用户名: 密码: 验证码:
聚丙烯微孔膜的高密度糖基化及其应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物膜表面的“糖被”赋予了生物膜良好的亲水性和生物特异性,不但具有抵御外来物质非特异性黏附的性能,还具备选择性识别和吸附目标物质的功能,广泛参与了细胞分化、发育、免疫、老化、癌变等生命和疾病过程。“糖被”致密的糖基化层结构显著增强了它与目标分子间的亲和力,满足了各项生理活动的需求。在高分子分离膜表面构建类似于“糖被”的糖基化层,可实现对生物膜表面的仿生模拟,拓展分离膜的应用范围和领域。
     本论文建立了一种通用的糖基化方法,在聚丙烯微孔膜表面构建高密度糖基化层,以期实现对生物膜表面“糖被”的模拟,获得具有糖生物功能的聚丙烯微孔膜。具体研究工作主要围绕以下几个方面展开:
     1、以FeCl_3为必需光引发剂,结合传统光引发剂二苯甲酮(BP),采用紫外光辐照接枝法,成功引发了甲基丙烯酸羟乙酯(HEMA)在聚丙烯微孔膜上接枝聚合。FeCl_3和BP之间的“协同效应”大大提高了接枝密度。HEMA接枝改性膜具有良好的亲水性和血小板相容性,抗蛋白质污染的能力得到提高。
     2、建立一种糖基化方法,将乙酰化的单糖(葡萄糖和半乳糖)和二糖(麦芽糖和乳糖)引入HEMA接枝改性膜,得到四种不同的糖基化聚丙烯微孔膜。HEMA的高接枝密度和催化剂BF_3·Et_2O的高效性,大幅度提高了糖基密度。固定有大量糖基的HEMA接枝链较好地模拟了生物膜表面的聚糖结构,使糖基化聚丙烯微孔膜具有良好的仿生功能,显示了强烈的“糖苷集簇效应”。
     3、以葡萄糖糖基化聚丙烯微孔膜为亲和膜,选择性吸附分离Con A。发现亲和膜选择性吸附Con A的能力非常强,形成了多层吸附,其结合容量随糖基密度的增加而提高。葡萄糖和甲基-α-D-吡喃甘露糖苷溶液作为洗脱液时洗脱效果不理想,而1 M的HAc溶液则能洗脱90%-100%吸附的Con A。
     4、比较了大鼠肝细胞在糖基化聚丙烯微孔膜表面的培养情况。发现肝细胞在半乳糖和乳糖糖基化膜表面黏附数量与胶原涂敷膜表面相当。肝细胞在胶原涂敷表面呈扁平铺展状,与材料表面作用强烈,细胞间作用很弱;而在半乳糖和乳糖糖基化膜表面呈圆球形且形成了多细胞聚集体,与材料表面作用较弱,细胞之间作用强烈。
The glycocalyx on the external cell membranes endows the cell membrane surfacewith well hydrophilicity and biocompatibility, which not only prevents undesirablenon-specific adhesion of foreign substance, but also possesses specific recognitionproperties for target molecules. It widely participates in biological processes, such ascellular differentiation, development, immune response, senescence, carcinogenesis. Thedense structure of carbohydrate layer in glycocalyx enhances the affinity betweencarbohydrates and their target molecules, which meets the demand of differentphysiological activities. To construct glycosylated layer on the surface of polymericmembrane is expected to biomimic the glycocalyx and expand the application fields ofmembranes.
     In this thesis, a versatile method was constructed to prepare high-density glycosylatedmicroporous polypropylene membranes (MPPMs) with glycobiological functions to mimicthe the glycocalyx of cell membranes. Our detailed works are mainly concentrated on thefollowing aspects:
     1. Using FeCl_3 and BP as photoinitiators, 2-hydroxyethyl methacrylate (HEMA) wassuccessfully grafted on MPPMs by UV-induced grafting polymerization. The synergisticeffect between FeCl_3 and BP greatly enhanced the grafting density (GD). Thepoly(HEMA)-grafted MPPMs showed well protein resistance and potentialhemocompatibility due to the enhancement of hydrophilicity.
     2. Using poly(HEMA)-grafted MPPMs as supports, high density glycosylation ofmembranes was achieved by a versatile method with mono- and di-saccharides. The highGD of HEMA and high catalytic activity of BF_3·Et_2O greatly increased the binding degree(BD) of saccharide moieties. The poly(HEMA) chains hanging with a great number ofsaccharide moieties mimic the structure of glycan on the cell membrane, which showstrong "glycoside cluster effect" and endow the glycosylated MPPMs with goodglycobiological functions.
     3. The glucosylated MPPMs were used as affinity membranes for Con A separation onthe basis of the specific interactions between saccharide ligands and lectins. The bindingcapacity of glucosylated MPPMs increased by multilayer adsorption of Con A andincreased with BD of glucose. Compared with the competitive eluants, such as glucose andmethylα-mannopyranoside, 1 M Hac solution is more effective to elute the adsorbed Con A from the affinity membranes.
     4. The glycosylated MPPMs were taken as the substrates to culture hepatocytes invitro. The number of hepatocytes adhered on the poly(HEMA)-grafted and glucosylatedMPPMs was less, while that on the galactosylated and lactosylated MPPMs werecomparable with the collagen coating membranes. Hepatocytes became spreading on thecollagen coating MPPM, and had strong interaction with substrate. However, hepatocyteson the galactosylated and lactosylated MPPMs maintained spherical shapes and formedspheroid with multiple cells, showing weak interaction with substrate and stronginteraction between cell-cell.
引文
1.杨谦.聚丙烯微孔膜表面的糖基化研究.[博士学位论文]2007,浙江杭州,浙江大学.
    2.张树政(译者).糖生物学基础.北京:科学出版社2003,P50-51.
    3. Davis AP, Wareham RS. Carbohydrate recognition through noncovalent interactions: A challenge for biomimetic and supramolecular chemistry. Angewante Chemie International Edition 1999, 38, 2978-2996.
    4. Lis H, Sharon N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chemical Reviews 1998, 98,637-674.
    5. Bertozzi CR, Kiessling LL. Chemical glycobiology. Science 2001, 291, 2357-2364.
    6. Mandal DK, Kishore N, Brewer CF. Thermodynamics of lectin-carbohydrate interactions - Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to Concanavalin-A. Biochemistry 1994, 33, 1149-1156.
    7. Swamy MJ, Gupta D, Mahanta SK, Surolia A. Further characterization of the saccharide specificity of peanut (Arachis-Hypogaea) agglutinin. Carbohydrate Research 1991, 213, 59-67.
    8. Lee RT, Lee YC. Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconjugate Journal 2000, 17, 543-551.
    9. Woller EK, Walter ED, Morgan JR, Singel DJ, Cloninger MJ. Altering the strength of lectin binding interactions and controlling the amount of lectin clustering using mannose/hydroxyl-functionalized dendrimers. Journal of the American Chemical Society 2003, 125, 8820-8826.
    10. Smith EA, Thomas WD, Kiessling LL, Corn RM. Surface plasmon resonance imaging studies of protein-carbohydrate interactions. Journal of the American Chemical Society 2003, 125, 6140-6148.
    11. Ladmiral V, Melia E, Haddleton DM. Synthetic glycopolymers: an overview. European Polymer Journal 2004, 40, 431-449.
    12. Lee YC, Lee RT. Carbohydrate-protein Iinteractions - Basis of glycobiology. Accounts of Chemical Research 1995, 28, 321-327.
    13.张树政(译者).糖生物学基础.北京:科学出版社2003,P309.
    14. Crocker PR, Feizi T. Carbohydrate recognition systems: Functional triads in cell-cell interactions. Current Opinion in Structural Biology 1996, 6, 679-691.
    15. Seog J, Dean D, Plaas AHK, Wong-Palms S, Grodzinsky AJ, Ortiz C. Direct measurement of glycosaminoglycan intermolecular interactions via high-resolution force spectroscopy. Macromolecules 2002, 35, 5601-5615.
    16. Sheiko SS, Sumerlin BS, Matyjaszewski K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Progress in Polymer Science 2008, 33,759-785.
    17. Lienkamp K, Noe L, Breniaux MH, Lieberwirth I, Groehn F, Wegner G. Synthesis and characterization of end-functionalized cylindrical polyelectrolyte brushes from poly(styrene sulfonate). Macromolecules 2007, 40, 2486-2502.
    18. Zhao B, Brittain WJ. Polymer brushes: surface-immobilized macromolecules. Progress in Polymer Science 2000, 25, 677-710.
    19. Uyama Y, Kato K, Ikada Y. Surface modification of polymers by grafting. Grafting/Characterization Techniques/Kinetic Modeling 1998, 137, 1-39.
    20. Deng JP, Wang LF, Liu LY, Yang WT. Developments and new applications of UV-induced surface graft polymerizations. Progress in Polymer Science 2009, 34,156-193.
    21. Park SJ, Shin IJ. Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angewante Chemie International Edition 2002, 41, 3180-3182.
    22. Brun MA, Disney MD, Seeberger PH. Miniaturization of microwave-assisted carbohydrate functionalization to create oligosaccharide microarrays. ChemBioChem 2006,7,421-424.
    23. Ratner DM, Adams EW, Su J, O'Keefe BR, Mrksich M, Seeberger PH. Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides.ChemBioChem 2004, 5, 379-382.
    24. Houseman BT, Mrksich M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chemistry & Biology 2002, 9, 443-454.
    25. Shin I, Park S, Lee MR. Carbohydrate microarrays: An advanced technology for functional studies of glycans. Chemistry-A European Journal 2005, 11, 2894-2901.
    26. Serizawa T, Yamaguchi M, Matsuyama T, Akashi M. Alternating bioactivity of polymeric layer-by-layer assemblies: Anti- vs procoagulation of human blood on chitosan and dextran sulfate layers. Biomacromolecules 2000, 1, 306-309.
    27. Serizawa T, Yamaguchi M, Akashi M. Alternating bioactivity of polymeric layer-by-layer assemblies: Anticoagulation vs procoagulation of human blood.Biomacromolecules 2002, 3, 724-731.
    28. Serizawa T, Yamaguchi M, Akashi M. Enzymatic hydrolysis of a layer-by-layer assembly prepared from chitosan and dextran sulfate. Macromolecules 2002, 35,8656-8658.
    29. Yu DG, Jou CH, Lin WC, Yang MC. Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer. Colloids and Surfaces B-Biointerfaces 2007, 54,222-229.
    30. Yu DG, Lin WC, Yang MC. Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer.Bioconjugate Chemistry 2007, 18, 1521-1529.
    31. Zhu YB, Gao CY, He T, Liu XY, Shen JC. Layer-by-layer assembly to modify poly(L-lactic acid) surface toward improving its cytocompatibility to human endothelial cells. Biomacromolecules 2003, 4, 446-452.
    32. Wang DN, Liu SY, Trummer BJ, Deng C, Wang AL. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnology 2002, 20, 275-281.
    33. Fazio F, Bryan MC, Blixt O, Paulson JC, Wong CH. Synthesis of sugar arrays in microtiter plate. Journal of the American Chemical Society 2002, 124, 14397-14402.
    34. Bryan MC, Plettenburg O, Sears P, Rabuka D, Wacowich-Sgarbi S, Wong CH. Saccharide display on microtiter plates. Chemistry & Biology 2002, 9, 713-720.
    35. Fazio F, Bryan MC, Lee HK, Chang A, Wong CH. Assembly of sugars on polystyrene plates: a new facile microarray fabrication technique. Tetrahedron Letters 2004, 45,2689-2692.
    36. Fukui S, Feizi T, Galustian C, Lawson AM, Chai WG. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions.Nature Biotechnology 2002, 20, 1011 -1017.
    37. Yang ZP, Belu AM, Liebmann-Vinson A, Sugg H, Chilkoti A. Molecular imaging of a micropatterned biological ligand on an activated polymer surface. Langmuir 2000, 16,7482-7492.
    38. Sun XL, Faucher KM, Houston M, Grande D, Chaikof EL. Design and synthesis of biotin chain-terminated glycopolymers for surface glycoengineering. Journal of the American Chemical Society 2002, 124, 7258-7259.
    39. Bundy JL, Fenselau C. Lectin and carbohydrate affinity capture surfaces for mass spectrometric analysis of microorganisms. Analytical Chemistry 2001, 73, 751-757.
    40. Serizawa T, Uchida T, Akashi M. Synthesis of polystyrene nanospheres having lactose-conjugated hydrophilic polymers on their surfaces and carbohydrate recognition by proteins. Journal of Biomaterials Science-Polymer Edition 1999, 10, 391-401.
    41. Uchida T, Serizawa T, Akashi M. Graft copolymers having hydrophobic backbone and hydrophilic branches XXI. Preparation of galactose surface-accumulated polystyrene nanospheres and their interaction with lectin. Polymer Journal 1999, 31, 970-973.
    42. Baues RJ, Gray GR. Lectin Purification on affinity columns containing reductively aminated disaccharides. Journal of Biological Chemistry 1977, 252, 57-60.
    43. Mazid MA, Kaplan M. Immunoadsorbents with synthetic oligosaccharide hapten representing blood group-a substances. Bioconjugate Chemistry 1991, 2, 32-37.
    44. Knaus S, Nennadal A, Froschauer B. Surface and bulk modification of polyolefins by functional aryl nitrenes as highly reactive intermediates. Macromolecular Symposia 2001,176,223-232.
    45. Chevolot Y, Martins J, Milosevic N, Leonard D, Zeng S, Malissard M, et al.Immobilisation on polystyrene of diazirine derivatives of mono- and disaccharides:Biological activities of modified surfaces. Bioorganic & Medicinal Chemistry 2001, 9,2943-2953.
    46. Renaudie L, Le Narvor C, Lepleux E, Roger P. Functionalization of poly(ethylene terephthalate) fibers by photografting of a carbohydrate derivatized with a phenyl azide group. Biomacromolecules 2007, 8, 679-685.
    47. Keusgen M, Glodek J, Milka P, Krest I. Immobilization of enzymes on PTFE surfaces.Biotechnology and Bioengineering 2001, 72, 530-540.
    48. Glodek J, Milka P, Krest I, Keusgen M. Derivatization of fluorinated polymers and their potential use for the construction of biosensors. Sensors and Actuators B-Chemical 2002, 83, 82-89.
    49. Krest I, Keusgen M. Quality of herbal remedies from Allium sativum: Differences between alliinase from garlic powder and fresh garlic. Planta Medica 1999, 65, 139-143.
    50. Guillaumie F, Thomas ORT, Jensen KJ. Immobilization of pectin fragments on solid supports: Novel coupling by thiazolidine formation. Bioconjugate Chemistry 2002, 13,285-294.
    51. Bech L, Meylheuc T, Lepoittevin B, Roger P. Chemical surface modification of poly(ethylene terephthalate) fibers by aminolysis and grafting of carbohydrates. Journal of Polymer Science Part A-Polymer Chemistry 2007, 45, 2172-2183.
    52. Che AF, Nie FQ, Huang XD, Xu ZK, Yao K. Acrylonitrile-based copolymer membranes containing reactive groups: Surface modification by the immobilization of biomacromolecules. Polymer 2005, 46, 11060-11065.
    53. Dai ZW, Nie FQ, Xu ZK. Acrylonitrile-based copolymer membranes containing reactive groups: Fabrication dual-layer biomimetic membranes by the immobilization of biomacromolecules. Journal of Membrane Science 2005, 264, 20-26.
    54. Che AF, Liu ZM, Huang XJ, Wang ZG, Xu ZK. Chitosan-modified poly(acrylonitrile-co-acrylic acid) nanofibrous membranes for the immobilization of Concanavalin A. Biomacromolecules 2008, 9, 3397-3403.
    55. Che AF, Huang XJ, Wang ZG, Xu ZK. Preparation and surface modification of poly(acrylonitrile-co-acrylic acid) electrospun nanofibrous membranes. Australian Journal of Chemistry 2008, 61, 446-454.
    56. Zhu YB, Gao CY, Liu XY, Shen JC. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 2002, 3, 1312-1319.
    57. Yamamoto K, Ito S, Yasukawa F, Konami Y, Matsumoto N. Measurement of the carbohydrate-binding specificity of lectins by a multiplexed bead-based flow cytometric assay. Analytical Biochemistry 2005, 336, 28-38.
    58. Dai ZW, Wan LS, Xu ZK. Surface glycosylation of polymeric membranes. Science in China Series B-Chemistry 2008, 51, 901-910.
    59. Yang Q, Xu ZK, Hu MX, Li JJ, Wu J. Novel sequence for generating glycopolymer tethered on a membrane surface. Langmuir 200, 21, 10717-10723.
    60. Yang Q, Tian J, Dai ZW, Hu MX, Xu ZK. Novel photoinduced grafting-chemical reaction sequence for the construction of a glycosylation surface. Langmuir 2006, 22,10097-10102.
    61. Ying L, Yin C, Zhuo RX, Leong KW, Mao HQ, Kang ET, et al. Immobilization of galactose ligands on acrylic acid graft-copolymerized poly(ethylene terephthalate) film and its application to hepatocyte culture. Biomacromolecules 2003, 4, 157-165.
    62. Chu LQ, Tan WJ, Mao HQ, Knoll W. Characterization of UV-induced graft polymerization of poly(acrylic acid) using optical waveguide spectroscopy.Macromolecules 2006, 39, 8742-8746.
    63. Yang Q, Xu ZK, Ulbricht M. Surface modification of polypropylene microporous membrane by the immobilization of dextran. Chemical Journal of Chinese Universities-Chinese 2005, 26, 189-191.
    64. Ademovic Z, Gonera A, Mischnick P, Klee D. Biocompatible surface preparation using amino-functionalized amylose. Biomacromolecules 2006, 7, 1429-1432.
    65. Huh MW, Kang IK, Lee DH, Kim WS, Lee DH, Park LS, et al. Surface characterization and antibacterial activity of chitosan-grafted poly(ethylene terephthalate) prepared by plasma glow discharge. Journal of Applied Polymer Science 2001, 81,2769-2778.
    66. Kou RQ, Xu ZK, Deng HT, Liu ZM, Seta P, Xu YY. Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of a-allyl glucoside. Langmuir 2003, 19, 6869-6875.
    67. Bech L, Lepoittevin B, El Achhab A, Lepleux E, Teule-Gay L, Boisse-Laporte C, et al.Double plasma treatment-induced graft polymerization of carbohydrated monomers on poly(ethylene terephthalate) fibers. Langmuir 2007, 23, 10348-10352.
    68. Matsumoto A. Polymerization of multiallyl monomers. Progress in Polymer Science 2001,26,189-257.
    69. Yang Q, Xu ZK, Dai ZW, Wang JL, Ulbricht M. Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chemistry of Materials 2005, 17, 3050-3058.
    70. Yang Q, Hu MX, Dai ZW, Tian J, Xu ZK. Fabrication of glycosylated surface on polymer membrane by UV-induced graft polymerization for lectin recognition. Langmuir 2006, 22, 9345-9349.
    71. Ejaz M, Ohno K, Tsujii Y, Fukuda T. Controlled grafting of a well-defined glycopolymer on a solid surface by surface-initiated atom transfer radical polymerization.Macromolecles 2000, 33, 2870-2874.
    72. Ayres N, Holt DJ, Jones CF, Corum LE, Grainger DW. Polymer Brushes Containing Sulfonated Sugar Repeat Units: Synthesis, Charaderization, and In Vitro Testing of Blood Coagulation Activation. Journal of Polymer Science Part A-Polymer Chemistry 2008, 46,7713-7724.
    73. Yang Q, Tian J, Hu MX, Xu ZK. Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP.Langmuir 2007, 23, 6684-6690.
    74. Chen GJ, Tao L, Mantovani G, Geng J, Nystrom D, Haddleton DM. A modular click approach to glycosylated polymeric beads: Design, synthesis and preliminary lectin,recognition studies. Macromolecule 2007, 40, 7513-7520.
    75. Yu HY, Hu MX, Xu ZK. Improvement of surface properties of poly(propylene) hollow fiber microporous membranes by plasma-induced tethering of sugar moieties. Plasma Processes and Polymers 2005, 2, 627-632.
    76. Delgado AD, Leonard M, Dellacherie E. Surface modification of polystyrene nanoparticles using dextrans and dextran-POE copolymers: Polymer adsorption and colloidal characterization. Journal of Biomaterials Science-Polymer Edition 2000, 11,1395-1410.
    77. Delgado AD, Leonard M, Dellacherie E. Surface properties of polystyrene nanoparticles coated with dextrans and dextran-PEO copolymers: Effect of polymer architecture on protein adsorption. Langmuir 2001, 17, 4386-4391.
    78. Bae WS, Urban MW. Lectin-recognizable colloidal dispersions stabilized by n-dodecyl β-D-maltoside: Particle-particle and particle-surface interactions. Biomacromolecules 2006,7, 1156-1161.
    79. Liang R, Yan L, Loebach J, Ge M, Uozumi Y, Sekanina K, et al. Parallel synthesis and screening of a solid phase carbohydrate library. Science 1996, 274, 1520-1522.
    80. Liang R, Loebach J, Horan N, Ge M, Thompson C, Yan L, et al. Polyvalent binding to carbohydrates immobilized on an insoluble resin. Proceedings of the National Academy of Sciences of the United States of America 1997, 94, 10554-10559.
    81. Kanai M, Mortell KH, Kiessling LL. Varying the size of multivalent ligands: The dependence of concanavalin a binding on neoglycopolymer length. Journal of the American Chemical Society 1997, 119, 9931-9932.
    82. Schoffski P, Riggert S, Fumoleau P, Campone M, Bolte O, Marreaud S, et al. Phase ? trial of intravenous aviscumine (rViscumin) in patients with solid tumors: a study of the European Organization for Research and Treatment of Cancer New Drug Development Group. Annals of Oncology 2004, 15, 1816-1824.
    83. Manimala JC, Roach TA, Li ZT, Gildersleeve JC. High-throughput carbohydrate microarray analysis of 24 lectins. Angewante Chemie International Edition 2006, 45,3607-3610.
    84. Tully SE, Rawat M, Hsieh-Wilson LC. Discovery of a TNF-α antagonist using chondroitin sulfate microarrays. Journal of the American Chemical Society 2006, 128,7740-7741.
    85. Klein E. Affinity membranes: a 10-year review. Journal of Membrane Science 2000,179, 1-27.
    86. Charcosset C. Purification of proteins by membrane chromatography. Journal of Chemical Technology and Biotechnology 1998, 71, 95-110.
    87. Ghosh R. Protein separation using membrane chromatography: opportunities and challenges. Journal of Chromatography A 2002, 952, 13-27.
    88. Boi C, Cattoli F, Facchini R, Sorci M, Sarti GC. Adsorption of lectins on affinity membranes. Journal of Membrane Science 2006,273, 12-19.
    89. Sarti GC, Cattoli F, Boi C, Sorci M. Adsorption of pure recombinant MBP-fusion proteins on amylose affinity membranes. Journal of Membrane Science 2006, 273, 2-11.
    90. Cheng SY, Constantinidis I, Sambanis A. Use of glucose-responsive material to regulate insulin release from constitutively secreting cells. Biotechnology and Bioengineering 2006, 93, 1079-1088.
    91. Cheng SY, Gross J, Sambanis A. Hybrid pancreatic tissue substitute consisting of recombinant insulin-secreting cells and glucose-responsive material. Biotechnology and Bioengineering 2004, 87, 863-873.
    92. Tang M, Zhang R, Bowyer A, Eisenthal R, Hubble J. A reversible hydrogel membrane for controlling the delivery of macromolecules. Biotechnology and Bioengineering 2003,82, 47-53.
    93. Hubbell JA. Bioactive biomaterials. Current Opinion in Biotechnology 1999, 10,123-129.
    94. Hench LL, Polak JM. Third-generation biomedical materials. Science 2002, 295,1014-1017.
    95. Chan C, Berthiaume F, Nath BD, Tilles AW, Toner M, Yarmush ML. Hepatic tissue engineering for adjunct and temporary liver support: Critical technologies. Liver Transplant 2004, 10, 1331-1342.
    96. LeCluyse EL, Bullock PL, Parkinson A. Strategies for restoration and maintenance of normal hepatic structure and function in long-term cultures of rat hepatocytes. Advanced Drug Delivery Reviews 1996, 22, 133-186.
    97. Ashwell G, Morell AG. Role of Surface Carbohydrates in hepatic recognition and transport of circulating glycoproteins. Advances in Enzymology and Related Areas of Molecular Biology 1974, 41, 99-128.
    98. Schnaar RL, Weigel PH, Kuhlenschmidt MS, Lee YC, Roseman S. Adhesion of chicken hepatocytes to polyacrylamide gels derivatized with N-acetylglucosamine.Journal of Biological Chemistry 1978, 253, 7940-7951.
    99. Weigel PH, Schmell E, Lee YC, Roseman S. Specific adhesion of rat hepatocytes to β-galactosides linked to polyacrylamide gels. Journal of Biological Chemistry 1978, 253,330-333.
    100. Weigel PH, Clarke BL, Oka JA. The hepatic galactosyl receptor system 2.Different ligand dissociation pathways are mediated by distinct receptor populations.Biochemical and Biophysical Research Communications 1986, 140,43-50.
    101. Weisz OA, Schnaar RL. Hepatocyte Aadhesion to carbohydrate-derivatized surfaces 1. Surface-topography of the rat hepatic lectin. Journal of Cell Biology 1991, 115,485-493.
    102. Weisz OA, Schnaar RL. Hepatocyte adhesion to carbohydrate-derivatized surfaces 2. Regulation of cytoskeletal organization and cell morphology. Journal of Cell Biology 1991,115,495-504.
    103. Hoshiba T, Wakejima M, Cho CS, Shiota G, Akaike T. Different regulation of hepatocyte behaviors between natural extracellular matrices and synthetic extracellular matrices by hepatocyte growth factor. Journal of Biomedical Materials Research Part A 2008, 85A, 228-235.
    104. Cho CS, Hoshiba T, Harada I, Akaike T. Regulation of hepatocyte behaviors by galactose-carrying polymers through receptor-mediated mechanism. Reactive & Functional Polymers 2007, 67,1301-1310.
    105. Seo SJ, Kim IY, Choi YJ, Akaike T, Cho CS. Enhanced liver functions of hepatocytes cocultured with NIH 3T3 in the alginate/galactosylated chitosan scaffold.Biomaterials 2006, 27, 1487-1495.
    106. Seo SJ, Choi YJ, Akaike T, Higuchi A, Cho CS. Alginate/galactosylated chitosan/heparin scaffold as a new synthetic extracellular matrix for hepatocytes. Tissue Engineering 2006, 12, 33-44.
    107. Cho CS, Seo SJ, Park IK, Kim SH, Kim TH, Hoshiba T, et al. Galactose-carrying polymers as extracellular matrices for liver tissue engineering. Biomaterials 2006, 27,576-585
    108. Lee JS, Kim SH, Kim YJ, Akaike T, Kim SC. Hepatocyte adhesion on a poly[N-p-vinylbenzyl-4-O-β-D-galactopyranosyl-D-glucoamide]-coated poly(L-lactic acid) surface. Biomacromolecules 2005, 6, 1906-1911.
    109. Kim SH, Hoshiba T, Akaike T. Hepatocyte behavior on synthetic glycopolymer matrix: inhibitory effect of receptor-ligand binding on hepatocyte spreading. Biomaterials 2004,25, 1813-1823.
    110.Park IK, Yang J, Jeong HJ, Bom HS, Harada I, Akaike T, et al. Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials 2003, 24,2331-2337.
    111. Kim SH, Hoshiba T, Akaike T. Effect of carbohydrates attached to polystyrene on hepatocyte morphology on sugar-derivatized polystyrene matrices. Journal of Biomedical Materials Research Part A 2003, 67A, 1351-1359.
    112. Yang J, Goto M, Ise H, Cho CS, Akaike T. Galactosylated alginate as a scaffold for hepatocytes entrapment. Biomaterials 2002, 23, 471-479.
    113.Yin C, Ying L, Zhang PC, Zhuo RX, Kang ET, Leong KW, et al. High density of immobilized galactose ligand enhances hepatocyte attachment and function. Journal of Biomedical Materials Research Part A 2003, 67A, 1093-1104.
    114.Chua KN, Lim WS, Zhang PC, Lu HF, Wen J, Ramakrishna S, et al. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 2005, 26, 2537-2547.
    115.Chung TW, Yang J, Akaike T, Cho KY, Nah JW, Kim SI, et al. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 2002, 23,2827-2834.
    116.Glicklis R, Merchuk JC, Cohen S. Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnology and Bioengineering 2004, 86, 672-680.
    117.Cho CS, Goto M, Kobayashi A, Kobayashi K, Akaike T. Effect of ligand orientation on hepatocyte attachment onto the poly(N-p-vinylbenzyl-o-β-D-galactopyranosyl-D-gluconamide) as a model ligand of asialoglycoprotein. Journal of Biomaterials Science-Polymer Edition 1996, 7, 1097-1104.
    118.Griffith LG, Lopina S. Microdistribution of substratum-bound ligands affects cell function: Hepatocyte spreading on PEO-tethered galactose. Biomaterials 1998, 19,979-986.
    119.Lee RT, Myers RW, Lee YC. Further-studies on the binding characteristics of rabbit liver galactose N-acetylgalactosamine-specific lectin. Biochemistry 1982, 21, 6292-6298.
    120. Ichikawa Y, Lee RT, Lee YC. Synthesis and binding-activity of 3-deoxy-N-acetyl-galactosamine and 4-deoxy-N-acetyl-galactosamine derivatives. Journal of Carbohydrate Chemistry 1990, 9, 707-719.
    121. Lee YC. Biochemistry of carbohydrate-protein interaction. Faseb Journal 1992, 6,3193-3200.
    122. Kim SH, Goto M, Cho CS, Akaike T. Specific adhesion of primary hepatocytes to a novel glucose-carrying polymer. Biotechnology Letters 2000, 22, 1049-1057.
    123. Kim SH, Goto M, Akaike T. Specific binding of glucose-derivatized polymers to the asialoglycoprotein receptor of mouse primary hepatocytes. Journal of Biological Chemistry 2001, 276, 35312-35319.
    124. Mi FL, Yu SH, Peng CK, Sung HW, Shyu SS, Liang HF, et al. Synthesis and characterization of a novel glycoconjugated macromolecule. Polymer 2006, 47,4348-4358.
    125. Tisaoussis J, Newsome PN, Nelson LJ, Hayes PC, Plevris JN. Which hepatocyte will it be? Hepatocyte choice for bioartificial liver support systems. Liver Transplant 2001, 7,2-10.
    126. Morelli S, Salerno S, Rende M, Lopez LC, Favia P, Procino A, et al. Human hepatocyte functions in a galactosylated membrane bioreactor. Journal of Membrane Science 2007, 302, 27-35.
    127. Uchida T, Serizawa T, Ise H, Akaike T, Akashi M. Graft copolymer having hydrophobic backbone and hydrophilic branches. 33. Interaction of hepatocytes and polystyrene nanospheres having lactose-immobilized hydrophilic polymers on their surfaces. Biomacromolecules 2001, 2, 1343-1346.
    128. Barondes SH, Castronovo V, Cooper DNW, Cummings RD, Drickamer K, Feizi T,et al. Galectins - a Family of animal β-galactoside-binding lectins. Cell 1994, 76, 597-598.
    129. Kasai K, Hirabayashi J. Galectins: A family of animal lectins that decipher glycocodes. Journal of Biochemistry 1996, 119, 1-8.
    130. Nurminskaya M, Linsenmayer TF. Identification and characterization of up-regulated genes during chondrocyte hypertrophy. Developmental Dynamics 1996, 206,260-271.
    131. Colnot C, Sidhu SS, Poirier F, Balmain N. Cellular and subcellular distribution of galectin-3 in the epiphyseal cartilage and bone of fetal and neonatal mice. Cellular and Molecular Biology 1999, 45, 1191-1202.
    132. Marcon P, Marsich E, Vetere A, Mozetic P, Campa C, Donati I, et al. The role of Galectin-1 in the interaction between chondrocytes and a lactose-modified chitosan.Biomaterials 2005, 26, 4975-4984.
    133. Hughes RC. Galectins as modulators of cell adhesion. Biochimie 2001, 83,667-676.
    134. Ramkumar R, Podder SK. Elucidation of the mechanism of interaction of sheep spleen galectin-1 with splenocytes and its role in cell-matrix adhesion. Journal of Molecular Recognition 2000, 13, 299-308.
    135. Gu MJ, Wang WW, Song WK, Cooper DNW, Kaufman SJ. Selective modulation of the interaction of α(7)β(1) integrin with fibronectin and laminin by L-14 lectin during skeletal-muscle differentiation. Journal of Cell Science 1994, 107, 175-181.
    136. Donati I, Stredanska S, Silvestrini G, Vetere A, Marcon P, Marsich E, et al. The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials 2005, 26, 987-998.
    137. East L, Isacke CM. The mannose receptor family. Biochimica Et Biophysica Acta-Genernal Subjects 2002, 1572, 364-386.
    138. Howard MJ, Chambers MG, Mason RM, Isacke CM. Distribution of Endo 180 receptor and ligand in developing articular cartilage. Osteoarthritis Cartilage 2004, 12,74-82.
    139. McGreal EP, Martinez-Pomares L, Gordon S. Divergent roles for C-type lectins expressed by cells of the innate immune system. Molecular Immunology 2004, 41,1109-1121.
    140. Schneider A, Bolcato-Bellemin AL, Francius G, Jedrzejwska J, Schaaf P, Voegel JC, et al. Glycated polyelectrolyte multilayer films: Differential adhesion of primary versus tumor cells. Biomacromolecules 2006, 7,2882-2889.
    141. Stahl P, Schlesinger PH, Sigardson E, Rodman JS, Lee YC. Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: Characterization and evidence for receptor recycling. Cell 1980, 19, 207-215.
    142. Chen KY, Kramer RH, Canellakis ES. Isolation and characterization of surface glycoproteins from L-1210, P-388 and Hela-cells. Biochimica Et Biophysica Acta 1978,507,107-118.
    143. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003, 24, 4385-4415.
    144. Serizawa T, Yamaguchi M, Kishida A, Akashi M. Alternating gene expression in fibroblasts adhering to multilayers of chitosan and dextran sulfate. Journal of Biomedical Materials Research Part A 2003, 67A, 1060-1063.
    145. Charych DH, Nagy JO, Spevak W, Bednarski MD. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science 1993, 261,585-588.
    146. Charych D, Cheng Q, Reichert A, Kuziemko G, Stroh M, Nagy JO, et al. A 'litmus test' for molecular recognition using artificial membranes. Chemistry & Biology 1996, 3,113-120.
    147. Chance RR, Patel GN, Witt JD. Thermal effects on the optical-properties of single-crystals and solution-cast films of urethane substituted polydiacetylenes. Journal of Chemical Physics 1979, 71, 206-211.
    148. Kaneko F, Shibata M, Kobayashi S. Absorption properties and structure changes caused by pre-annealing in polydiacetylene Langmuir-Blodgett-films. 5th International Conf on Langmuir-Blodgett Films; 1991 Aug 26-30; Paris, France: Elsevier Science Sa Lausanne; 1991,548-550.
    149. Mino N, Tamura H, Ogawa K. Photoreactivity of 10,12-pentacosadiynoic acid monolayers and color transitions of the polymerized monolayers on an aqueous subphase.Langmuir 1992, 8, 594-598.
    150. Shibata M, Kaneko F, Aketagawa M, Kobayashi S. Reversible color phase-transitions and annealing properties of Langmuir-Blodgett polydiacetylene films.4th International Conf on Langmuir-Blodgett Films; 1989 Apr 24-29; Tsukuba, Japan:Elsevier Science Sa Lausanne; 1989, 433-437.
    151. Verley A, Bolsing F. On quantitative ester production and determination of alcohols and phenoles respectively. Berichte Der Deutschen Chemischen Gesellschaft 1901,34,3354-3358.
    152. Hudson CS, Johnson JM. The isomeric octacetates of lactose. Journal of the American Chemical Society 1915, 37, 1270-1275.
    153. Paulsen H, Adermann K. Synthesis of varied O-glycopeptides of interleukin-2.Liebigs Annalen Der Chemie 1989, 771-780.
    154. Bradford MM. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry 1976,72,248-254.
    155. Seglen PO. Preparation of isolated rat liver cells. Methods in Cell Biology 1976,13,29-83.
    156. Wang HZ, Chang CH, Lin CP, Tsai MC. Using MTT viability assay to test the cytotoxicity of antibiotics and steroid to cultured porcine corneal endothelial cells. Journal of Ocular Pharmacology and Therapeutics 1996, 12, 35-43.
    157. Belfer S, Fainshtain R, Purinson Y, Gilron J, Nystrom M, Manttari M.Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. Journal of Membrane Science 2004, 239, 55-64.
    158. Belfer S, Bottino A, Capannelli G. Preparation and characterization of layered membranes constructed by sequential redox-initiated grafting onto polyacrylonitrile ultrafiltration membranes. Journal of Applied Polymer Science 2005, 98, 509-520.
    159. Fang YE, Ma CX, Chen Q, Lu XB. Radiation-induced graft copolymerization of 2-hydroxyethyl methacrylate onto chloroprene rubber membrane. ?. Characterization of grafting copolymer. Journal of Applied Polymer Science 1998, 68, 1745-1750.
    160. Fang YE, Zhao X. Radiation-induced graft copolymerization of 2-hydroxyethyl methacrylate onto poly(gamma-methyl-L-glutamate) membrane in ethanol solution. Journal of Applied Polymer Science 1998, 68, 1575-1580.
    161. Li YP, Liu L, Fang YE. Plasma-induced grafting of hydroxyethyl methacrylate (HEMA) onto chitosan membranes by a swelling method. Polymer International 2003, 52,285-290.
    162. Shim JK, Na HS, Lee YM, Huh H, Nho YC. Surface modification of polypropylene membranes by gamma-ray induced graft copolymerization and their solute permeation characteristics. Journal of Membrane Science 2001, 190, 215-226.
    163. Wang Y, Kim JH, Choo KH, Lee YS, Lee CH. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science 2000, 169, 269-276.
    164. Ulbricht M, Matuschewski H, Oechel A, Hicke HG. Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membranes. Journal of Membrane Science 1996,115,31-47.
    165. Gatenholm P, Ashida T, Hoffman AS. Hybrid biomaterials prepared by ozone-induced polymerization .1. Ozonation of microporous polypropylene. Journal of Polymer Science Part A-Polymer Chemistry 1997, 35, 1461-1467.
    166. Koehler JA, Ulbricht M, Belfort G. Intermolecular forces between a protein and a hydrophilic modified polysulfone film with relevance to filtration. Langmuir 2000, 16,10419-10427.
    167. Kang JS, Shim JK, Huh H, Loo YM. Colloidal adsorption of bovine serum albumin on porous polypropylene-g-poly(2-hydroxyethyl methacrylate) membrane.Langmuir 2001, 17, 4352-4359.
    168. Taniguchi M, Kilduff JE, Belfort G. Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter. Journal of Membrane Science 2003, 222, 59-70.
    169. Taniguchi M, Belfort G. Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type. Journal of Membrane Science 2004,231,147-157.
    170. Eldin MSM, Portaccio M, Diano N, Rossi S, Bencivenga U, D'Uva A, et al.Influence of the microenvironment on the activity of enzymes immobilized on Teflon membranes grafted by gamma-radiation. Journal of Molecular Catalysis B-Enzymatic 1999,7,251-261.
    171. Arica MY. Epoxy-derived pHEMA membrane for use bioactive macromolecules immobilization: Covalently bound urease in a continuous model system. Journal of Applied Polymer Science 2000, 77, 2000-2008.
    172. Bayramoglu G, Kacar Y, Denizli A, Arica MY. Covalent immobilization of lipase onto hydrophobic group incorporated poly(2-hydroxyethyl methacrylate) based hydrophilic membrane matrix. Journal of Food Engineering 2002, 52, 367-374.
    173. Ma HM, Davis RH, Bowman CN. A novel sequential photoinduced living graft polymerization. Macromolecules 2000, 33, 331-335.
    174. Ma HM, Bowman CN, Davis RH. Membrane fouling reduction by backpulsing and surface modification. Journal of Membrane Science 2000, 173, 191-200.
    175. Ma HM, Hakim LF, Bowman CN, Davis RH. Factors affecting membrane fouling reduction by surface modification and backpulsing. Journal of Membrane Science 2001,189,255-270.
    176. Piletsky SA, Matuschewski H, Schedler U, Wilpert A, Piletska EV, Thiele TA, et al. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water. Macromolecules 2000, 33,3092-3098.
    177. Ulbricht M, Yang H. Porous polypropylene membranes with different carboxyl polymer brush layers for reversible protein binding via surface-initiated graft copolymerization. Chemistry of Materials 2005, 17, 2622-2631
    178. Hwang TS, Park JW. UV-induced graft polymerization of polypropylene-g-glycidyl methacrylate membrane in the vapor phase. Macromolecular Research 2003, 11,495-500.
    179. Evans MG, Uri N. Photochemical polymerization in aqueous solution. Nature 1949,164,404-405.
    180. Oster G, Yang NL. Photopolymerization of vinyl monomers. Chemical Reviews 1968,68, 125-151.
    181. Bacon RGR. The initiation of polymerisation processes by redox catalysts.Quarterly Reviews 1955, 9, 287-310.
    182. Rabinowitch E. Electron transfer spectra and their photochemical effects. Reviews of Modern Physics 1942, 14, 0113-0132.
    183. Dainton FS, Sisley WD. Polymerization of methacrylamide in aqueous solution .2.Ferric-ion-photosensitized reaction. Transactions of the Faraday Society 1963, 59,1377-1384.
    184. Tripathy SS, Jena S, Misra SB, Padhi NP, Singh BC. A study on graft-copolymerization of methyl-methacrylate onto Jute fiber. Journal of Applied Poymer Science 1985, 30, 1399-1406.
    185. Huglin MB, Johnson BL. Role of cations in radiation grafting and homopolymerization. Journal of Polymer Science Part A-Polymer Chemistry 1969, 7,1379-1384.
    186. Collinson E, Dainton FS. Termination of chains in vinyl polymerization by metal salts. Nature 1956, 177, 1224-1225.
    187. Abdelbary EM, Sarhan AA, Abdelrazik HH. Effect of graft-copolymerization of 2-hydroxyethyl methacrylate on the properties of polyester fibers and fabric. Journal of Applied Polymer Science 1988, 35,439-448.
    188. Hegazy EA, Mokhtar SM, Osman MBS, Mostafa AEB. Study on nonionic membrane prepared by radiation-induced graft-polymerization. Radiation Physics and Chemistry 1990, 36, 365-370.
    189. Steen ML, Jordan AC, Fisher ER. Hydrophilic modification of polymeric membranes by low temperature H_2O plasma treatment. Journal of Membrane Science 2002, 204, 1-2, 341-357.
    190. Wavhal DS, Fisher ER. Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling. Langmuir 2003, 19, 79-85.
    191. Gekas V, Persson KM, Wahlgren M, Sivik B. Contact angles of ultrafiltration membranes and their possible correlation to membrane performance. Journal of Membrane Science 1992, 72, 293-302.
    192. Zhang W, Wahlgren M, Sivik B. Membrane characterization by the contact-angle technique .2. Characterization of UF-membranes and comparison between the captive bubble and sessile drop as methods to obtain water contact angles. Desalination 1989, 72, 263-273.
    193. Patankar NA. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 2003, 19, 1249-1253.
    194. 吴莉莉.糖基化烯类单体的合成及其聚合物纳米纤维的性能研究.[硕士学位论文]2008,浙江杭州,浙江大学.
    195. Takae S, Akiyama Y, Otsuka H, Nakamura T, Nagasaki Y, Kataoka K. Ligand density effect on biorecognition by PEGylated gold nanoparticles: Regulated interaction of RCA(120) lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules 2005, 6, 818-824.
    196. Hu MX, Wan LS, Fu ZS, Fan ZQ, Xu ZK. Construction of glycosylated surfaces fox poly(propylene) beads with a photoinduced grafting/chemical reaction sequence. Macromolecular Rapid Communications 2007, 28, 2325-2331.
    197. Sethuraman A, Han M, Kane RS, Belfort G. Effect of surface wettability on the adhesion of proteins. Langmuir 2004, 20, 7779-7788.
    198. Hederos M, Konradsson P, Liedberg B. Synthesis and self-assembly of galactose-terminated alkanethiols and their ability to resist proteins. Langmuir 2005, 21, 2971-2980.
    199. Kennedy JF, Palva PMG, Corella MTS, Cavalcanti MSM, Coelho L. Lectins, versatile proteins of recognition: A review. Carbohydrate Polymers 1995, 26, 219-230.
    200. Hardman KD, Ainswort CF. Structure of Concanavalin A at 2.4 (?) resolution. Biochemistry 1972, 11, 4910-4919.
    201. Becker JW, Reeke GN, Wang JL, Cunningham BA, Edelman GM. Covalent and 3-dimensional structure of Concanavalin A. 3. Structure of monomer and its interactions with metals and saccharides. Journal of Biological Chemistry 1975,250, 1513-1524.
    202. Reeke GN, Becker JW, Edelman GM. Covalent and 3-dimensional structure of Concanavalin A. 4. Atomic coordinates, hydrogen-bonding, and quaternary structure.Journal of Biological Chemistry 1975,250, 1525-1547.
    203. Edelman GM, Reeke GN, Wang JL, Waxdal MJ, Becker JW, Cunningh BA.Covalent and 3-dimensional structure of Concanavalin A. Proceedings of the National Academy of Sciences of the United States of America 1972, 69, 2580-2584.
    204. Kiessling LL, Pohl NL. Strength in numbers: Non-natural polyvalent carbohydrate derivatives. Chemistry & Biology 1996, 3, 71-77.
    205. Houseman BT, Mrksich M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chemistry & Biology 2002, 9, 443-454.
    206. Banerjee R, Das K, Ravishankar R, Suguna K, Surolia A, Vijayan M.Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectinlactose complex. Journal of Molecular Biology 1996,259,281-296.
    207. Ravishankar R, Surolia A, Vijayan M, Lim S, Kishi Y. Preferred conformation of C-lactose at the free and peanut lectin bound states. Journal of the American Chemical Society 1998, 120, 11297-11303.
    208. Elgavish S, Shaanan B. Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides. Journal of Molecular Biology 1998, 277,917-932.
    209. Weis WI, Drickamer K. Structural basis of lectin-carbohydrate recognition.Annual Review Biochemistry 1996, 65, 441-473.
    210. Reddy GB, Srinivas VR, Ahmad N, Surolia A. Molten globule-like state of peanut lectin monomer retains its carbohydrate specificity - Implications in protein folding and legume lectin oligomerization. Journal of Biological Chemistry 1999, 274, 4500-4503.
    211.Goldstein IJ, Reichert CM, Misaki A, Gorin PA. Extension of carbohydrate binding specificity of Concanavalin A. Biochimica et Biophysica Acta 1973, 317, 500-504.
    212. Goldstei.Ij, Hollerma.Ce, Smith EE. Protein-carbohydrate interaction. 2.Inhibition studies on interaction of Concanavalin A with polysaccharides. Biochemistry 1965,4,876-883.
    213. Goldstei IJ, Cifonell JA, Duke J. Interaction of Concanavalin A with capsular polysaccharide of pneumococcus type XII and isolation of kojibiose from polysaccharide.Biochemistry 1974, 13, 867-870.
    214. So LL, Goldstei.IJ. Protein-carbohydrate interaction. 20. On number of combining sites on Concanavalin A phytohemagglutinin of jack bean. Biochimica Et Biophysica Acta 1968,165,398-404
    215. van Reis R, Zydney A. Bioprocess membrane technology. Journal of Membrane Science 2007,297,16-50.
    216. Boi C, Dimartino S, Sarti GC. Modelling and simulation of affinity membrane adsorption. Journal of Chromatography A 2007, 1162, 24-33.
    217. Kochan JE, Wu YJ, Etzel MR. Purification of bovine immunoglobulin G via protein G affinity membranes. Industrial & Engineering Chemistry Research 1996, 35,1150-1155.
    218. Ruckenstein E, Guo W. Crosslinked mercerized cellulose membranes and their application to membrane affinity chromatography. Journal of Membrane Science 2001,187,277-286.
    219. Zeng XF, Ruckenstein E. Macroporous chitin affinity membranes for wheat germ agglutinin purification from wheat germ. Journal of Membrane Science 1999, 156,97-107.
    220. Unarska M, Davies PA, Esnouf MP, Bellhouse BJ. Comparative-study of reaction-kinetics in membrane and agarose bead affinity systems. Journal of Chromatography 1990, 519, 53-67.
    221. Briefs KG, Kula MR. Fast Protein chromatography on analytical and preparative scale using modified microporous membranes. Chemical Engineering Science 1992, 47,141-149.
    222. Li Y, Chung TS. Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation. Journal of Membrane Science 2008, 309, 45-55.
    223. Saito K, Kaga T, Yamagishi H, Furusaki S, Sugo T, Okamoto J. Phosphorylated hollow fibers synthesized by radiation grafting and cross-linking. Journal of Membrane Science 1989,43, 131-141.
    224. Kim M, Saito K, Furusaki S, Sugo T, Ishigaki I. Protein adsorption capacity of a porous phenylalanine-containing membrane based on a polyethylene matrix. Journal of Chromatography 1991, 586, 27-33.
    225. Soltys PJ, Etzel MR. Equilibrium adsorption of LDL and gold immunoconjugates to affinity membranes containing PEG spacers. Biomaterials 2000, 21, 37-48.
    226. Roper DK, Lightfoot EN. Separation of biomolecules using adsorptive membranes. Journal of Chromatography A 1995, 702, 3-26.
    227. Sun L, Dai JH, Baker GL, Bruening ML. High-capacity, protein-binding membranes based on polymer brushes grown in porous substrates. Chemistry of Materials 2006, 18,4033-4039.
    228. Ulbricht M, Riedel M. Ultrafiltration membrane surfaces with grafted polymer 'tentacles': preparation, characterization and application for covalent protein binding.Biomaterials 1998, 19, 1229-1237.
    229. Jain P, Sun L, Dai JH, Baker GL, Bruening ML. High-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes.Biomacromolecules 2007, 8, 3102-3107.
    230. Kawai T, Saito K, Lee W. Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2003, 790, 131-142.
    231. Guo W, Ruckenstein E. A new matrix for membrane affinity chromatography and its application to the purification of concanavalin A. Journal of Membrane Science 2001,182,227-234.
    232. Hou KC, Zaniewski R, Roy S. Protein A immobilized affinity cartridge for immunoglobulin purification. Biotechnology and Applied Biochemistry 1991, 13,257-268.
    233. Ghosh R, Wong T. Effect of module design on the efficiency of membrane chromatographic separation processes. Journal of Membrane Science 2006, 281, 532-540.
    234. Bouckaert J, Poortmans F, Wyns L, Loris R. Sequential structural changes upon zinc and calcium binding to metal-free Concanavalin A. Journal of Biological Chemistry 1996,271,16144-16150.
    235. Yang L, Chen P. Chitosan/coarse filter paper composite membrane for fast purification of IgG from human serum. Journal of Membrane Science 2002, 205,141-153.
    236. Firer MA. Efficient elution of functional proteins in affinity chromatography.Journal of Biochemical and Biophysical Methods 2001, 49, 433-442.
    237. Josic D, Schwinn H, Strancar A, Podgornik A, Barut M, Lim YP, et al. Use of compact, porous units with immobilized ligands with high molecular masses in affinity chromatography and enzymatic conversion of substrates with high and low molecular masses. Journal of Chromatography A 1998, 803, 61-71.
    238. Bedair M, El Rassi Z. Affinity chromatography with monolithic capillary columns I. Polymethacrylate monoliths with immobilized mannan for the separation of mannose-binding proteins by capillary electrochromatography and nano-scale liquid chromatography. Journal of Chromatography A 2004, 1044, 177-186.
    239. Lundquist JJ, Toone EJ. The cluster glycoside effect. Chemical Reviews 2002,102,555-578.
    240. Park J, Li Y, Berthiaume F, Toner M, Yarmush ML, Tilles AW. Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotechnology and Bioengineering 2008, 99, 455-467.
    241. Bartolo LD, Morelli S, Lopez LC, Giorno L, Campana C, Salerno S, et al.Biotransformation and liver-specific functions of human hepatocytes in culture on RGD-immobilized plasma-processed membranes. Biomaterials 2005, 26, 4432-4441.
    242. De Bartolo L, Morelli S, Piscioneri A, Lopez LC, Favia P, D'Agostino R, et al.Novel membranes and surface modification able to activate specific cellular responses.Biomolecular Engineering 2007, 24, 23-26.
    243. Belfort G, Davis RH, Zydney AL. The behavior of suspensions and macromolecular solutions in cross-flow microfiltration. Journal of Membrane Science 1994,96, 1-58.
    244. Dilworth C, Hamilton GA, George E, Timbrell JA. The use of liver spheroids as an in vitro model for studying induction of the stress response as a marker of chemical toxicity. Toxicology in Vitro 2000, 14, 169-176.
    245. Walker TM, Rhodes PC, Westmoreland C. The differential cytotoxicity of methotrexate in rat hepatocyte monolayer and spheroid cultures. Toxicology in Vitro 2000,14,475-485.
    246. Fukuda J, Sakai Y, Nakazawa K. Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials 2006, 27, 1061-1070.
    247. Higashiyama S, Noda M, Kawase M, Yagi K. Mixed-ligand modification of polyamidoamine dendrimers to develop an effective scaffold for maintenance of hepatocyte spheroids. Journal of Biomedical Materials Research 2003, 64, 475-482.
    248. Ezzell RM, Toner M, Hendricks K, Dunn JCY, Tompkins RG, Yarmush ML. Effect of collagen gel configuration on the cytoskeleton in cultured rat hepatocytes. Experimental Cell Research 1993,208, 442-452.
    249. Tzanakakis ES, Hansen LK, Hu WS. The role of actin filaments and microtubules in hepatocyte spheroid self-assembly. Cell Motility and the Cytoskeleton 2001, 48, 175-189.
    250. Du YN, Chia SM, Han RB, Chang S, Tang HH, Yu H. 3D hepatocyte monolayer on hybrid RGD/galactose substratum. Biomaterials 2006, 27, 5669-5680.
    251. Hamilton GA, Jolley SL, Gilbert D, Coon DJ, Barros S, LeCluyse EL. Regulation of cell morphology and cytochrome P450 expression in human hepatocytes by extracellular matrix and cell-cell interactions. Cell abd Tissue Research 2001, 306, 85-99.
    252. 尹超.生物材料表面的特异性配体修饰及其对肝细胞培养的影响.[博士学位论文]2002,湖北武汉,武汉大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700