Morphological Data. J Eukaryot Microbiol, 54(2): 201–209.
    Schuler, G. D., Boguski, E. A., et al. (1996). A gene map of the human genome. Science, 274: 540-546.
    Shang, H., Song, W., Warren, A., Li, L. and Chen, Z. (2006). Phylogenetic positions of two marine ciliates, Metanophrys similis and Pseudocohnilembus hargisi (Protozoa, Ciliophora, Scuticociliatia), inferred from complete small subunit rRNA gene sequences. Progr Nat Sci, 16: 373-378.
    Shao, C., Hu, X., Warren, A., Al-Rasheid, K., Al-Quraishy, S. and Song, W. (2007). Morphogenesis in the marine spirotrichous ciliate Apokeronopsis crassa (Claparède & Lachmann, 1858) n. comb. (Ciliophora: Stichotrichia), with the establishment of a new genus, Apokeronopsis n. g., and redefinition of the genus Thigmokeronopsis. J Eukaryot Microbiol. 54: 392-401
    Shao, C., Song W., Li, L., Warren, A., Al-Rasheid, K. A., Al-Quraishy, S. A., Al-Farraj, S.A. and Lin, X. (2008). Systematic position of Discocephalus-like ciliates (Ciliophora: Spirotrichea) inferred from SSU rRNA gene and ontogenetic information. Int J Syst Evol Microbiol, 58: 2962-2972.
    Shao, C., Song, W., Hu, X., Ma, H., Zhu, M. and Wang, M. (2006). Cell division and morphology of the marine ciliate, Condylostoma spatiosum Ozaki and Yagiu (Ciliophora, Heterotrichida) based on a chinese population. Europ J Protistol, 42: 9-19.
    Shao, C., Song, W., Warren, A., Al-Rasheid, K., Yi, Z. and Gong, J. (2006a). Morphogenesis of the marine ciliate, Pseudoamphisiella alveolata (Kahl, 1932) Song and Warren, 2000 (Ciliophora, Stichotrichia, Urostylida) during binary fission. J Eukaryot Microbiol. 53: 388-396.
    Shi, X. L. (1999). Systematic revision of the order Hypotrichida I. Protohypotrichina and Stichotrichina (Ciliophora). Acta Zootax sinica. 24: 241–264 (in Chinese with English summary).
    Shin, M. K., Hwang, U. W., Kim, W., Wright A. D., Krawczyk C., and Lynn D. H. (2000). Phylogenetic position of the ciliates Phacodinium (order Phacodiniida) and Protocruzia (subclass Protocruziidia) and systematics of the spirotrich ciliates examined by small subunit ribosomal RNA gene sequences. Europ J Protistol, 36: 293–302.
    Small, E. B. and Lynn, D. H. (1985). Phylum Ciliophora Doflein, 1901. In: Lee J. J., Hutner S. H. and Bovee E. C. (ed.), An illustrated Guide to the Protozoa. Society of Protozoologists, Lawrence, KS. p., 393-575.
    Snoeyenbos-West, O. L., Salcedo, T., McManus, G. B. and Katz, L.A. (2002). Insights into the diversity of choreotrich and oligotrich ciliates (Class: Spirotrichea) based on genealogical analyses of multiple loci. Int J syst evolut Microbiol, 52: 1901-1913.
    Song, W. (1997). On the morphology and infraciliature of a new marine hypotrichous ciliate, Uronychia multicirrus sp. n. Ciliophora: Hypotrichida). Acta Protozool, 36: 279-285.
    Song, W. and Packroff, G. (1996). Taxonomische Untersuchungen an marinen Ciliaten aus China mit Beschreibungen von zwei neuen Arten, Strombidium globosaneum nov. spec. und S. platum nov. spec. (Protozoa, Ciliophora). Arch Protistenkd, 147: 331-360
    Song, W. and Wilbert, N. (1997). Morphological studies on some free living ciliates (Ciliophora: Heterotrichida, Hypotrichida) from marine biotopes in Qingdao, China, with descriptions of three new species: Holosticha warreni nov. spec., Tachysoma ovata nov. spec. and T. dragescoi nov. spec. Europ J Protistol, 33: 48-62.
    Song, W. and Wilbert, N. (2002). Faunistic studies on marine ciliates from the Antarctic benthic area, including descriptions of one epizoic form, 6 new species and, 2 new genera (Protozoa:Ciliophora). Acta Protozool, 41: 23-61.
    Song, W., and Warren, A. (2000). Pseudoamphisiella alveolata (Kahl, 1932) nov. comb., a large marine hypotrichous ciliate from China (Protozoa, Ciliophora, Hypotrichida). Europ J Protistol, 36: 451–457.
    Song, W., Shin, M. K. and Kim, W. (1991). Morphology and infraciliature of the marine ciliate Oxytricha saltans (Cohn, 1866) Kahl, 1932 (Protozoa, Ciliophora, Hypotrichida). Kor J Syst Zool, 7: 233-240.
    Song, W., Warren, A., Ji, D., Wang, M., Al-Rasheid, K. A. (2003). New contribution to two Heterotrichous ciliates, Folliculina simplex (Dons, 1917), Condylostoma curva Burkovsky, 1970 and One licnophorid, Licnophora lyngbycola Fauré-Fremiet, 1937 (Protozoa, Ciliophora): description of morphology and infraciliature. J Eukaryot Microbiol, 50: 449-462
    Stechmann, A., Schlegel, M. and Lynn, D. H. (1998). Phylogenetic relationships between prostome and colpodean ciliates tested by small subunit rRNA sequences. Mol Phylogenet Evol, 9: 48-54.
    Swofford, D. L. (2002). Phylogenetic analysis using Parsimony (* and other methods). Version4. Sinauer Associates, Sunderland.
    Tamura, K., Dudley, J., Nei, M., et al. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 24: 1596–1599.
    Tan, M., Brunen-Nieweler, C. and Heckmann, K. (1999).
    Isolation of micronuclei from Euplotes octocarinatus and identification of an internal eliminated sequence in the micronuclear gene encodingγ-tubulin2. Eur J Protistol, 35: 208-216.
    Tourancheau, A. B., Villalobo, E., Tsao, N., Torres, A. and Pearlman, R. E. (1998). Protein coding gene trees in ciliates: Comparison with rRNA-Based phylogenies. Mol Phy Evol, 10: 299-309.
    Tuffrau, M. (1979). Une nouvelle famille d’hypotriches, Kahliellidae n. fam., et ses consequences dans la repartition des Stichotrichina. Trans Am microsc Soc, 98: 521–528.
    Tuffrau, M., (1987). Proposition d'une classification nouvelle de l'orde Hypotrichida (Protozoa, Ciliophora), fondée sur quelques données récentes. Annls Sci Nat (Zool), (1986-1987) 8: 111-117.
    Wirnsberger, E., Foissner, W. and Adam, H. (1986). Biometric and morphogenetic comparison of the sibling species Stylonychia mytilus and S. lemnae, including a phylogenetic system for the Oxytrichids. Arch Protistenk. 133:167–185.
    Wirnsberger, E., Larsen, H. F. and Uhlig, G. (1987). Rediagnosis of closely related pigmented marine species of the genus Pseudokeronopsis (Ciliophora, Hypotrichida). Europ J Protistol,23: 76–88.
    Yao, M. C. and Gorovsky M. A. (1974). Comparison of the sequences of macro- and micronuclear DNA of Tetrahymena pyriformis. Chromosoma, 48:1-18.
    Yi, Z., Song, W., Warren, A., Roberts, D.M., Al-Rasheid, K. A., Chen, Z., Al-Farraj, S. A. and Hu, X. (2008). A molecular phylogenetic investigation of Pseudoamphisiella and Parabirojimia (Protozoa, Ciliophora, Spirotrichea), two genera with ambiguous systematic positions. Europ J Protistol, 44: 45-53.
    陈子桂,宋微波. (2000).分子标记在纤毛虫原生动物系统学研究中的应用.青岛海洋大学学报, 2: 237-243.
    陈子桂. (2000).利用分子生物学技术对旋唇纲纤毛虫分类学和系统学的探讨(博士论文),中国海洋大学, 61-69.
    陈子桂. (2002).胖尾刺虫(纤毛门,旋毛纲,下毛目) 16S小亚基单位核糖体RNA基因的序列测定及其系统地位初探.高技术通讯, 12: 98-102.
    顾福康. (1991).原生动物学概论(第一版).高等教育出版社.
    胡晓钟,宋微波. (2000).青岛伪角毛虫一新种及表膜下纤毛系(纤毛门:下毛目).动物分类学报, 25: 361-364.
    黄大卫. (1992).支序分类学中外群分析的探讨.动物学集刊, 9: 149-157.
    孟良,冯伟松,沈韫芬. (2007).莫氏肾形虫武汉种群的形态学及表膜下纤毛系研究.水生生物学报, 31: 896-900.
    贾锡伟,王艺磊,张子平,李少菁. (2004).利用SMART技术构建锯缘青蟹精巢和卵巢的cDNA文库.厦门大学学报(自然科学版), 43: 547—550.
    李丽芳. (2007).纤毛虫原生动物若干重要类群的分子系统学研究(博士论文).中国海洋大学.
    李丽芳,商慧敏,宋微波. (2003).利用RAPD技术对海洋纤毛虫,弗州拟尾丝虫四种群的研究.高技术通讯, 13: 95-99.
    李校,江明锋,张义正. (2005). Linux平台下EST序列分析系统的构建应用实例.四川大学学报(自然科学版). 42(1): 153-157.
    李艺松. (2004).利用SSU rRNA序列对四种腹毛目纤毛虫系统进化及一种纤毛虫细胞结构的研究.华东师范大学(博士论文).
    马德如. (1994).核蛋白体小亚基RNA是分子系谱学的标尺,生命的化学, 14: 17-19.
    毛新国,贾继增. (2006).几种全长cDNA文库构建方法比较.遗传, 28: 865—873.
    缪炜,余育和,沈韫芬,张锡元. (2003).螅状独缩虫种内分子系统地理学的研究.中国科学(C辑), 33: 151-159.
    缪炜,余育和,沈韫芬. (2002).纤毛虫分子系统发育学的研究进展.动物学杂志, 37:(1):67-71.
    缪炜,张锡元,余育和,沈韫芬. (2003).利用三种分子标记研究缘毛类纤毛虫的系统发育地位.动物学研究, 24: 1-10.
    商慧敏. (2004).盾纤亚纲(纤毛门,寡膜纲)纤毛虫的分子系统学研究(博士论文).中国海洋大学.
    沈韫芬等. (1999).原生动物学(第一版).科学出版社.
    宋微波,马洪钢. (2000).我国海洋纤毛虫原生动物的研究进展.生物通报, 35: 10-11.
    宋微波,王梅. (1993).海水养殖水体中的病原纤毛虫.海洋科学, 4: 41-47.
    宋微波. (2003).海水养殖中的危害性原生动物(第一版).科学出版社.
    宋微波等. (1999).原生动物学专论.青岛海洋大学出版社.
    孙萍,宋微波. (2005).海洋纤毛虫黄色伪角毛虫无性生殖期间的形态发生.动物学报, 51: 81-88.
    王来元,王金星,赵小凡,王来成,康翠杰. (2001).家蝇cDNA文库的构建.动物学研究, 22(2): 159-162.
    王莹,赵华斌,郝家胜. (2005).分子系统学的理论、方法及展望.安徽师范大学学报(自然科学版), 28: 84-88.
    杨官品,沈怀舜,许璞,张学成. (2002).条斑紫菜丝状孢子体表达序列标签分析.高技术通讯, 12(2): 93-97
    杨坚. (2006).正常猪外周血淋巴细胞cDNA文库部分EST序列的电子克隆及初步实验验证(博士论文).广西大学.
    伊珍珍,宋微波,陈子桂,胡晓钟,邵晨,李俐琼. (2006).利用RAPD技术对三种伪角毛虫
    及五种全列虫(原生动物,纤毛虫)的属间及属内关系探讨.动物分类学报, 31(3): 480-484.
    殷志新,翁少萍,叶巧真,何建国. (2001).斜带石斑白细胞cDNA文库的构建.水产学报, 25 (6): 538-541.
    张新叶,黄敏仁,王明庥. (2005).大规模EST序列测定中的条件优化.南京林业大学学报(自然科学版) . 29(3): 99-102.
    张亚平. (1996).从DNA序列到物种树.动物学研究, 17: 247-252.
    赵一之,成文连,尹俊,曹瑞,张竞秋. (2003).用rDNA的ITS序列探讨绵刺属的系统位置. 植物研究. 23(4): 402-406.
    钟扬,唐先华,施苏华,黄椰林,谈凤笑. (1999).外类群选择对构建基因树的影响.中山大学学报(自然科学版), 38: 124-127.
    张绍丽,马洪钢,许恒龙,宋微波. (2001).海洋纤毛虫——巨大拟阿脑虫的实验生态学研究IV.捕食竞争对种群生长的影响.生态学报, 21: 2039-2044

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700