用户名: 密码: 验证码:
蒙古国中部Ugii Nuur湖过去8660年孢粉记录与环境变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒙古高原全新世气候变化时空分布规律研究对于理解高、低纬气团作用以及亚洲冬、夏季风和西风带气候予系统相互作用及演化具有重要意义。然而,蒙古国全新世研究比较薄弱,已有古气候序列分布不均、年代控制差、分辨率低、代用指标敏感性不足。而且,已有资料揭示的区域气候差异明显,尤其在蒙古国中部中全新世气候状况上分歧较大。这对理解和认识蒙古高原全新世气候变化的时空变化规律和气候变化机制造成了很大的困难。因此,本论文选取蒙古国中部Ugii Nuur湖泊沉积为研究对象、以AMS~(14)C测年为框架、区域现代花粉研究为基础,利用高分辨率孢粉记录重建了过去8660 cal.yrBP以来的植被和气候变化。利用硅藻及粒度等记录辅助重建了过去8660 cal.yr BP以来湖泊水位和气候变化历史。此外,还通过区域全新世气候记录的综述与对比研究,探讨了蒙古高原全新世气候变化的时空分布;通过与气候模式模拟结果的对比,对蒙古国中部全新世气候变化的动力学机制进行了粗浅的讨论。研究取得的主要结论及认识如下:
     1、通过对蒙古国Gun Nuur至Ugii Nuur断面现代孢粉研究,确定了森林、森林草原、山地草原、草原以及荒漠草原现代花粉组合特征。研究表明松属花粉具超代表性;禾本科花粉具低代表性;草原地带藜科花粉含量显著高于山地草原和森林草原地带,可以作为区别植被的重要指标;山地草原和山地森林草原中生杂类草和莎草科花粉含量高于草原地带,可以指示区域气候湿润状况。Ugii Nuur湖周围现代孢粉研究表明:松属为空气传播的外来花粉,其含量变化可能指示了远山森林草原发育状况;禾本科具显著低代表性,母体植物建群时含量通常在10%以下:藜科花粉含量可以指示区域气候干旱程度。
     2、以现代孢粉研究为基础、可靠AMS~(14)C年代为框架,Ugii Nuur孢粉记录高分辨率地重建了蒙古国中部地区过去8660 cal.yr BP以来的植被和气候变化。8660~7800 cal.yr BP研究区植被为禾草草原,湖畔及河谷低地发育苔草草甸,远山发育松属针叶林和森林草原,气候温和略湿润;其中8350~8250 cal.yr BP湿生草甸扩张,旱生植物成分减少,气候凉湿。7800~6860 cal.yr BP旱生成分增加,气候转向暖干。6860~3170 cal.yrBP半荒漠草原扩张,远山森林草原退缩,山地草原和河谷及湖畔湿生草甸退缩(化),气候持续暖干。3170~2340 cal.yr BP半荒漠草原退缩,远山森林草原扩张,气候转凉变湿,末期湿度条件达最佳。2340~1600 cal.yr BP禾草草原发育,湖畔及河谷低地湿生草甸扩张,远山森林草原略有退缩,气候总体较凉湿。1600 cal.yr BP以来研究区发育禾草-冷蒿草原,气候波动较大。
     UG04孔硅藻记录重建的湖泊水位变化基本上支持孢粉重建的古植被和古气候:8660~7230 cal.yr BP硅藻组合以浮游类主导,浮游/底栖比达40以上,指示水位较高,气候略湿润;7230~2330 cal.yr BP浮游类硅藻丰度和浮游/底栖比降低,湖泊处于低水位,气候干旱;2330~930 cal.yr BP浮游类硅藻丰度和浮游/底栖比增加,湖泊水位升高,气候湿润。UG04孔孢粉记录重建的古气候变化还得到了粒度及盘星藻浓度等记录的支持:8660~6010 cal.yr BP沉积物以粉砂为主,中值粒径小于25μm,砂含量低于4%,粉砂含量高于80%,盘星藻浓度较低,可能指示湖泊水位较高的湿润气候;6010~2250 cal.yr BP中值粒径和砂含量显著增加,粉砂含量降低,盘星藻浓度大增,湖泊水位降低,气候干旱;2250~930 cal.yr BP中值粒径陡降至10μm以下,砂含量降至1%以下,粉砂和粘土含量增加,盘星藻浓度降低,湖泊水位再次升高,气候变湿。孢粉、硅藻、粒度以及盘星藻等记录反映的气候湿度变化存在一定的位相差异。
     3、UG04孔孢粉、硅藻等记录表明,蒙古国中部6860~3170 cal.yr BP存在持续干旱气候。对蒙古高原及其毗邻地区全新世气候变化记录的对比研究表明,中全新世干旱气候可能具有较为广泛的地理分布,分布在以蒙古国南部荒漠为中心,北至蒙古国北部、南至中国西部干旱区的广大区域。该干旱气候的北界可能位于蒙古国北部森林草原与森林界线一带,该界以北地区气候记录多反映了暖湿的中全新世气候;南界可能位于中国西北干旱区荒漠南界一带。
     4、UG04孔孢粉等记录重建的6860~3170 cal.yr BP暖干气候与Bush利用GCM模式模拟的亚洲中部6500~3000 cal.yr BP暖干气候具有较好的对应关系。Bush认为北半球相对较高的太阳辐射和大气CO_2浓度增加共同作用导致了气温升高,升温一方面导致蒸发增强,另一方面提高了大气饱和水汽压,致使云量和降水概率减少,进而形成干旱气候。
     5、UG04孔孢粉记录揭示蒙古国中部地区过去8660 cal.yr BP以来的气候变化以暖干/冷湿水热组合特征为主,这与研究区北部西伯利亚和南部中国季风区气候记录揭示的暖湿/冷干的气候模式不同,与Yang等人总结的中国新疆及中亚地区十年至百年尺度的暖干/冷湿气候变化模式相似。
     6、对比发现,UG04孔藜科含量指示的区域气候湿度状况与贵州董哥洞石笋记录的亚洲夏季风强度存在反相关关系,在千年尺度气候变化和十至百年尺度气候突发事件上均有较好的对应关系。
The study of the temporal and spatial Holocene climate change on the Mongolia Plateau,which is influenced or controlled by the Asian Monsoon and westerlies related with the NorthAtlantic Oscillation,is vital for us to understand the interacting history of aforementionedclimate sub-systems and the interacting history of the air mass of the high and low latitude.However,the relatively poor level of the Holocene research in Mongolia,which ischaracterized by the uneven distribution,low resolution,poor chronology control,low proxysensitivity and contradictory results,greatly constrained us from understanding the Holocenetemporal and spatial climate changes and associated dynamics of the Mongolia Plateau.
     Therefore,we palynologically studied the 854-cm-long core of Ugii Nuur in centralMongolia.Based on 9 robust AMS ~(14)C dates and under the reference of regional modernpollen investigations,detailed vegetation and climate changes over the last 8660 years werereconstructed.In addition,diatom,grain size and other proxy records were provided tosupport or multi-proxy reconstruct the climate and environmental change of the Ugii Nuurarea.Regional published Holocene climate data were reviewed and analyzed to discuss thepossible temporal and spatial laws of Holocene climate changes throughout the MongoliaPlateau and associated dynamics.The primary conclusions are as follows:
     1.The modern surface pollen survey on the transect from Gun Nuur to Ugii Nuur definesthe characters of pollen assemblages of conifer forest,forest steppe,montane steppe,steppeand desert steppe.Those include,1) the Pinus pollen is over-represented and the Poaceaepollen is normally under-represented; 2) the Chenopodiaceae pollen show higher percentagesin steppe than that in the forest steppe and montane steppe,and this could be used as a proxyto reflect the regional vegetation and climate moisture conditions; 3) the mesophytic forbs andCyperaceae pollen show higher percentages in the montane steppe and montane forest steppethan in the steppe,probably suggest that their percentages could be used as a auxiliary proxyto reflect climate conditions.The modern pollen survey on different type of modern sedimentsin the Ugii Nuur area suggests that,1) the Pinus pollen might have external origin and itsvariation could reflect the condition of regional montane forest steppe or large scale climateconditions; 2) the Poaceae pollen is under-represented with percentages less than 10% even inthe Poaceae plant dominated grass steppe; 3) the Chenopodiaceae pollen percentages could beviewed as a reliable proxy to reflect the regional moisture conditions.
     2.The vegetation and climate changes of last 8660 cal.yr BP in central Mongolia werereconstructed based on the modern pollen survey and reliable chronology.Between 8660 and7800 cal.yr BP,Poaceae-steppe developed,accompanying wetland meadow presented in theriverbank,lakeshore and valley lowland,montane forest steppe grew in the nearby mountains,suggesting a mild and semi-humid climate prevailed with a noticeable cool and humidinterval 8350~8250 cal.yr BE During 7800~6860 cal.yr BP,xerophytic plant increased andthe climate became warm and dry gradually.From 6860 to 3170 cal.yr BP,semi-desert steppeexpanded,regional montane forest steppe retreated,suggesting a prolonged warm and dryclimate.Between 3170 and 2340 cal.yr BP,regional forest steppe expanded whereassemi-desert steppe retreated,indicating the climate became cool and wet gradually and thehumidity reached the maximum at the end of this stage.During 2340~1600 cal.yr BP,Poaceae steppe dominated whereas wetland meadow expanded and the montane forest stepperetreated,suggesting a cool and wet climate prevailed,wormwood grass steppe prevailed andthe climatic instability increased after 1600 cal.a BE
     The climate and environmental reconstructions by pollen were supported by the diatomrecords.A relative high lake level and moister climate prevailed between 8660 and 7230 cal.yr BP as inferred by the dominance of planktonic diatom genera and high planktonic/benthicratio (〉40).low lake level and dry climate sustained during 7230~2330 cal.yr BP assuggested by the low abundance of planktonic diatom and low planktonic/benthic ratio (~20);and the lake returned to high level during 2330~930 cal.yr BP as inferred by there-dominance of the planktonic diatom and the high value of palnktonic/benthic ratio.
     The pollen-based climate reconstruction was also consolidated by the grain size andPediastrum concentration records.A relative low lake level between 8660~6010 cal.yr BPwas reflected by the clayey silt sediment with the median size less than 25μam and the sandcontent less than 4%,and the Pediastrum concentration was normally low.Between 6010 and2250 cal.yr BP,the median size and sand content increased greatly,and the Pediastrumconcentration raised sharply,suggesting a relative low lake level.After 2250 cal.yr BP,boththe median size and the Pediastrum abundance abruptly declined,suggesting the lake returnedto high level and the climate changed to humid.Remarkable differences of climate phaseswere also observed among the pollen records,diatom records,grain size records and thePediastrum records.
     3.The pollen and diatom records from UG04 core suggest that a prolonged dry climatemight prevailed between 6860 and 3170 cal.yr BP in the central Mongolia.Reviews andcomparable analysis of the regional climate data show that a dry mid-Hoiocene climate mighthave prevailed in vast areas of the Mongolian Plateau,which centered at southern Mongoliaand extended northward to central-north Mongolia and southward to arid areas of west China.In contrast,the northernmost Mongolia and adjacent south Siberia might have experienced awarm and wet middle Holocene.Thus,the north boundary of the dry mid-Holocene might bedelimited at the transitional areas between forest steppe and Taiga forest in northern Mongolia.And the difference between the two might be attributed to the fact that the areas to the northof the boundary might be more influenced by the vapor input from Siberia lowland.Meanwhile,the south boundary of this dry phase might be in the southern boundary of desertin northwest China according to the climate records.
     4.The warm and dry climate in mid-Holocene in Ugii Nuur is well correlated to theclimate conditions simulated by GCM climate model by Bush.A reasonable mechanism tothis warm and dry climate was proposed by Bush,i.e.,the combination of still high insolationand the increased atmospheric CO_2 concentration resulted in the increase of atmospherictemperature,and the rising temperature led to the enhancement of transpiration and theincreasing of saturation vapor pressure,thus decreased the cloud cover and precipitationchances,and formed the dry climate in the end.
     5.The climate change reconstructed by the Ugii Nuur pollen records is characterized byasynchronous water and heat combinations,i.e.,warm/dry and cool/wet climate.Thisasynchronous water and heat combination was different to the climate pattern of southernSiberia and Chinese Monsoon areas,but it could be related to the decade to century-scaleclimate change pattern in Xinjiang and central Asia as revealed by Yang et al.
     6.An anti-correlation existed between the moisture variation revealed by theChenopodiacae percentages of UG04 core and the Asian Monsoon intensity suggested by thestalagmite oxygen isotope data both in the millennia-scale trend and decade to century-scaleabrupt climate event.
引文
Aario L, 1944. (?)ber die pollenanalytischen Methoden zur untersuchung von Waldgrenzen. Geol. Foren. 66,1—337.
    Alley R B, Mayewski P A, Sowers T, et al., 1997. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology, 25,483—486.
    An C B, Feng Z D, Tang L Y, 2004. Environmental changes and cultural response between 8000 and 4000 cal. yr BP in the western Loess Plateau, northwestern China. Journal of Quaternary Science, 19(6), 529—535.
    An Z S, Porter S C, Kutzbach J E, et al., 2000. Asynchronous Holocene optimum of the East Asian monsoon.Quaternary Science Reviews, 19, 743—762.
    Andersen S, 1970. The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra. Dan Geol Unders Ⅱ, Rskke, 96,1—96.
    Andersen S, 1973. The diferential pollen productivity of trees and its significance for the interpretation of pollen diagram from a forested region. In: Birks, Birks, eds. Quaternary Plant Ecology, London: Cambridge University Press, 109—115.
    Andreev A A, Klimanov V A and Sulerzhitsky L D, 2001. Vegetation and climate history of the Yana River lowland, Russia, during the last 6400 yr. Quaternary Science Reviews, 20, 259—266.
    Andreev A A, Klimanov V A. 2000. Quantitative Holocene climatic reconstruction from Arctic Russia. Jounal of Paleolimnology, 24, 81—91.
    Bar-Matthews M, Ayalon A, Kaufman A, et al., 1999. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters, 166, 85—95
    Berger A, Loutre M F, 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10,297—317.
    Birks H J B, Birks H H, 1980. Quaternary Palaeoecology. Edward Arnold, London, p. 177—192.
    Blyakharchuk T A, Wright H E, Borodavko P S, et al., 2004. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology,Palaeoecology, 209, 259—279.
    Bond G C, Broecker W S, Johnsen S J, 1993. Correlation between climate records from North Atlantic sediments and Greenland ice. Nature, 365,143—147.
    Bond G, Kromer B, Beer J, et al., 2001. Persistent solar influence on North Atlantic climate during the Holocene.Science, 294, 2130—2136.
    Bond G, Showers W, Cheseby M, et al., 1997. A pervasive millennial scale cycle in North Atlantic Holocene and Glacial climates. Science, 278,1257—1266.
    Bonny A P, 1978. The effect of pollen recruitment processes on pollen distribution over the sediment surface of a small lake in Cumbria. Journal of Ecology, 66, 385—416.
    Bradley R S, Hughes M K, Diaz H F, 2003. Climate in Medieval Time. Science, 302,404—405.
    Bradshaw R H W, Webb T III, 1985. Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan. USAEcol, 66, 721—737.
    Briffa K R, 2000. Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quaternary Science Review, 19, 87—105
    Broecker W S, 2001. Was the Medieval Warm Period Global? Science, 291,1497—1499.
    Broecker W S, Henderson G M, 1998. The sequence of events surrounding termination Ⅱ and their implications for the cause of glacial interglacial CO2 changes. Paleoceanography, 13(4), 352—364.
    Brostrom A, Coe M T, Harrison S P, et al., 1998. Land surface feedbacks and palaeo-monsoons in northern Africa. Geophysical Research Letters, 25,1615—1618.
    Bush ABQ 2005. CO_2/H_2O and orbitally driven climate variability over central Asia through the Holocene.Quaternary International, 136,15—23
    Calcote R, 1995. Pollen source area and pollen productivity: evidence from forest hollows. Journal of Ecology, 83,591—602.
    Campbell I D, 1994. Pollen preservation: experimental wet-dry cycles in saline and desalinated sediments.Polynology, 18, 5—10.
    Chen C T A, Lan H C, Lou J Y, et al., 2003. The dry Holocene Megathermal in Inner Mongolia. Palaeogeography Palaeoclimatology Palaeoecology, 193,181—200.
    Chen F H, Boemendal J, Feng Z D, et al., 1999. Last Interglacial East Asian monsoon variation: evidence from the western part of Chinese Loess Plateau. Quaternary Science Review, 18,1127—1135.
    Chen F H, Cheng B, Zhao Y, et al., 2006. Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. The Holocene, 16(5), 675—684.
    Chen F H, Ii J J, Zhang W X, et al., 1991. Loess Stratigraphy of the Lanzhou profile and its comparison with deep-sea sediment and ice core record. Geojournal, 24, 2, 201-209.
    Chen F H, Yu Z C, Yang M L, Ito E, et al., 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 27,351—364.
    Chen F H, Huang X Z, Zhang J W, et al., 2006. Humid Little Ice Age in arid central Asia documented by Bosten Lake, Xinjiang, China. Science in China (Series D) 49 (12), 1280—1290.
    Clenmens S, Muray D, Prell W, 1996. Non-stationary phase of the Plio-Pleistocene Asia monsoon. Science, 274,943—948.
    COHMAP Members, 1988. Climatic changes of the last 18000 years: observations and model simulations. Science,241,1042—1052.
    Cour P, Zheng Z, Duzer D, et al., 1999. Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Rev Palaeobot Palynol, 104,183—204.
    Crowder A A, Cuddy D G, 1973. Pollen in a small river basin: Wilton Creek, Ontario, In: H.J.B. Birks and R.G West(Editors), Quaternary Plant Ecology, Blackwell, Oxford, pp.61—77.
    Crowley T J, 2002. Cycles, cycles, everywhere. Science, 295,1473—1474.
    Crowley T J, Lowery T S, 2000. How warm was the Medieval Warm Period? A comment on man-made versus natural climate change. Ambio, 39, 51—54.
    Cullen H M, deMenocal P B, Hemming S, et al., 2000. Climate change and the collapse of the Akkadian empire:Evidence from the deep sea. Geology, 28,379—382.
    D'Arrigo R, Jacoby QFrank D, et al., 2001. 1738 years of Mongolian temperature variability inferred from a tree-ring width chronology of Siberian Pine. Geophysical Research Letters, 28, 3, 543—546.
    Davis B A S, Brewer S, Stevenson A C, et al., 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Review, 22,1701—1706.
    Davis M B, 1963. On the theory of pollen analysis. Am J Sci, 261, 897—912.
    Davis O K, 1984. Pollen frequencies reflect vegetation patterns in a Great Basin (USA) mountain range. RevPalaeobot Palynol, 40, 295—315.
    deMenocal P B, 2001. Cultural responses to climate change during the late Holocene. Science, 292, 667—673.
    deMenocal P B, Ortiz J, Guilderson T, et al., 2000. Abrupt onset and termination of the African Humid Period:rapid climate responses to gradual insolation forcing. Quaternary Science Review, 19, 347—361.
    Demske D, Heumann Q Granoszewski W, et al., 2005. Late glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal. Global and Planetary change, 46,255—279.
    Denton G H, Karlen W, 1973. Holocene climatic variations—their patterns and possible cause. Quaternary Research, 3,155—205.
    Ding Z L, Yu Z W, Rutter N W, et al., 1994. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews. 13,39—70.
    Ding Z, Liu T, Rutter N W, et al., 1995. Ice-volume forcing of East Asian winter monsoon variations in the past 80,000 years. Quaternary Reviews, 44,149—159.
    Doherty R, Kutzbach J, Foley J, et al., 2000. Fully coupled climate/dynamical vegetation model simulation over northern Africa during the mid-Holocene. Climate Dynamics 16,561—573.
    Dorale J A, Gonzalez L A, Reagan M K, et al., 1992. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, Northeast Iowa. Science, 258,1626—1630.
    Dorofeyuk N I, Tarasov P E, 1998. Vegetation and lake levels of northern Mongolia since 12500 yr B.P. based on the pollen and diatom records. Stratigraphy and Geological. Correlation, 6,70—83.
    Dykoski C A, Edwards R L, Cheng H, et al., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge cave, China. Earth and Planetary Science Letters, 233,71—86.
    El-Mosilimany A P, 1990. Ecological significance of common non-arboreal pollen: Examples from drylands of the Middle East. Review of Palaeobotany and Palynology, 64,343—350.
    Enzel Y, Ely L L, Mishra S, et al., 1999. High-resoltuion Holocene environmental changes in the Thar desert,Northwestern India. Science, 284,125—128.
    Erdtman G, 1954. An introduction to pollen analysis, Chronica Botanica Waltham, Mass, U.S.A., 175—195.
    Esper J, Cook F R, Schweingruber F H, 2002. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295, 2250—2253.
    Esper J, Shiyatov S Q Mazepa V S, et al., 2003. Temperature-sensitive Tien Shan tree ring chronologies show mult-centennial growth trends. Climate Dynamics 8, 699—706.
    Faegri K, Iversen J, 1964. Textbook of Pollen Analysis. Munksgaard, Copenhagen.Favre E, Escarguel G, Sue J P, et al., 2008. A contribution to deciphering the meaning of AP/NAP with respect to vegetation cover, Review of Palaeobotany and Palynology, 148,13—35.
    Feng Z D, 2001. Gobi dynamics in the Northern Mongolian Palteau during the past 20,000+ yr: preliminary results.Quaternary International, 76/77, 77—83.
    Feng Z D, An C B, Wang H B, 2006. Holocene climatic and environmental changes in the arid and semi-arid areas of China: a review. The Holocene, 16(1), 1—12.
    Feng Z D, Khosbayar P, 2004. Paleosubarctic Eolian environments along the southern margin of the North American Icesheet and the southern margin of Siberia during the Last Glacial Maximum. Paleogeography Paleoclimatology Paleoecology212, 265—275.
    Feng Z D, Wang W G, Guo L L, et al., 2005. Lacustrine and eolian records of Holocene climate changes in the Mongolian Plateau: preliminary results. Quaternary International, 136, 25—32.
    Feng Z D, Zhai X W, Ma Y Z, et al., 2007. Eolian environmental changes in the Northern Mongolian Plateau during the past -35,000 yr. Palaeogeography, Palaeoclimatology, Palaeoecology, 245,505—517.
    Feng Z D, Tang L Y, Wang H B, et ah, 2006. Holocene Vegetation Variations and the Associated Environmental Changes in the Western Part of the Chinese Loess Plateau. Paleogeography Paleoclimatology Paleoecology,241,440—456.
    Feng Z D, An C B, Tang L Y et al., 2004. Stratigraphic evidence of megahumid climate between 10,000 and 4000 yrars B.P. in the western part of the Chinese Loess Plateau. Global and Planetary Changes, 43,145—155.
    Fleitmann D, Burns S, Mudelsee M, et al., 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300,1737—1739.
    Foley J A, Kutzbach J E, Coe M T, et al., 1994. Feedbacks between climate and boreal forests during the Holocene epoch. Nature, 371, 52—54.
    Follieri M, Magri D, Sadori L, 1988. 250,000-year pollen record from Valle di Castiglione (Roma), Pollen Spores, 30, 329—356.
    Fontes J C, Gasse F, Gibert E, 1996. Holocene environmental changes in Lake Bangong basin (West Tibet), Part 1:Chronology and stable isotope of carbonates of a Holocene lacustrine core. Palaeogeography, Palaeoclim atology, Palaeoecology, 120,25—47.
    Fortran S L, Oglesby R, Webb R S, 2001. Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: megadrought and climate links. Global and Planetary Change, 29,1—29.
    Fowell S J B, Hansen C S, Peck J A, et al., 2003. Mid to late Holocene climate evolution of the Lake Telmen Basin, North Central Mongolia, based on palynological data. Quaternary Research, 59,353—363.
    Gasse F, 2000. Hydrological changes in the African tropics since the last glacial maximum. Quaternary science review, 19,189—211.
    Gergana Y, Nowaczyk N R, Mingram J, et al., 2007. Influence of the inter-tropical convergence zone on the East Asian monsoon, Nature, 445,11—14.
    GLACE Team, 2004. Regions of strong coupling between soil moisture and precipitation. Science, 305,1138—1140.
    Gong D Y, Wang S W, Zhu J H, 2001. East Asian winter monsoon and arctic oscillation. Geophysical Research Letters 28, 2073—2076.
    Grootes P M, Stuiver M, White J W C, et al., 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366, 552—554.
    Grousset R, 1988. The empire of the steppes: A history of central Asia. Rutgers University Press.Grunert J, Lehmkuhl F, Walther M, 2000. Paleoclimatic evolution of the Uvs Nuur basin and adjacent areas (Western Mongolia). Quaternary International, 65/66,171—192.
    Guiot J, 1990. Methodology of the last climatic cycle reconstruction from pollen data. Palaeogeography,Palaeoclimatology, Palaeoecology, 80, 49—69.
    Gunin P D, Vostokova E A, Dorofeyuk N I, et al. (Eds.), 1999. Vegetation dynamics of Mongolia. Geobotany, vol.26. Kluwer Academic Publishing, Dordrecht. 238.
    Guo Z T, Petit Maire N, Kropelin S, 2000. Holocene non-orbital climatic events in present-day arid areas of northern Africa and China. Glob. Planet. Change 26, 97—103.
    Gupta A K, Anderson D M, Overpeck J T, 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421,354—357.
    Harrison S P, Kutzbach J E, Liu Z, et al., 2003. Mid-Holocene climates of the Americas: a dynamic response to changed seasonality. Climate Dynamics 20, 663—688.
    Harrison S P, Yu G, Tarasov P E, 1996. Late Quaternary lake-level record from northern Eurasia. Quaternary Research, 45,138—159.
    Hartmann K, Wiinnemann B, 2009. Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses. Quat Int, 194: 28—44
    Havinga A J, 1984. A 20 year experimental investigation into the decay of pollen and spores in various soil types.Pollen et Spores, 26,541—558.
    He Y, Theakstone W H, Zhang Z L, et al., 2004. Asynchronous Holocene climatic change across China.Quaternary Research, 61,52—63.
    Heim J, 1970. Les relations entre les spectres polliniques recents et la vegetation actuelle en Europe occidentale.Thesis, Univ. Louvain, Belgium.Heinrich, H, 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130000 years, Quat Res, 29,142—152.
    Herzschuh U, 2007. Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau. J.Biogeogr, 34,1265—1273.
    Herzschuh U, Kurschner H, Ma Y Z, 2003. The surface pollen and relative pollen production of the desert vegetation of the Alashan Plateau, western Inner Mongolia. Chin Sci Bull, 48,1488—1493.
    Herzschuh U, Winter K, Wiinnemann B, et al., 2006a. An general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quat Int, 154—155,113—121.
    Hilbig W, 1995. The vegetation of Mongolia. Amsterdam: SPB Academic publishing. 1—258.
    Holmes P L, 1990. Differential transport of spores and pollen: A laboratory study, Rev Palaeobot Palyno, 64,289—296.
    Hong Y T, Hong B, Lin, Q H, et al., 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Science Letter, 211,371—380.
    Hughen K A, Overpeck J T, Peterson L C, et al., 1996. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380, 51—54.
    Hughes M K, Diaz H F, 1994. Was there a "Medieval Warm Period", and if so, where and when? Climatic Change,26,109—142.
    Imbrie J, Hays J D, Martinson D Q et al., 1983. The orbital theory of Pleistocene climate: support from a revised chronology of the marine d18O record: in: Berger A, Imbrie J, Hays J et al. (Eds.), Milankovitch and Climate.Reidel Dordrecht, 269—306.
    IPCC, 2007. Climate Change 2007-The Physical Science Basis. Cambridge: Cambridge University Press Iwasaki H, 2006. Impact of inter-annual variability of meteorological parameters on vegetation activity over Mongolia. Journal of the Meteorological Society of Japan 84: 754-762.
    Jackson S T, 1994. Pollen and spores in Quaternary lake sediments as sensors of vegetation composition:theoretical models and empirical evidence. Sedimentation of organic particles (ed. by A. Traverse), pp.253—286. Cambridge University Press, Cambridge.
    Jackson S T, Lyford M R, 1999. Pollen dispersal models in Quaternary plant ecology: assumptions, parameters,and prescriptions. The Botanical Review, 65, 39—75.
    Jackson S T, Wong A, 1994. Using forest patchiness to determine pollen source areas of closed-canopy pollen assemblages. Journal of Ecology, 82, 89—100.
    Jacobson Jr G L, 1979. The palaeoecology of white pine (Pinus Strobus) in Minnesota. Journal of Ecology, 67,697—726.
    Jacobson Jr G L, Bradshaw R H W, 1981. The selection of sites for palaeovegetational studies. Quaternary Research, 16, 80—96.
    Jiang W Y, Guo Z T, Sun X J, et al., 2006. Reconstruction of climate and vegetation changes of Lake Bayanchagan (Inner Mongolia): Holocene variability of the East Asian monsoon. Quaternary Research, 65,411—420.
    Johnsen S J, Dahl-Jensen D, Gundestrup N, et al., 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science, 16, 299—307.
    Jones P D, Briffa K R, Barnett T P, et al., 1998. High-resolution paleoclimatic records for the last millennium:Integration, interpretation and comparison with General Circulation Model control run temperatures. The Holocene, 8,455-471
    Kaplan M R, Wolfe A P, 2006. Spatial and temporal variability of Holocene temperature in the North Atlantic region. Quaternary Research, 65,223—231.
    Karabanov E B, Prokopenko A A, Williams D F, et al., 2000. A new record of Holocene climate change from the bottom sediments of lake Baikal. Palaeogeogr, Palaeoclimato, Palaeoecol, 156, 211—224.
    Kataoka H, Takahara H, Krivonogov S K, et al., 2003. Pollen record from the Chivyrkui Bay Outcrop on the Eastern Shore of Lake Baikal since the Late Glacial. Long continental record from Lake Baikal (ed. by K.Kashiwaya), pp. 207—218. Springer-Verlag, Tokyo.
    Keen K L, Shane L C K, 1990. A continuous record of Holocene eolian activity and vegetation change at Lake Ann,east-central Minnesota. Geological Society of America Bulletin, 102,12,1646—1657.
    Kiehl J T, 1999. Solving the Aerosol Puzzle. Science, 283,1273—1275.
    Klimanov V A, 1976. A technique of quantitative climate reconstruction for the past. Vestnik MGU, Ser. Geogr. 2,92—98 (in Russian).
    Klimanov V A, 1984. Paleoclimatic reconstruction based on the information-statistical method. In Velichko A. A.,H. E. Wright & C. W. Barnosky (eds), Late Quaternary Environments of the Soviet Union. University of Minnesota Press, Minneapolis, 297—303.
    Koc N, Jansen E, Haflidason H, 1993. Paleooceanographic reconstruction of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms. Quaternary Science Review,12,115—140.
    Khosbayar, Ariunbileg, Peck, et al., 2002. The bottom sediments of the lake Ugii and paleoclimate changes.-Extended Abstracts of the first Mongolian-Korean joint seminar on environmental changes of North East Asia; Ulaanbaatar.
    Kutzbach J, Gallimore, R, Harrison S, et al., 1998. Climate and Biome simulations for the past 21,000 years. Quat Sci Rev, 17,473—506.
    Kwaitowski A, 1957. Badanie skladu chemicznego pytku Ⅱ Badania blon pylkowich. Acta Societatis Botanicorum Polonae, 26, 501—514.
    Lavrenko E M, Iunatov A A, Aleksandr A, et al., 1979. Vegetation map People's Republic of Mongolia (Scale 1:1,500,000). Moscow (in Russian).
    Levis S, Bonan G B, Bonfils C, 2004. Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model. Clim. Dyn., 23, 791—802.
    Li X Q, Zhou W J, An Z S, et al., 2003. The vegetation and monsoon variations at the desert loess transition belt at Midiwan in northern China for the last 13 ka. The Holocene 13,5,779—784.
    Liu H Y, Cui H T, Pott R, et al., 1999. The surface pollen of the woodland-steppe ecotone in southeastern inner Mongolia, China. Review of Palaeobotany and Palynnology, 105, 237—25.
    Liu H, et al., 2008. Determinants of pollen dispersal in the East Asian steppe at different spatial scales, Review of Palaeobotany and Palynology, doi:10.1016/j.revpalbo.2007.12.008
    Liu H, Xu L, Cui H, 2002. Holocene history of desertification along the woodland-steppe border in northern China.Quat Res, 57, 259—270.
    Liu K B, Yao Z J, Thompson L G, 1998. A pollen record of Holocene climatic changes from Dunde ice cap,Qinghai-Tibetan Plateau. Geology, 26,135—138.
    Liu T S, Ding Z L, 1998. Chinese loess and paleomonsoon. Annual Review of Earth and Planet Sciences, 26, 111—145.
    Lorius C, Jouzel J, Ritz C, et al., 1985. A 150,000-year climatic record from Antarctic ice. Nature, 316, 591—596.
    Lydolph P E, 1977. Climates of the Soviet Union. In: Landsberg H E (Ed.), World Survey of Climatology 7.Amsterdam: Elsevier Publishing Company, 443.
    Ma Y Z, Liu K B, Feng Z D, et al., 2008. A survey of modern pollen and vegetation along a south-north transect in Mongolia. J Biogeogr, 35,1512—1532.
    Ma Y Z, Zhang H C, Pachur H J, et al., 2004. Modern pollen-based interpretations of mid-Holocene palaeoclimate (8500 to 3000 cal. BP) at the southern margin of the Tengger Desert, northwestern China. The Holocene,14(6), 841—850.
    MacDonald G M, Velichko A A, Kremenetski C V, et al., 2000. Holocene treeline history and climate change across northern Eurasia. Quaternary Research, 53, 302—311.
    Madsen D B, Chen F H, Oviatt C G, et al., 2003. Late Pleistocene/Holocene wetland events recorded in southeast Tengger Desert lake sediments, N W China, Chinese Science Bulletin, 48(14), 1423—1429.
    Mann M E, Bradley R S, Hughes M K, 1999. Northern Hemisphere temperatures during the past millennium:Inferences, uncertainties and limitations. Geophys Res Lett, 26, 759—762.
    Maslin M A, Burns S J, 2000. Reconstruction of the Amazon Basin Effective Moisture Availability over the Past 14000 Years. Science, 290, 2285—2287.
    Martyn D, 1992. Climates of the World, Developments in Atmospheric Science. Elsevier Press, Amsterdam.
    Mayewski P A, Rohling E E, Stager C, et ah, 2004. Holocene climate variability. Quaternary Research, 62,243—255.
    Minckley T, Whitlock C, 2000. Spatial variation of modern pollen on Oregon and southern Washington, USA. Rev Palaeobot Palynol, 112, 97—123.
    Moberg A, Sonechkin D M, Holmgren K, et al., 2005. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy dada. Nature, 433, 613—617.
    Naidu P D, Malmgren B A, 1995. A 2,200 years periodicity in the Asian monsoon system. Geophys Res Lett, 22,2361—2364.
    Nakagawa T, Tarasov P, Kotoba N, et al., 2002. Quantitative pollen-based climate reconstruction in Japan,application to surface and late Quaternary spectra. Quat Sci Rev, 21, 2099—2113.
    Narama C, Okuno M, 2006. Record of glacier variations during the last glacial in the Turkestan range of the Pamir-Alay, Kyrgyz Republic. Annals of Glaciology 43, 397—404.
    NGRIP Members, 2004. High resolution Climate Record of the Northern Hemisphere reaching into the last Glacial Interglaci al Period. Nature, 431,147—151.
    Noshiro S, Terada K, Tsuji S, et al., 1997. Larix-Picea forests of the Last Glacial Age on the eastern slope of Towada Volcano in northern Japan. Rev Palaeobot Palynol, 98,207—222.
    O'Brien S R, Mayewski P A, Meeker L D, et al., 1995. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science, 270,1962—1964.
    Oppo D, 1997. Millennial climate oscillations. Science, 278,1244—1246.
    Orshikh N, Morgunova N A, Rodionov M N, 1990. The national atlas of the Mongolian People's Republic.Ulanbator-Moscow, Moscow (in Russian).
    Overpeck J T, Webb T, Prentice I C, 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research, 23, 87— 108.
    Pachur H J, Wiinemann B, Zhang H C, 1995. Lake evolution in the Tengger Desert, Northwestern China, during the last 40,000 years. Quaternary Research, 44:171—180
    Peck J A, Khosbayar P, Fowell S J, et al., 2002. Mid to Late Holocene climate change in north central Mongolia as recorded in the sediments of Lake Telmen, Palaeogeogr, Palaeoclimat, Palaeoecol, 183,135—153.
    Peck R M, 1973. Pollen budget studies in a small Yorkshire catchments. In: Birks H J B and West R G (ed).Quaternary Plant Ecology, London: Blackwell Press, 43—60.
    Pennington W, 1965. The interpretation of some post-glacial vegetation diversities at different Lake district sites.Proceedings of the Royal Society London, Series B, 310—323.
    Pennington W, 1979. The origin of pollen in lake sediments. An enclosed lake compared with one receiving inflow streams, New Phytologist, 83,189—213.
    Petit J R, Jouzel J, Raynaud D, et al., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399,429—436.
    Peyron O, Guiot J, Cheddadi R, et al., 1998. Climatic reconstruction in Europe for 18000 yr BP from pollen data.Quat Res, 49,183—196.
    Prentice I C, 1985. Pollen representation, source area, and basin size: towards a unified theory of pollen analysis.Quat Res, 23, 76—86.
    Prentice I C, Cramer W, Harrison S P, Leemans R, Monserud R A, Solomon A M, 1992. A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr, 19,117—134.
    Prentice I C, Guiot J, Huntley B, et al., 1996. Reconstructing biomes from palaecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim Dynam, 12,185—194.
    Prentice I C, Parsons T Ⅲ, 1986. Pollen percentages, tree abundances and the Fagerlind effect. J Quat Sci, 1,35—42.
    Prokopenko A, Khursevich G, Bezrukova X, et al., 2007. Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the Lake Baikal watershed. Quat Res, 68, 2—17.
    Qin B Q, Yu G, 1998. Implications of lake level variations at 6 ka and 18 ka in mainland Asia, Global and Planetary Change, 18, 59—72.
    Rea D K, Leinen M, 1988. Asian aridity and the zonal westerlies: late pleistocene and Holocene record of eolian deposition in the northwest Pacific ocean. Palaeogeogr, Palaeoclimat, Palaeoecol, 66,1—8.
    Reimer R W, Reimer P J, 2006. Marine reservoir corrections and the calibration curve. Pages Newsletter, 14 (3),12—13.
    Rhodes T E, Gasse F, Lin R, et al., 1996. A Late Pleistocene-Holocene lacustrine record from Lake Manas,Zunggar (northern Xinjiang, western China). Palaeogeography, Palaeoclimatology, Palaeoecology, 120,105—120.
    Robert E A, Boudreau J M, Galloway R, et al., 2005. A paleolimnological record of Holocene climate and environmental change in the Temagami region, northeastern Ontario. J Paleolimnol, 33,445—461.
    Rohling E J, Palike H, 2005. Centennial-scale climate cooling with a sudden cold event around 8,200 years age.Nature, 434, 975—979.
    Rosen P, Segerstrom U, Eriksson L, et al., 2001. Holocene climatic change reconstructed from diatoms,chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjijaure) in northern Sweden. The Holocene, 11(5), 551—562.
    Rudaya N, Tarasov P, Dorofefuk N, et al., 2009. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia. Quaternary Science Reviews 28, 540-554.
    Ruddiman W F, 2001. Earth's climate-past and future. W. H. Freeman and Company. New York.
    Ruffaldi P, 1994. Relationship between recent pollen spectra and current vegetation around the Cerin peat bog (Ain, France). Rev Palaeobot Palynol, 82,97-112.
    Salvigsen O, Forman S L, Miller G H, 1992. Thermophilous mollusks on Svalbard during the Holocene and their paleoclimatic implications. Polar Research, 11, 1-10.
    Sato T, Kimura F, Kitoh A, 2007. Projection of global warming onto regional precipitation over Mongolia using a regional climate model. Journal of Hydrology 333,144-154.
    Schackleton N J, Opdyke N D, 1976. Oxygen isotope and palaeomagnetic stratigraphy of Pacific Core V28-239.Geological Society of American, 145,449-464.
    Schwanghart W, Schiitt B, Walter M, 2008. Holocene climate evolution of the Ugii Nuur basin, Mongolia.Advances in atmospheric sciences, 25,6,986-998.
    Seppa H, Poska A, 2004. Holocene annual mean temperature changes in Estonica and their relationship to solar insolation and atmospheric circulation patterns. Quaternary Research, 61, 22-31.
    Shen J, Liu X Q, Wang S M, et al., 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat Int, 136,131-140.
    Sirocko F, Sarntheim M, Erlenkeuser H, et al., 1993. Century-scale events in monsoonal climate over the past 24,000 years. Nature, 364,322-324.
    Smith L C, MacDonald G M, Velichko A A, et al. 2004. Siberian peatlands a Net carbon sink and global methane source since the Early Holocene. Science, 303, 353-356.
    Soden B J, Wetherald R T, Stenchikov G L, et al., 2002. Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor. Science, 296, 727-730.
    Solomina O, Alverson K, 2004. High latitude Eurasian paleoenvironments: introduction and synthesis.Palaeogeogr, Palaeoclimatol, Palaeoecol, 209,1-18.
    Stockmarr J, 1971. Tablets with spores used in absolute pollen analysis. Pollen and Spores, 13, 615-621.
    Stuiver M, Reimer P J, Braziunas T F, 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, 40(3), 1127-1151.
    Sugita S, 1994. Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy vegetation. J Ecol, 82, 881-897.
    Sun J M, Ding D L, 1998. Deposits and soils of the past 130,000 years at the desert-loess transition in northern China. Quat Res, 50,148-156.
    Sun X J, Luo Y L, Tian J, et al., 2003. Pollen record of surface sediments from vertical forest zones of Changbai Mountain, Northeast China and their relations to the modern vegetation. Acta Botan Sin, 45,910-916.
    Tarasov P E, Dorofeyuk N, Meteltseva E, 2000. Holocene vegetation and climate changes in Hoton-Nur basin,northwest Mongolia. Boreas, 29/2,117-126.
    Tarasov P E, Guinot J, Cheddadi R, et al., 1999. Climate in northern Eurasia 6000 years ago reconstructed from pollen data. Earth Planet Sci Lett, 171,635-645.
    Tarasov P E, Jolly D, Kaplan J O, 1997. A continuous Late Glacial and Holocene record of vegetation changes in Kazakhstan. Palaeogeogr, Palaeoclimatol, Palaeoecol, 136, 281-292.
    Tarasov P E, Webb III T, Andreev A A, et al., 1998. Present day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. Journal of Biogeography, 25,1029-1054.
    Tarasov P, Bezrukova E, Karabanov E, et al., 2007. Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr, Palaeoclimatol, palaeoecol, 252,440-457.
    Tarasov P, Jin G Y, Wagner M, 2006. Mid-Holocene environmental and human dynamics in northeastern China reconstructed from pollen and archaeological data. Palaeogeography, Palaeoclimatology, palaeoecology, 241,284-300.
    Tauber H, 1965. Differential pollen dispersion and the interpretation of pollen diagrams. Dan Geol Unders, 11.TEMPO, 1996. Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: a case study at 6000 years BP. Global Biogeochemical Cycles, 10(4), 727-736.
    Thompson R S, Anderson K H, 2000. Biomes of western North America at 18,000, 6000 and 0 C-14 yr BP reconstructed from pollen and packrat midden data. Journal of Biogeography, 27,555-584.
    Tudhope A W, Chilcott C P, McCulloch M T, et al., 2001. Variability in the El Nino-Southern Oscillation through a glacial-interglacial cycle. Science, 291,1511-1517.
    Tuvdendorzh D, Myagmarzhav B, 1985. Atlas of the Climate and Ground water Resources in the Mongolian People's Republic. Ulan Bator: GUGMS of Mongolia.Van Campo E, Cour P, Huang C X, 1996. Holocene environmental changes in Bangong Co basin (Western Tibet).Part 2: The pollen record. Palaeogeogr, Palaeoclimatol, Palaeoecol, 120,49-63.
    Van Campo E, Gasse F, 1993. Pollen- and diatom- inferred climatic and hydrological changes in Sumxi Co Basin (Western Tibet) since 13,000 yr B.P. Quaternary Research, 39,300-313.
    van Geel B, Bolovenko N A, Burova N D, 2004. Climate change and the expansion of the Scythian culture after 850 BC: a hypothesis. J Archaeol Sci, 31,1735-1742.
    Velichko A A, Andreev A A, Klimanov V A, 1997. Climate and vegetation dynamics in the tundra and forest zone during the late glacial and Holocene. Quaternary International, 41/42, 71-96.
    Viau A, Gajewski K, Fines P, et al., 2002. Widespread evidence of 1500 yr climate variability in North America during the past 14000 yr. Geology, 30, 455-458.
    Vidal Q 1988. A palynological preparation method. Palynology. 12,215-220.
    Vipper P B, Dorofeyuk N I, Meteltzeva E I, et al., 1989. Landscape and Climate Changes in Central Mongolia during the Holocene. In: Khotinsky, N.A. (Ed.), Paleoklimaty pozdnelednikovya i golotsena (Paleoclimates of Late Glacial and the Holocene). Nauka, Moscow, pp. 160 - 167. in Russian.
    Visbeck M, 2002. The ocean's role in Atlantic climate variability. Science, 297, 2223-2224.
    Von Grafenstein U, Eicher U, Erienkeuser H, et al., 1998. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim Dynam, 14, 73-81.
    Wallen C C, 1970. Climate of Northern and Western Europe. Elsevier, London.
    Walther M, 2002. Lake bottom sediments of Ugii Nuur-Dedicated to Dr. Tserensodnom, the father of modern Lake Research of Mongolia. Scientific Journal Geographical. Problems, 2, 41-44.
    Wang Y J, Cheng H, Edwards R L, et al., 2001. A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science, 294, 2245-2248.
    Wang Y J, Cheng H, Edwards R L, et al., 2005. The Holocene Asian Monsoon: links to solar changes and North Atlantic Climate Science, 308, 854-857.
    Wang Y J, Cheng H, Edwards R L, et al., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451,1090-1093.
    Wanner H, Beer J, Butikofer J, et al., 2008. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews, 27,1791-1828.
    Whitlock K, Bartlein P J, Watts W A, 1993. Vegetation history of Elk Lake. In: Bradbury J P, Dean W E. Eds., Elk Lake Minnesota: Evidence for Rapid Climate Change in North Central United State. Geological Society of America, Special Paper 276, Boulder, 251-274.
    Willemse N W, Tornqvist T E, 1999. Holocene century-scale temperature variability from West Greenland lake records.Geology,27,580-584.
    William J W Q,Summers R L,Webb III T,1998.Application plant function types to construct biome maps from eastern North American pollen data:Comparison with model results.Quaternary Science Review,17,607—627.
    Woodward F I,1987.Climate and Plant Distribution.Cambridge Univ.Press,Cambridge,p174.
    Wright Jr H E,Ammann B,Stefanova I,et al.,2003.Late glacial and Early Holocene dry climates from the Balkan Peninsula to Southern Siberia.Aspects of Palynology and Palaeoecology,127—136.
    Xiao J L,Nakamura T,Lu H Y,et al.,2002,Holocene climate changes over the desert/loess transition of north-central China.Earth Planet Sci Lett,197,11—18.
    Xiao J L,Xu Q H,Nakamura T et al.,2004.Holocene vegetation variation in the DaihaiLake region of North central China:A direct indication of the Asian monsoon climatic history.Quatern Sci Rev,23,1669--1679.
    Xue J B,Zhong W,Zhao Y J,et al.,2008.Holocene abrupt climate shifts and Mid-Holocene drought intervals recorded in Barkol lake of northern Xinjiang of China.Chin Geogra Sci,18(1),54—61.
    Yang B,Braeuning A,Johnson K R,et al.,2002.General characteristics of temperature variation in China during the last two millennia.Gephys Res Lett,29(9),38.
    Yang B,Br(?)uning A,Shi Y,et al.,2004.Evidence for a late Holocene warm and humid climate period and environmental characteristics in the arid zones of northwest China during 2.2-1.8 ka BP.J Geophys Res,109,D02105.
    Yang B,Wang J S,Br(?)uning A,et al.,2009.Late Holocene climatic and environmental changes in arid central Asia.Ouat Int,194,68—78.
    Yang X P,Zhu Z D,Jaekel D,et al,2002.Late Quaternary palaeoenvironment change and landscape evolution along the Keriya River,Xinjiang,China:the relationship between high mountain glaciations and landscape evolution in foreland desert regions.Quat Int,97/98,155—166.
    Yu G,Prentice I C,Harrison S P,Sun X,1998.Pollen-based biome reconstruction for China at 0 and 6000 years.Journal of Biogeography,25,1055—1069.
    Zhang H C,Ma Y Z,W(?)nnemann B,et al.,2000.A Holocene climatic record from arid northwestern China.Palaeogeography,Palaeoclimatology,Palaeoecology,162,389—401.
    Zhang P Z,Cheng H,Edwards R L,et al.,2008.A test of climate,sun and culture relationships from an 1810-year Chinese cave record.Science,322,940—942.
    Zhao Y,Yu Z C,Chen F H,et al.,2007.Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin,northwest China.Review of Palaeobotany and Palynology,145,275—288
    Zhao Y,Yu Z C,Chen F H,et al.,2008.Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin,northwest China.Global and Planetary Change,1-2,107—114.
    Zhou W J,Yu X F,Jull A J T,et al.,2004.High-resolution evidence from southern China of an early Holocene optimum and a mid-Holocene dry event during the past 18000 years.Quaternary Research,62(1),39—48.
    埃尔特曼G.中国科学院植物研究所古植物研究室孢粉组译,1978.孢粉学手册.北京:科学出版社
    安芷生,符淙斌,2001.全球变化科学的进展.地球科学进展,16(5),671—680.
    安芷生,吴锡浩,卢演俦等,1990.最近2万年中国古环境变迁的初步研究.见:刘东生主编.黄土-第四纪地质~全球变化(第二集).北京:科学出版社.1—26.
    陈发虎,吴薇,朱艳等,2004.阿拉善高原中全新世干旱事件的湖泊记录研究.科学通报,49(1),1—9.
    董光荣,靳鹤龄,陈惠忠,1997.末次间冰期以来沙漠-黄土边界带移动与气候变化.第四纪研究,(5),158—167.
    冯晓华,阎顺,倪建等,2006.新疆北部平原湖泊记录的晚全新世湖面波动及环境变化.科学通报,51(增刊),49—55.
    高尚玉,陈渭南,靳鹤龄等,1993.全新世中国季风区西北缘沙漠演化初步研究.中国科学,B辑,23(2),202—208.
    葛全胜,郑景云,刘健,2006.过去2000a中国东部冬半年温度变化与周期.气候变化研究进展,2(3),108—112.
    龚道溢,王绍武,朱锦红,2004.北极涛动对我国冬季日气温方差的显著影响.科学通报,49,487—492.
    郭兰兰,冯兆东,李心清,等,2007,鄂尔多斯高原巴汗淖湖泊记录的全新世气候变化.科学通报,52(5),584—590.
    郭晓寅,陈发虎,颉耀文,1999.自然条件下石羊河终闾湖泊模拟研究.自然资源学报,14(4),385—388.
    黄赐璇,1993.西藏西部表土花粉研究.干旱区地理,16(4),75—83.
    黄赐璇,Cour P 2001.我国东部花粉雨初探.地理研究,20,24—30.
    黄小忠,2006.新疆博斯腾湖记录的亚洲中部干旱区全新世气候变化研究.兰州大学博士学位论文.
    蒋庆丰,沈吉,刘兴起,等,2007.西风区全新世以来湖泊沉积记录的高分辨率古气候演化.科学通报,52(9),1042—1049.
    靳鹤龄,董光荣,苏志珠等,2001.全新世沙漠-黄土边界带空间格局的重建.科学通报,46,538—543.
    李吉均,1990.中国西北地区晚更新世以来环境变迁模式.第四纪研究,3,197—204.
    李倩,靳颍,华振铃,刘家熙,2005.空气致敏花粉污染研究进展.生态学报,25(2),334—338.
    李文漪,1998.中国第四纪植被与环境.北京:科学出版社.43—48.
    李文漪,阎顺,1990.柴窝堡盆地第四纪孢粉学研究.见:施雅凤,文启忠,曲耀光,等,编.新疆柴窝堡盆地第四纪气候环境变迁和水文地质事件.北京:海洋出版社.46—72.
    李文漪,姚祖驹,1990.表土中松属花粉与植物间数量关系的研究.植物学报,32,943—950.
    李月丛,许清海,阳小兰等,2004.内蒙古岱海表层沉积物中孢粉的分布及来源.古地理学报,6,316—328.
    李月丛,许清海,阳小兰等,2005.中国草原区主要群落类型孢粉组合特征研究.生态学报,25(3),555—564.
    李珍,王开发,王永吉等,2002.红树林孢粉-气候因子转换函数恢复古环境的可行性初探.海洋科学进展,20(3),73—78.
    刘会平,唐晓春,刘胜祥,2000.神农架花粉-气候转换函数的建立与初步应用.华中师范大学学报(自然科学版),34,454—459.
    刘嘉麒,倪云燕,储国强,2001.第四纪的主要气候事件.第四纪研究,21(3),239—248.
    刘金陵,1965.花粉在空间的传播.孢子花粉分析.科学出版社,北京,27—34.
    刘兴起,沈吉,王苏民等,2002.青海湖16ka以来的花粉记录及其古气候古环境演化.科学通报,47(17),1351—1355.
    马玉贞,2004.青藏高原东北缘晚新生代植被演化和环境变迁.兰州大学博士学位论文.
    马玉贞,方小敏,李吉均等,2004.酒西盆地晚第三纪-第四纪早期植被与气候变化.中国科学D辑,34(2),107—116.
    满志敏,1998.关于唐代冷暖问题的讨论.第四纪研究,2,20—27.
    摩尔PD,韦布JA著,李文漪,肖向明,刘光绣译,1987.花粉分析指南.南宁:广西人民出版社.
    邵晓华,汪永进,程海等,2006.全新世季风气候演化与干旱气候事件的湖北神农架石笋记录.科学通报,51(1),80—86.
    桑艳礼,马玉贞,高尚玉,等,2008.甘肃兴隆山国家自然保护区表土孢粉组合及数量分析.古生物学报,47,4,457—467.
    沈才明,唐领余,王苏民等,2005.若尔盖盆地RM孔孢粉记录及其年代序列.科学通报,50(3),246—254.
    沈吉,刘兴起,Matsumoto R等,2004.晚冰期以来青海湖沉积物多指标高分辨率的古气候演化.中国科学,D辑,34(6),582—589.
    施雅风,孔昭宸,王苏民等,1992.中国全新世大暖期气候与环境的基本特征.见:施雅风主编.中国全新世大暖期气候与环境.北京:海洋出版社,1—18.
    施雅风,1999.关于冰期演变三个问题的新看法.冰川冻土,21,185—186.
    宋长青,吕厚远,孙湘君,1997.中国北方花粉-气候因子转换函数建立及应用.科学通报,42(20),2182—2186.
    宋永昌,2001.植被生态学.上海:华东师范大学出版社.563—573.
    宋之琛,1959.北京西郊空气中的孢粉组合.中国第四纪研究,2,69—74.
    孙湘君,杜乃秋,翁成郁等,1994.新疆玛纳斯湖盆周围近14000年以来的古植被古环境.第四纪研究.3,239—248.
    孙湘君,王丰瑜,宋长青,1996.中国北方部分科属花粉-气候响应面分析.中国科学(D辑),26(5),431—436.
    孙湘君,吴玉书,1987.云南滇池表层沉积物中花粉和藻类的分布规律及数量特征.海洋地质与第四纪地质,(4),81—92.
    童国榜,羊向东,王苏民等,1996.满洲里~大杨树一带表士孢粉的散布规律及数量关系.植物学报,38(10),814—821.
    宛涛,卫智军,1999.内蒙古草地现代植物花粉形态.北京:中国农业出版社.
    汪卫国,冯兆东,李心清等,2004.蒙古北部Gun Nuur湖记录的全新世气候突发事件.科学通报,49(1),27—33.
    汪卫国,2004.蒙古高原北部全新世气候与环境变化研究.兰州大学博士论文.
    王琫瑜,宋长青,孙湘君,1996.内蒙古中部表土花粉研究.植物学报,38(11),902—909.
    王琫瑜,宋长青,孙湘君等,1997.中国北方4个乔木属花粉-气候响应面模型研究.植物学报,39(3),272—281.
    王伏雄,钱南芬,张玉龙等,1995.中国植物花粉形态(第二版).北京:科学出版社.
    王杰,周尚哲,许刘兵,2005.“8.2 ka BP冷事件”的研究现状展望.冰川冻土,27(4),520—527.
    王开发,王宪曾,1983.孢粉学概论.北京:北京大学出版社.
    王绍武,罗勇,赵宗慈,等.2005.关于气候变暖的争议.自然科学进展,15(8),917—922.
    王绍武,闻新宇,罗勇,等.2007.近千年中国温度序列的建立.科学通报,52,958—964.
    王维,马玉贞,冯兆东,蒙红卫,桑艳礼,翟新伟.蒙古国中部8600 cal yr BP以来Ugii Nuur孢粉记录及古气候变化.科学通报,2009,54(4),469—478.
    翁成郁,孙湘君,陈因硕,1993.西昆仑山地区表土孢粉组成特征与植被数量关系.植物学报,35,69—79.
    吴敬禄,沈吉,王苏民,2003.新疆艾比湖早全新世气候环境特征.中国科学(D辑),33(6),569—575.
    吴文祥,刘东生,2001.4000 a BP前后降温事件与中华文明的诞生.第四纪研究,21(5),443—451.
    吴文祥,刘东生,2002.5500 a BP气候事件在三大文明古国古文明和古文化演化中的作用.地学前沿,9(1),156—162.
    吴艳宏,王苏民,周力平等,2007.岱海(14)~C测年的现代碳库效应研究.第四纪研究,27(4),507—510.
    吴玉书,孙湘君,1987.昆仑西山林下表土中孢粉与植被间的数量关系.植物学报,29,204—211.
    吴玉书,萧家仪,1995.西藏扎布耶盐湖地区现代花粉雨的初步研究.云南植物研究,17,1,72—78.
    伍婧,2006.兴隆山地区表土花粉与植被关系的研究.兰州大学硕士毕业论文.
    席以珍,1988.中国柽柳科植物花粉形态的研究.植物研究,3,25—44.
    席以珍,宁建长,1994.中国干旱半干旱地区花粉形态研究.Yushania,11,119—191.
    席以珍,孙孟蓉,1987.白刺属的花粉形态及其在地层种的分布.植物学集刊,2,235—243.
    肖霞云,蒋庆丰,刘兴起等,2006.新疆乌伦古湖全新世以来高分辨率的孢粉记录与环境变迁.微体古生物学报,23(1),77—86.
    萧家仪,吴玉书,郑绵平,1996.西藏扎布耶盐湖晚第四纪孢粉植物群的初步研究.微体古生物学报,13(4),395—399.
    许清海,李月从,杨小兰等,2007.中国北方几种主要花粉类型与植被定量关系.中国科学D辑:地球科学,37,192—205.
    许清海,李月丛,李育等,2006.现代花粉过程与第四纪环境研究若干问题讨论.自然科学进展,16,647—656.
    许清海,李月丛,阳小兰等,2005.北方草原区主要群落类型表土花粉分析.地理研究,24,3,394—402.
    许清海,李月丛,阳小兰等,2005.青藏高原东北部典型花粉类型埋葬特征及其与植被关系研究.地球科学进展,20,89—98.
    许清海,李月丛,阳小兰等,2005d.中国北方几种主要森林群落表土孢粉组合特征研究.第四纪研究,24(5),585—597
    许清海,阳小兰,杨振京,2004.河北滦河流域冲积物花粉与植被关系的研究.古地理学报,6,69—77.
    阎顺,1991.新疆第四纪孢粉组合及植被演替.干旱区地理,14(6),1—8.
    阎顺,孔昭宸,杨振京等,2004.新疆表土中云杉花粉与植被的关系.生态学报,24(9),2017—2023.
    阎顺,许英勤,1989.新疆阿勒泰地区表土孢粉组合.干旱区研究,1,26—33.
    杨小平,2000.近3晚年来巴丹吉林沙漠的景观与雨量变化.科学通报,45(4),428—434.
    尤纳托夫AA著.李继同译,1959.蒙古人民共和国植被的基本特点.北京:科学出版社.66—120.
    翟新伟,2008.蒙古高原全新世气候与环境变化研究.兰州大学博士论文.
    张华,郑卓,王建华等,2004.海南岛近2500 a来盘星藻记录的周期性气候变化.热带地理,24(2),109—123.
    张佳华,孔昭宸,杜乃秋,1996.北京地区百花山、东灵山表土孢粉的特征分析.海洋地质与第四纪地质,16(3),101—113.
    张金谈,1964.北京西郊空气中的花粉.植物学报,12(3),282—285.
    张玉龙,席以珍,张金谈等,1976.中国蕨类植物孢子形态.北京:科学出版社.
    赵希涛,鲁刚毅,王绍鸿等,1990.江苏建湖庆丰剖面全新世地层及环境变迁与海面变化的初步研究.科学通报,35(4),285—288.
    郑景云,葛全胜,方修琦,2002.从中国过去2000年温度变化看20世纪增暖.地理学报,57(6),631—638.
    郑卓,1990.采用COUR风标式收集器对广州市区大气孢子孢粉浓度的调查.中山大学研究生学刊(自然科学版),11(2),20—27.
    郑卓,黄康有,邓韫等,2007.中国东部大陆尺度南北样带尘土花粉散步规律与现状植被的关系.中国科学,D辑,37(4),534—543.
    朱浩然,曾昭琪,张忠英,1978.江苏北部下第三系戴南组盘星藻化石及其沉积环境的初步分析.古生物学报,17(2),242.
    朱艳,程波,陈发虎等,2004.石羊河流域现代孢粉传播研究.科学通报,49,1,15—21.
    竺可桢,1972.中国近五千年来气候变迁的初步研究.考古学报,1,15—38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700