用户名: 密码: 验证码:
膜生物反应器及电絮凝—过滤技术在分散式生活污水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于生活污水集中收集处理受到限制的地区,建立及推广分散式生活污水处理技术成为解决该类地区水污染问题的可行途径。超滤膜生物反应器(MBR)和电絮凝(EF)-过滤系统均具备占地面积小、出水水质高和稳定可靠等优点,因此本文对膜生物反应器及电絮凝-过滤技术应用于分散式生活污水处理进行了研究。
     超滤膜生物反应器的研究采用德国某公司提供的一体化单级MBR。由于单级MBR设计参数固定且德国生活习惯与我国山区存在巨大差异,启动阶段膜生物反应器污泥负荷(F/M)远低于0.05kgCOD/kgMLSS·d,造成了严重的污泥解体。表征污泥活性的指标单位氧气利用率(SOUR)从37.25 mg O2/g MLSS/h降低到20.29 mg O2/g MLSS/h,污泥浓度从4g/L下降并稳定在2g/L,污泥体积平均粒径也从104μm降低到59μm,溶解性微生物产物SMP中蛋白和多糖的比例分别比初始阶段增加了11倍和6.5倍,造成严重的膜污染。针对启动阶段遇到的问题,采用2g/L污泥浓度启动,保证污泥负荷(F/M)在0.05kgCOD/kgMLSS·d以上,并在好氧生物池完成污泥驯化后将膜组件放入系统内进行一体化运行,避免严重的膜污染。
     环境温度的变化也是制约单级MBR运行的因素。水温在13℃以上,单级MBR可保持优异的COD以及氨氮的去除效率,同时由于超滤膜组件自身的特性,可保证对于悬浮颗粒物的全部去除。与传统活性污泥系统类似,在水温低于4℃的情况下,MBR反应器内的微生物进入休眠状态,无法对水中污染物质进行分解代谢,对于氨氮和COD的去除均由膜组件的物理截留造成。当水温进一步降低至0℃以下时,污泥出现大面积解体、造成严重膜污染以及出水水质恶化。建议MBR在分散式处理中统一采用埋地式安装,以应对当地的低温天气。
     无法高效脱氮除磷是单级MBR的瓶颈。对原有单级MBR进行改良构建两级序批式膜生物反应器(TSBMBR)实现了COD、NH3-N、TN和TP分别达到94%、90%、82%和90%以上的去除率,出水符合景观用水标准。第一级反应器(TSBMBR1)中污泥龄控制在5-7天,并创造适合聚磷菌PAOs生存的条件,系统始终保持高效的除磷效果。在TSBMBR1中形成了颗粒化污泥与絮体污泥共存的现象。在系统运行30天后,污泥SVI值稳定在50ml/g,粒径从84μm增长到300μm。胞外聚合物EPS含量随着颗粒化的进行从接种状态时的40 mg/g MLSS上升至80-100 mg/g MLSS,同时SMP伴随着反应器中污泥颗粒化的过程也从5 mg/g MLSS迅速增加至15-20 mg/g MLSS,随着颗粒化的稳定SMP含量一直保持在较高的水平。同时污泥表面电荷负向增加,相对憎水性增强。
     第二级反应器(TSBMBR2)在排泥模式下污泥浓度稳定在6-8g/L,污泥龄控制在25-30天,可保证高效的总氮去除率且膜通量稳定没有出现明显的膜污染。同时由于泥龄长,系统内出现大量原生和后生动物。TSBMBR2进入不排泥模式污泥浓度增长至13g/L,同时SOUR从30 mg O2·g MLSS·h-1下降至10 mg O2·g MLSS·h-1,微生物进入以内源呼吸为主模式,反应器内形成以丝状菌为主体的菌群模式。随着系统运行过程中丝状菌不断大量繁殖,使得污泥表面电荷逐步下降,从接种污泥的-1.6meq./g MLSS下降到-2.6meq./g MLSS,同时污泥絮体的憎水性也显著提高,从45%上升到95%,单位膜通量从最初的750 L?h-1?bar-1下降至400L?h-1?bar-1附近。通过SPSS的相关性分析可以发现,EPS中的蛋白对污泥沉降性能具有明显影响,并且由于EPS中蛋白组分占主导,因此总EPS和污泥沉降性能也有较好的相关性,同时单位膜通量和SMP中的多糖含量有很好的相关性。
     两级序批式膜生物反应器优质出水的代价是牺牲了膜单元的处理能力,膜组件处理能力仅为原有单级MBR的40%。同时,两级序批式膜生物反应器无法对已有的单级MBR在现场进行改装,因此在保证膜单元处理能力不变的情况下,使出水满足回用水标准是下一步工作的方向。同时,污水分散式处理技术也要求在保证高效处理能力的同时,具备应对突发性废水如含重金属废水排放的能力。
     采用电絮凝-沙滤系统对二级生物处理出水进行深度处理,取得了97%的除磷效率和20-25%的总有机碳TOC去除率。该技术具有模块化、占地面积小以及自动化程度高等特点,具备和其它处理工艺串连的能力。电絮凝-过滤技术可对含重金属废水进行高效去除。选取Ni为目标重金属进行处理发现溶解氧在电絮凝过程中起到非常重要的作用,并对后继的过滤作用产生影响。随着曝气的加入,铁电极释放的铁离子的量并没有增加。通过试验可确定溶解氧耗尽拐点(DOEP)。本系统中1.3 mg/L DO可被认为是DOEP同时是二价铁离子富集的转折点。曝气可以使反应器的溶解氧在DOEP之上,从而保证反应器中三价铁离子占主导。非曝气状态下电絮凝与微滤的结合以及曝气状态下电絮凝与沉淀和滤纸过滤的结合均可完全去除溶液中Ni和Fe离子,使出水达标排放。
     本文最后对单级MBR与电絮凝-沙滤联用技术从理论可行性和运行成本的角度进行了分析,认为该组合技术除了具有应对突发重金属废水污染的能力,与两级膜生物反应器相比还具有运行成本低和处理量高的特点,且出水可满足城市生活杂用水排放标准。因此有必要在接下来的工作中通过中试研究对该组合工艺进行验证。
The construction and popularization of decentralized municipal wastewater treatment technology is the feasible approach in resolving water pollution problem in the area, where centralized wastewater collection and treatment is restricted. Both the ultra-filtration membrane bioreactor system and Electroflocculation–Filtration system own advantages like small footprint, excellent effluent quality and high reliability. Therefore, Research on membrane bioreactor and electroflocculation-filtration technology in decentralized municipal wastewater treatment has been done in this paper.
     The research on ultra-filtration membrane bioreactor is basing on the integrated one-stage MBR supplied by certain German company. Due to fixed design parameters of one-stage MBR and life style diversity between German and Chinese domestic mountain areas, sludge loading rate (F/M) in MBR was much lower than 0.05kgCOD/kgMLSS·d during initiation. Severe sludge disaggregation happened. The SOUR, MLSS and particle size dropped from 37.25 mg O2/g MLSS/h to 20.29 mg O2/g MLSS/h, 4g/L to 2g/L, and 104μm to 59μm separately. Protein and polysaccharide concentration in the soluble microbial products (SMP) increased 11 times and 6.5 times than initiation values and severe membrane fouling occurred. Aiming at resolving the problem during initiation, sludge inoculation concentration was control at 2g/L and F/M was kept above 0.05kgCOD/kgMLSS·d. Membrane module was integrated into system after sludge acclimation to avoid severe membrane fouling during initiation.
     The diversity of ambient temperature was also the restriction on one-stage MBR operation. Excellent COD and ammonium removal efficiency could achieve when the water temperature was above 13℃, and suspended solids could be removed by membrane blockage. Similar as traditional activated sludge system, when the water temperature was below 4℃, sludge bacteria went into dominancy phase and metabolism stopped. All the removal of nitrogen and COD was due to membrane blockage. When the water temperature was below zero, sludge disaggregation appeared in large amount, severe membrane fouling existed and deteriorated effluent discharged. It is suggested that MBR system used in decentralized treatment should be constructed underground to face with low temperature.
     One-stage MBR itself could not reach high nitrogen and phosphorous removal efficiency. Two-stage sequencing batch membrane bioreactor (TSBMBR) could reach above 94%,90%,82% and 90% removal efficiency of COD,NH3-N,TN and TP after the modification of one-stage MBR, and the effluent could reach scenic environment use water quality criteria. Sludge age was controlled at 5 to 7 days in the first stage of TSBMBR (TSBMBR1). Favorable living conditions for phosphorous accumulating organisms (PAOs) were provided and high phosphorous removal efficiency could be kept in this stage. Granular sludge and sludge flocs co-existed in TSBMBR1. After 30 days operation, SVI reached 50ml/g, and sludge particle size increased from 84μm to 300μm. The amount of extracellular polymer substances (EPS) also increased from 40 mg/g MLSS to 80-100 mg/g MLSS, meanwhile, the amount of soluble microbial products (SMP) also increased from 5 mg/g MLSS to 15-20 mg/g MLSS during sludge granulation period and stabilized at a high level after granulation achieved. Sludge surface charge increased negatively and the relative hydrophobicity increased.
     Sludge concentration in the second stage of TSBMBR (TSBMBR2) was kept at 6-8g/L during sludge-discharging mode, and the sludge age was controlled at 25-30 days. High TN removal efficiency could be achieved. No severe membrane fouling happened and the trans-membrane flux kept stable. Meanwhile, a large amount of Protozoa and metazoan appeared in the system due to long sludge age. In sludge non-discharging mode, sludge concentration in TSBMBR2 reached 13g/L and SOUR dropped from 30 mg O2·g MLSS·h-1 to 10 mg O2·g MLSS·h-1. Sludge bacteria went into endogenous respiration. Filamentous bacteria were dominant in the reactor at that time. With the multiplication of filamentous bacteria, sludge surface charge dropped gradually from -1.6meq./g MLSS to -2.6meq./g MLSS. Meanwhile, sludge relative hydrophobicity increased from 45% to 95%, and the specific membrane flux dropped from 750 L?h-1?bar-1 to 400L?h-1?bar-1. After SPSS analysis, the protein proportion in EPS owned obvious correlation with sludge settling ability. The total EPS also owned good correlation with sludge settling ability due to the large dominance of protein proportion in EPS. Meanwhile, the specific membrane flux was correlated with SMP polysaccharides concentration.
     The excellent effluent quality from TSBMBR is at the cost of the deduction of membrane module treatment quantity, which is only 40% of original one-stage MBR. Meanwhile, the modification of one-stage MBR into TSBMBR could not be accomplished in the field. So the next step is to meet recycled water criteria and keep membrane module treatment quantity at the same time. Meanwhile, decentralized treatment technology should keep high treatment efficiency and have the ability to face with emergent wastewater, i.e., wastewater with high concentration of heavy metal.
     Electroflocculation (EF)-Granular Filtration (GF) system was used as tertiary treatment of secondary biological treatment effluent. The phosphorous and TOC removal rate could reach 97% and 20-25%. This technology owns advantages like integrated module configuration, small footprint, automatic control and etc, which enables this technology to be combined with other treatment process. Research has also been done by electroflocculation-filtration in heavy metal removal, and Nickel was chosen as the target pollutant in this paper. It was noted that dissolved oxygen (DO) played an important role in electroflocculation and thereafter filtration. The adding of aeration did not generate extra iron releasing from the electrodes. The dissolved oxygen exhaust point (DOEP) could be obtained by experiment. In this experiment system, 1.3 mg/L DO was regarded as DOEP, at which point ferrous iron accumulation appeared. Aeration could enable the DO above DOEP in the reactor to make sure the dominance of ferric iron in the reactor. The combination of EF and micro-filtration without aeration and EF plus sedimentation and paper filtration with aeration could both completely remove Ni and iron in the bulk water reach the water discharged criteria.
     In the last part, from theoretical feasibility and cost points of view, analysis has been made on the hybrid of one-stage MBR and EF-GF technology. This combination owns characters like lower energy consumption and higher treatment efficiency than TSBMBR and the effluent could reach Water quality standard for urban miscellaneous water consumption. Therefore, it is necessary to do pilot operation in the next step to validate this technology hybridization.
引文
[1] May A. Massoud, Akram Tarhini, and Joumana A. Nasr. Decentralized approaches to wastewater treatment and management: Applicability in developing countries. J. Environ. Manage., 2009, 90(1): 652-659
    [2]王琳.发展中国家污水处理工艺原理与技术.英国:国际水协会出版社(IWA),2005
    [3]王琳,王宝贞.《分散式污水处理与回用》.北京:化学工业出版社,2003
    [4] USEPA (United States Environmental Protection Agency), Handbook for Managing Onsite and Clustered (Decentralized) Wastewater Treatment Systems. Washington, DC 2005, 66
    [5] K.P. Tsagarakis, D.D. Mara, A.N. Angelakis. Wastewater management in Greece: experience and lessons for developing countries. Water Sci. Technol., 2001, 44 (6): 163–172
    [6]成先雄,严群.农村生活污水土地处理技术.四川环境,2005,24 (2) :39-43
    [7]艾平,张衍林,袁巧霞.农村生活污水分散式处理技术浅析.环境保护科学,2008,32(6 ):8-10
    [8] A.G. Fane, S.A. Fane. The role of membrane technology in sustainable decentralized wastewater systems. Water Sci. Technol., 2005, 51 (10): 317–325
    [9]崂山区水资源保护规划,青岛市崂山区水利局,2004
    [10] Nihal Bekta?s, Hilal Akbulut, Hatice Inan, et al. Removal of phosphate from aqueous solutions by electro-coagulation. J. Hazard. Mater., 2004, 106B: 101–105
    [11] Ch. Brepols, E. Dorgeloh, F.-B. Frechen, et al. Upgrading and retrofitting of municipal wastewater treatment plants by means of membrane bioreactor (MBR) technology. Desalination, 2008, 231(1-3): 20-26
    [12] Sven Lyko, Thomas Wintgens, Djamila Al-Halbouni, et al. Long-term monitoring of a full-scale municipal membrane bioreactor—Characterization of foulants and operational performance. J. Membr. Sci., 2008, 317(1-2): 78-87
    [13] Miriam Sartor, Martin Kaschek, Valko Mavrov. Feasibility study for evaluating the client application of membrane bioreactor (MBR) technology for decentralized municipal wastewater treatment in Vietnam. Desalination, 2008, 224 (1-3): 172-177
    [14] Thamer A. Mohammed, Ahmed H. Birima, Megat Johari Megat Mohd Noor, et al. Evaluation of using membrane bioreactor for treating municipal wastewater at different operating conditions. Desalination, 2008, 221(1-3): 502-510
    [15] Katsuki Kimura, Rie Nishisako, Taro Miyoshi, et al. Baffled membrane bioreactor (BMBR) for efficient nutrient removal from municipal wastewater. Water Res., 2008, 42(3): 625-632
    [16] Sven Lyko, Thomas Wintgens, Djamila Al-Halbouni, et al. World's largest municipal membrane bioreactor– fouling characterisation and relation to operating performance. Desalination, 2006, 199(1-3): 480-481
    [17] S. Rosenberger, U. Krüger, R. Witzig, et al. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water. Water Res., 2002, 36(2): 413-420
    [18] Kyu-Hong Ahn, Ho-Young Cha, Kyung-Guen Song. Retrofitting municipal sewage treatment plants using an innovative membrane-bioreactor system. Desalination, 1999, 124(1-3): 279-286
    [19] Chettiyappan Visvanathan, Natapol Boonthanon, Arumugam Sathasivan, et al. Pretreatmentof seawater for biodegradable organic content removal using membrane bioreactor. Desalination, 2003, 153, (1-3): 133-140
    [20] Michal Bodzek, Ewa ?obos-Moysa, Marlena Zamorowska. Removal of organic compounds from municipal landfill leachate in a membrane bioreactor. Desalination, 2006, 198(1-3): 16-23
    [21] Niina Laitinen, Antero Luonsi, Jari Vilen. Landfill leachate treatment with sequencing batch reactor and membrane bioreactor. Desalination, 2006, 191(1-3)86-91
    [22] S.R. Chae, H.S. Shin. Effect of condensate of food waste (CFW) on nutrient removal and behaviors of intercellular materials in a vertical submerged membrane bioreactor (VSMBR). Bioresour. Technol., 2007, 98(2): 373-379
    [23] R. Kurian, G. Nakhla, A. Bassi. Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor (MBR). Chemosphere, 2006, 65(7): 1204-1211
    [24] Faisal Ibney Hai, Kazuo Yamamoto, Fumiyuki Nakajima, et al. Factors governing performance of continuous fungal reactor during non-sterile operation– The case of a membrane bioreactor treating textile wastewater. Chemosphere, 2008 on line
    [25] M. Brik, P. Schoeberl, B. Chamam, et al. Advanced treatment of textile wastewater towards reuse using a membrane bioreactor. Process. Biochem., 2006, 41(8): 1751-1757
    [26] Z. Badani, H. Ait-Amar, A. Si-Salah, et al. Treatment of textile waste water by membrane bioreactor and reuse. Desalination, 2005, 185(1-3): 411-417
    [27] Jyh-Ping Chen, Yung-Sheng Lin. Decolorization of azo dye with Pseudomonas luteola in a membrane bioreactor. J. Biotechnol., 2008, 136(Supplement 1): S675-S676
    [28] Tak-Hyun Kim, Yuri Lee, Jeongmok Yang, et al. Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi. Desalination, 2004, 168: 287-293
    [29] Joao Carlos Teixeira Dias, Rachel Passos Rezende, et al. Biological treatment of kraft pulp mill foul condensates at high temperatures using a membrane bioreactor. Process. Biochem., 2005, 40(3-4): 1125-1129
    [30] Pierre R. Bérubé, Eric R. Hall. Effects of elevated operating temperatures on methanol removal kinetics from synthetic kraft pulp mill condensate using a membrane bioreactor. Water Res., 2000, 34(18): 4359-4366
    [31] Hanft, S. Membrane Bioreactors in the Changing World Water Market, Business Communications Company Inc. report. 2006. C-240
    [32] Stephenson T., Judd S., Jefferson B., et al. Membrane bioreactors for wastewater treatment. IWA publishing, London, 2000
    [33] J.A. Baeza, D. Gabriel, J. Lafuente. Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP). Process Biochem., 2004, 39: 1615–1624
    [34] Y. Wang, X. Huang, Q.P. Yuan. Nitrogen and carbon removals from food processing wastewater by an anoxic/aerobic membrane bioreactor. Process. Biochem., 2005, 40: 1733–1739
    [35] Y.T. Ahn, S.T. Kang, S.R. Chae, et al. Simultaneous high-strength organic and nitrogen removal with combined anaerobic upflow bed filter and aerobic membrane bioreactor. Desalination, 2007, 202: 114–121
    [36] T.W. Tan, H.Y. Ng. Influence of mixed liquor recycle ratio and dissolved oxygen onperformance of pre-denitrification submerged membrane bioreactors. Water Res., 2008, 42 (4–5): 1122–1132
    [37] E.V. Münch, P. Lant, J. Keller. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Res., 1996, 30 (2): 277–284
    [38] K.A. Third, N. Burnett, R. Cord-Ruwisch. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in a SBR. Biotechnol. Bioeng., 2003, 83 (6) : 706–720
    [39] T. Mino, M.C.M. Van Loosdrecht, J.J. Heijnen. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res., 1998, 32 (11): 3193–3207
    [40] H. Sato, T. Mino, T. Matsuo. Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbonhydrates under anaerobic conditions in the biological excess phosphate removal process. Water Sci. Tech., 1992, 26 (5/6): 933–942
    [41] M.C.M. Van Loosdrecht, C.M. Hooijmans, D. Brdjanovic, et al. Biological phosphate removal processes. Appl. Microbiol. Biotechnol. 1997, 48: 289–296
    [42] Y. Comeau, K.J. Hall, R.E.W. Hancock, et al. Biological model for enhanced biological phosphorus removal. Water Res., 1986, 20 (12): 1511–1521
    [43] T. Matsuo, T. Mino, H. Sato. Metabolism of organic substances in anaerobic phase of biological phosphate uptake process. Water Sci. Technol., 1992, 25 (6): 83–92
    [44] W.-T. Liu, T. Mino, K. Nakamura, et al. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic–aerobic activated sludge without biological phosphorus removal. Water Res., 1996, 30: 75
    [45] T. Mino, V. Arun, T. Yoshiaki, et al. Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. In: R. Ramadori, Editor, Advances in Water Pollution Control—Biological Phosphate Removal from Wastewaters, Pergamon Press, Oxford, UK, 1987, 27
    [46] W.-T. Liu, T. Mino, K. Nakamura, T. Matsuo. Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic–aerobic activated sludge with minimized polyphosphate content. J. Ferment. Bioeng. 1994, 77 (5): 535–540
    [47] A.J. Schuler, D. Jenkins. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, part I: experimental results and comparison with metabolic models. Water Environ. Res. 2003, 75 (6): 485–498
    [48] C.D.M. Filipe, G.T. Daigger, C.P.L. Grady Jr. Stoichiometry and kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorus-accumulating organisms at different pHs. Biotechnol. Bioeng., 2001, 76 (1): 32–43
    [49] R.J. Zeng, M.C.M. Van Loosdrecht, Z. Yuan, et al. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems. Biotechnol. Bioeng., 2003, 81 (1): 92–105
    [50] Yan Zhou, Maite Pijuan, Raymond J. Zeng, et al. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs). Water Res., 2008, 42, (10-11): 2361-2368
    [51] T. Kuba, M.C.M. van Loosdrecht , J.J. Heijnen. Effect of cyclic oxygen exposure on the activity of denitrifying phosphorus removal bacteria. Water Sci. Technol., 1996, 34 (1–2): 33–40
    [52] J.J. Rowe, J.M. Yarbrough, J.B. Rake, et al. Nitrite inhibition of aerobic bacteria. Curr. Microbiol., 1979, 2: 51–54
    [53] T. Saito, D. Brdjanovic, M.C.M. van Loosdrecht. Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Res., 2004, 38(17): 3760-3768
    [54] M.C. Hascoet, M. Florentz. Influence of nitrates on biological phosphorus removal from wastewater. Water SA, 1985, 11 (1): 1–8
    [55] J.M. Garrido, W.A.J. van Benthum, M.C.M. van Loosdrecht, et al. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng., 1998, 53 :168–178
    [56] C. Hellinga, A.A.J.C. Schellen, M.C.M. van Loosdrecht, et al. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste. Water. Sci. Tech. 1998, 37 (9): 135–142
    [57] T. Kuba, G.J.F. Smolders, M.C.M. van Loosdrecht, et al. Biological phosphorus removal from wastewater by anaerobic–anoxic sequencing batch reactor. Water Sci. Technol., 1993, 27: 241–252
    [58] J.P. Kerrn-Jespersen, M. Henze. Biological phosphorus uptake under anoxic and aerobic conditions. Water. Res., 1993, 27 (4): 617–624
    [59] T. Kuba, M.C.M. van Loosdrecht, J.J. Heijnen. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Res., 1996, 30 (7): 1702–1710
    [60] G. Bortone, R. Saltarelli, V. Alonso, et al. Biological anoxic phosphorus removal—the DEPHANOX process. Water Sci. Technol., 1996, 34 (1–2): 119–128
    [61] M.C.M. Van Loosdrecht, F.A. Brandse, A.C. de Vries. Upgrading of wastewater treatment processes for integrated nutrient removal—the BCFS? process. Water Sci. Tech., 1998, 37 (9): 209–217
    [62] Z.R. Hu, M.C. Wentzel, G.A. Ekama. External nitrification in biological nutrient removal activated sludge systems. Water Sci. Technol., 2001, 43 (1): 251–260
    [63]龙北生.两级SBR除磷脱氮工艺技术及其运行控制参数研究:[博士学位论文].吉林:吉林大学,2006
    [64]彭永臻,高凯,于政哲.两段SBR法处理石油化土废水.给水排水,1996,22 (6):2628
    [65] R. Lemaire, R. Meyer, A. Taske, et al. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. J. Biotechnol., 2006, 122: 62–72
    [66] W.T. Liu, K. Nakamura, T. Matsuo, et al. Internal energy-based competition between polyphosphate and glycogen accumulating bacteria in biological phosphorus removal reactors—effect of P/C feeding ratio. Water Res., 1997, 31 (6): 1430–1438
    [67] Florentz, M.C. Hascoet, M. Florentz. Influence of nitrates on biological phosphorus removal from wastewater. Water SA, 1985, 11 (1): 1–8
    [68] D. Brdjanovic, A. Slamet, M.C.M. van Loosdrecht, et al. Impact of excessive aeration on biological phosphorus removal from wastewater. Water. Res., 1998, 32 (1): 200–208
    [69]任世英.海洋聚磷菌Halomonas YSR-3的除磷特性研究: [博士学位论文].青岛:中国科学院研究生院(海洋研究所),2008
    [70] F.E. Elmore. A process for separating certain constituents of subdivided ores and like substances, and apparatus therefore. Br. Patent, 1905, 13, 578
    [71] F.E. Stuart. Electronic water purification progress report on the electronic coagulator—a new device which gives promise of unusually speedy and effective results. Water Sewage, 1946, 84: 24–26
    [72] Bard, A.J., Faulkner, L.R. Electrochemical methods– fundamentals and applications. John Wiley and Sons, New-York, 2001
    [73] Amirtharajah, A., Mills, K.M. Rapid-mix design for mechanisms of alum coagulation. J. AWWA, 1982, 210-216
    [74] X. Chen, G.H. Chen, P.L. Yue. Separation of pollutants from restaurant wastewater by electrocoagulation. Sep. Purif. Technol., 2000 (19) 65–76
    [75] E.A. Vik, D.A. Carlson, A.S. Eikum,er al. Electrocoagulation of potable water. Water Res. 1984 (18) 1355–1360
    [76] M. Qiu, in: L.A. Kul’skii, P.P. Strokach, V.A. Slipchenko, E.I. Saigak (Eds.). Water Purification by Electrocoagulation, Shanghai Jiaotong University Press, 1988
    [77] H.M. Wong, C. Shang, Y.K. Cheung, et al. Chloride Assisted Electrochemical Disinfection. Proceedings of the Eighth Mainland-Taiwan Environmental Protection Conference, Tsin Chu, Taiwan, 2002
    [78] APHA. Standard methods for the examination of water and wastewater, 20th edition. Washington, D.C., American Public Health Association. 1998
    [79] Frolund B, Palmgren R, Keiding K, et al. Extraction of extracelluar poly mers from activated sludge using a cation exchange resin.Wat.Res.,1996,30(8):1749~1758
    [80] Bradford MM. A rapid sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Analy. Biochem., 1976, 72: 248– 254
    [81] Meng F G. A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities. Sep. Purif. Technol., 2008, 59: 91-100
    [82]王秋云,王立军.简便的纸料电性分析方法.纸和造纸,2005,3:80-82
    [83] Bo Jin, Britt-Marie Wilén, Paul Lant. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge. Chem. Eng. J., 2003, 95, 221-234
    [84] Bitton, G. Wastewater Microbiology, second ed. Wiley-Liss, New York, 1999, 66–69
    [85] R.W. Martin Jr. et al. Low-temperature inhibition of the activated sludge process by an industrial discharge containing the azo dye acid black 1. Water Res., 2005, 39: 17–28
    [86]桑军强,王占生.低温条件下生物陶粒反应器运行特性研究.环境科学, 2003, 24(2) :112-115
    [87]刘硕,王宝贞,王正.复合式膜生物反应器强化脱氮除磷的实验研究.现代化工, 2006 , 26(5): 40– 44
    [88]姚重华.废水处理计量学导论.北京:化学工业出版社,2002
    [89]王树涛,马军,田海.曝气生物滤池深度处理污水系统中温度及氨氮负荷对硝化作用的影响.现代化工,2006,26(2)
    [90] S.R. Chae, H.S. Shin. Characteristics of simultaneous organic and nutrient removal in a pilot-scale vertical submerged membrane bioreactor (VSMBR) treating municipal wastewater at various temperatures. Process. Biochem., 2007, 42: 193–198
    [91] Libing Chu, Shuping Li. Filtration capability and operational characteristics of dynamic membrane bioreactor for municipal wastewater treatment. Separ. Purif. Tech., 2006, 51:173–179
    [92] Peng D C, Bernet N, Delgenes J P, Moletta R. Aerobic granular sludge-a case report. Water Res., 1999, 33(3): 890-893
    [93] Beun J J, Hendriks A, van Loosdrecht MCM, et al. Aerobic granulation in a sequencing batch reactor. Wat Res., 1999, 33: 2283– 90
    [94] McSwain B S, Irvine. R L, Wilderal. P A. The effect of intermittent feeding on aerobic granule structure. 2003, 5th International Conference on Biofilm Systems by International Water Association. South Africa: Cape Town
    [95] Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl. Microbiol. Biotech, 2001, 57: 227– 33
    [96] Qin L, Tay J H, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem., 2004, 39: 579–84
    [97]王琳,孙磊.好氧颗粒污泥系统快速启动实验研究.中国海洋大学学报,2006,36(2):229-302
    [98] Beun J J, van Loosdrecht MCM. Aerobic granulation in a sequencing batch airlift reactor. Wat Res., 2002, 36: 702–712
    [99] Jang A, Yoon Y H, Kim I S, et al. Characterization and evaluation of aerobic granules in sequencing batch reactor. J Biotech, 2003, 105: 71-82
    [100] Hu L L, Wang J L, Wen X H. The formation and characteristics of aerobic granules in SBR by seeding anaerobic granules. Process Biochem., 2004, 40(1): 5-11
    [101] Lin Wang, Lei Sun, Hailing Zhang. Influence of biochemical conditions on activated sludge granulation, J. Biomedi. Sci. eng., 2009 (in press)
    [102] B. Fr?lund, R. Palmgren, K. Keiding, P.H. Nielsen. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res., 1996, 30: 1749–1758
    [103] J.G. Choi, T.H. Bae, J.H. Kim, et al. The behavior of membrane fouling initiation on the cross-flow membrane bioreactor system. J. Membr. Sci., 2002, 203: 103–113
    [104] M.C.M. van Loosdrecht, J. Lyklema, W. Norde, G. Schraa, et al. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol., 1987, 53: 1898–1901
    [105] J.-S. Kim, C.-H. Lee, I.-S. Chang. Effect of pump shear on the performance of a crossflow membrane bioreactor. Water Res., 2001, 35: 2137–2144
    [106] Y. Lee, J. Cho, Y. Seo, J.W. Lee, K.-H. Ahn. Modeling of submerged membrane bioreactor process for wastewater treatment. Desalination, 2002, 146: 451–457
    [107] C. Nuengjamnong, J.H. Kweon, J. Cho, C. Polprasert et al. Membrane fouling caused by extracellular polymeric substances during microfiltration processes. Desalination, 2005, 179: 117– 124
    [108] R. Bura, M. Cheung, B. Liao, et al. Composition of extracellular polymeric substances in the activated sludge floc matrix. Water Sci. Technol., 1998, 37: 325–333
    [109] L. Mikkelsen, K. Keiding. Physiochemical characteristics of full scale sewage sludges with implications to dewatering. Water Res., 2002, 36: 2451–2462
    [110] L. Ji, J. Zhou. Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors. J. Membr. Sci., 2006, 276: 168–177
    [111] B. M. Wilen, B. Jin, P. Lant. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res., 2003, 37: 2127–2139
    [112] P. Le-Clech, B. Jefferson, S.J. Judd. Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. J. Membr. Sci., 2003, 218: 117–129
    [113] H. Nagaoka, S. Ueda, A. Miya. Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Sci. Technol., 1996, 34: 165–172
    [114] B.Q. Liao, D.G. Allen, I.G. Droppo, et al. Surface properties of sludge and their role in bioflocculation and settleability. Water Res., 2001, 35: 339–350
    [115] I.W. Sutherland. Exopolysaccharides in biofilm flocs and related structures. Water Sci. Technol., 2001, 43: 77–86
    [116] J.S. Kim, C.H. Lee, H.D. Chun. Comparison of ultrafiltration characteristics between activated sludge and BAC sludge. Water Res., 1998, 32: 3443–3451
    [117] R. Dewanti, A.C.L. Wong. Influence of culture conditions on biofilms formation by Escherishia coli O157: H7, Int. J. Food Microbiol., 1995, 26: 147–164
    [118] E.A.C. Emanuelsson, J.P. Arcangeli, A.G. Livingston. The anoxic extractive membrane bioreactor. Water Res., 2003, 37: 1231–1238
    [119] J. Lee, W.Y. Ahn, C.H. Lee. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Res., 2001, 35: 2435– 2445
    [120] H. Cangul, L. Broday. Molecular mechanisms of nickel carcinogenesis. Toxicology Letters, 2002, 127: 69-75
    [121] Steven K. Seilkop, Adriana R. Oller. Corrigendum to“Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data”, Regul. Toxicol. Pharmacol., 2003, 37: 173–190
    [122] CFR Title40 Part 433, Metal Finishing Point Source Category. Electronic Code of Federal Regulations, http://ecfr.gpoaccess.gov
    [123] Effluent standard for different types of pollutants, Israel Ministry of Environment, http:// sviva.gov.il /Environment (in Hebrew)
    [124] S. Ramesh, Y. Cohen et al. Atomic force microscopy investigation of the surface topography and adhesion of nickel nanoparticles to submicrospherical silica. Chemical Physics Letters, 1998, 287: 461-467
    [125] Shuna Zhang, Fangyi Cheng et al. Removal of nickel ions from wastewater by Mg(OH)2/MgO nanostructures embedded in Al2O3 membranes. Journal of Alloys and Compounds, 2006, 426: 281-285
    [126] A. Nagendran, A. Vijayalakshmi, et al. Toxic metal ion separation by cellulose acetate/sulfonated poly (ether imide) blend membranes: Effect of polymer composition and additive. J. Hazard. Mater., 2008, 155: 477-485
    [127] Ilona Heidmann, Wolfgang Calmano. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation. J. Hazard. Mater., 2008, 152: 934-941
    [128] V. Mavrov, S. Stamenov, et al. New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater. Desalination, 2006, 201: 290-296
    [129] R.G. Casqueira, M.L. Torem, H.M., Kohler. The removal of zinc from liquid streams by electroflotation. Min. Eng., 2006, 19: 1388-1392
    [130] Jose R. Parga, David L. Cocke et al. Arsenic removal via electrocoagulation from heavymetal contaminated groundwater in La Comarca Lagunera México. J. Hazard. Mater., 2005, 124: 247-254
    [131] Guohua Chen. Electrochemical technologies in wastewater treatment. Separ. Purif. Tech., 2004, 38: 11-41
    [132] T. Harif, A. Adin. Characteristics of aggregates formed by electroflocculation of a colloidal suspension. Water Res., 2007, 41: 2951-2961
    [133] E. Ofir, Y. Oren, A. Adin. Electroflocculation: the effect of zeta-potential on particle size. Desalination, 2007, 204: 33-38
    [134] E. Ofir, Y. Oren, A. Adin. Modified equilibrium-solubility domains and a kinetic model of iron oxide and hydroxide colloids for electroflocculation. Desalination, 2007, 204: 79-86
    [135] A.I. Vogel. Vogel’s Qualitative Inorganic Analysis, Longman Scientific and Technical, England, 1987
    [136] N. Mohan, N. Balasubramanian, V. Subramanian. Electrochemical treatment of simulated textile effluent. Chem. Eng. Technol., 2001, 24 (7): 749–753

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700