用户名: 密码: 验证码:
Vibrio Natriegens对海洋金属腐蚀的影响及抗点蚀方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在海洋环境中,环境因素对金属材料的腐蚀速率有重要影响,其中,微生物的附着通常会使材料腐蚀加速,并成为导致金属局部腐蚀的一个重要因素。材料浸入海水数小时内表面就会形成一层细菌膜,并进一步形成生物膜,以有利于后来海洋宏观生物的附着。由于防腐保护措施很难在整个浸泡过程中起到良好的保护作用,材料在海水中的腐蚀特别是浸泡初期的腐蚀对后续腐蚀程度的加深显得尤为重要。因此,研究海洋环境中,材料浸泡初期表面形成的细菌膜对材料腐蚀所产生的影响、对细菌膜中起主要作用的细菌进行鉴定、研究该细菌对金属腐蚀所产生的影响及作用机理具有重要意义。
     本文通过静态挂片法获得碳钢、不锈钢及铜在青岛天然海水中浸泡不同时间后表面的优势菌种,经过生物方法——聚合酶链反应(Polymerase ChainReaction,PCR)鉴定获悉,优势菌种为Vibrio natriegens(以下简称V.natriegens)。采用比浊法测定细菌的生长曲线,明确了该细菌在培养条件下的生长规律。
     通过天然海水和无菌海水两种环境中不同金属的电化学测试,研究优势菌种生物膜对金属表面性质的影响。结果表明,浸泡初期碳钢表面的氧化膜即使在无菌海水中也很容易被破坏,因此,碳钢的自身腐蚀在整个腐蚀过程中占主导地位,而优势菌膜对碳钢腐蚀过程影响可以忽略;不锈钢和铜表面存在钝化、致密的氧化膜,在无菌环境下能对基体起到良好的保护作用,而表面附着了细菌的试样,由于细菌活跃的代谢活动极大地影响到金属腐蚀电位,并且从所得腐蚀速率上可以得出,在细菌作用下,不锈钢和铜的腐蚀速率呈上升趋势。
     使用原子力显微镜观测了不锈钢在V.natriegens培养基中浸泡不同时间后表面的生物膜,总结了该菌在不锈钢表面附着、发展过程的规律。该微生物膜在其表面的附着不是一成不变的,而是随着时间的延长,处于吸附、脱附的动态变化中。通过腐蚀电位的测试,发现V.natriegens的附着改变了不锈钢表面的电化学性质,细菌的繁殖致使已钝化的表面再活化,不锈钢进入了活化状态的腐蚀。交流阻抗测试结果表明,随着浸泡时间的延长,阻抗值在不断降低,抗腐蚀能力逐渐减弱。对阻抗谱进行拟合得出,不锈钢表面的钝化膜已经不再完整,开始发生点蚀。从极化曲线可以看出,致钝电流密度增大,钝化层变薄,不锈钢的耐蚀性降低。阳极极化曲线斜率变化较大,随浸泡时间延长而减小,阳极极化阻力减小,阳极溶解过程加速。从腐蚀产物电镜分析可以看出,不锈钢表面形成的生物膜和腐蚀产物膜多孔疏松,在腐蚀产物的能谱图中发现了细菌代谢产生的生物源S、P。去除腐蚀产物后的不锈钢表面形貌证明了点蚀的发生,验证了电化学测试中的推论。
     利用原子力显微镜观察了铜表面V.natriegens生物膜的形成过程。通过腐蚀电位的测试,发现附着的V.natriegens的繁殖致使铜表面原有的氧化膜逐渐受到破坏,开始了活化状态的腐蚀。交流阻抗的测定得到,随着浸泡时间的推移,阻抗值在不断降低,抗腐蚀能力逐渐减弱。对阻抗谱进行拟合,结果显示,铜表面的氧化膜遭到V.natriegens的破坏已经不再完整,并有点蚀发生。从动电位极化曲线可以看出,随浸泡时间延长,铜阳极溶解过程加速。从腐蚀产物电镜分析可以看出,铜表面形成的生物膜、腐蚀产物膜多孔疏松,在细菌新陈代谢作用下,逐渐解离成颗粒,然后不均匀地脱落。在腐蚀产物的能谱图中也发现了细菌代谢产生的生物源S、P。
     为证实V.natriegens的固氮作用对不锈钢和铜的腐蚀有影响,本论文设计了四种不同介质。将不锈钢、铜试样在不同介质中浸泡7天后用电化学方法测试腐蚀情况,并用表面测试手段对金属腐蚀后的表面进行了表征。结果发现,V.natriegens的存在破坏了不锈钢表面原本生成的保护性钝化膜的致密性,且固氮作用对不锈钢的腐蚀有显著的促进作用,但此影响并非来自固氮作用的产物NH_3,而是固氮过程本身。生物膜对基体元素Ni的捕捉破坏了钝化膜的修复功能。铜试样的试验结果也显示,V.natriegens的固氮过程能加速铜的腐蚀过程,且推测在固氮过程中分泌产生了一些腐蚀性的物质,从而使得最终腐蚀要比产物NH_3单独引起的腐蚀更加严重。
     点蚀是碳钢及低合金钢最主要的一种局部腐蚀形式。在点蚀环境下,pH值低,Cl~-浓度高,而1mol/LHCl是最常用的模拟该环境的实验介质。本文将滴pH引起的碳钢点蚀环境扩大化,研究壳聚糖衍生物——羧甲基壳聚糖(CMCT)在1mol/L HCl中对碳钢的缓蚀作用,来评价CMCT作为缓解点蚀涂料添加剂的可行性。并且测试其抑菌性,通过失重、电化学实验确定CMCT在酸性溶液中的缓蚀机理。结果显示,CMCT能有效抑制表面附着细菌的生长繁殖。缓蚀数据表明,随着CMCT浓度的增大,缓蚀效率提高,在200mg/L的浓度下达到最高,且CMCT在碳钢表面的吸附遵循Langmuir规律,并获得吸附过程的各个热力学参数,确立了吸附模型。对CMCT结构的量子化计算、分子构型优化在理论上证明了吸附模型的正确性。低浓度的CMCT中添加Cu~(2+)能改善缓蚀效率,并在20mg/L CMCT+10~(-4) mol/L Cu~(2+)下,缓蚀效率最高,其缓蚀机理是Cu~(2+)和CMCT相互作用后在电极表面形成吸附层,增大电极电荷迁移电阻和减小双电层电容,抑制电化学腐蚀过程的发生。
Environmental factors play a significant role in influencing the corrosion rate of metal materials in marine environment. The adsorption of microbes always enhances corrosion and is vital for metallic local corrosion. A layer of bacterial film could be formed in several hours on material surfaces after the immersion in sea water, and then the formation of biofilm occurs which favors the subsequent attachment of macroscopical marine organisms. The loss of material even for short-term exposures is important in part because protective measures are not always wholly effective. Consequently, it is very meaningful to research the effect of bacterial film formed on the material surfaces after the early period of immersion, and the identification of the preponderant bacterium, and the influencing behaviours and mechanisms of this bacterium on metal corrosion.
     In present work, the preponderant bacterium was obtained from the surfaces of mild steel, stainless steel and copper which were staticly hung in natural sea water from Qingdao for different times. The preponderant bacterium was identified as Vibrio natriegens (V. natriegens) through biological method namely PCR. The survival habit and growth curve were studied using nephelometery.
     Through the comparatively electrochemical experiments of different metals in natural and sterile sea water, the effect of the preponderant bacterial film on the changes of metallic surface properties was studied. The results showed that the influence of this bacterium on mild steel corrosion could be neglectable and that the biologic activites of bacteria greatly influenced the open potential (E_(corr)) of metals and induced the increasing corrosion rates of two metals.
     The growth process of V. natriegens biofilm covering on stainless steel surface was observed by atomic force microscopy (AFM) after different immersion in bacteria culture medium and these AFM images confirmed that biofilms were dynamic structural entities in which cell attachment and growth, the formation of micro-colonies, and subsequent detachment took place. Through the E_(corr) test, it could be found that the attachment of V. natriegens could change the electrochemical properties of stainless steel surface and that the proliferation of the bacteria could induce the reactivation of the passive surface and the occurrence of active corrosion. The results from electrochemical impedance spectra (EIS) showed that the impedance value decreased with immersion time and the anticorrosion abilities of stainless steel were weakened. Utilizing the equivalent circuit models to interpret the EIS data, it could be obtained that the passive film on stainless steel was not intact and pitting corrosion took place. The corrosion behaviours were also inspected using dynamic polarization curve. The passive current density increased and the passive film was thinned, resulting in the anticorrosion ability was weakened. The changes of anodic polarization curve slope were more significant and decreased with immersion time which demonstrated that the resistance of anodic polarization decreased and the anodic dissolution was accelerated. The corrosion product was analyzed by SEM, revealing the porous biofilm and corrosion product layer. The EDS analysis of the corrosion product proved the existence of biologic S、P from bacterial metabolite. The pitting on the stainless steel after the removal of corrosion product validated the conclusions obtained from electrochemical experiments.
     The growth process of V. natriegens biofilm covering on copper surface was observed by AFM after different immersion in bacteria culture medium. The results from E_(corr) test showed that the proliferation of these bacteria on copper surface induced the break of the protective oxide film formed previously and the start of active corrosion. The EIS data showed that the impedance value decreased with immersion time and the anticorrosion abilities were weakened. Utilizing the equivalent circuit models to interpret the EIS data, it could be obtained that the oxide film on copper surface was not intact and pitting corrosion took place. The dissolution of copper was accelerated with immersion time which was obtained from dynamic polarization curve test. The SEM images revealed that the corrosion product layer was loose and that the surface consisted of small copper particles and fell off unevenly with the bacterial metabolism. From the EDS analysis, biologic elements S、P were found in the corrosion product.
     In order to confirm whether the N2-fixation influenced the corrosion of stainless steel and copper, four kinds of media were designed in this work. The corrosion degree of stainless steel and copper coupons immersion in different media for 7 days was tested using electrochemical experiments and the corrosion morphology was characterized by surface analysis. The results showed that the existence of V. natriegens destroyed the protective passive film formed on stainless steel. N_2-fixation had significantly acceleration on corrosion, and the real cause was N_2- fixation not NH3 produced in this process. Element Ni from the matrix was extracted by the bioflim formed on the surface which destroyed the restoration of passive film on stainless steel. These results from copper coupons also demonstrated that N_2-fixation could enhance the corrosion. It was conferred that some aggressive materials were secreted in this process and the final corrosion was more serious than the corrosion induced by NH_3.
     Pitting corrosion is the most familiar way of local corrosion for mild steel. And 1mol/L HCl is the most commonly used mimic medium for the environment in pit, due to low value of pH and high concentration of Cl~-. In this work, we tried to find the effective additive in coating to inhibit the pitting corrosion. In order to evaluate the feasibility of adding Carboxymethylchitosan (CMCT) into coating as the additive, the pit environment was broadened and 1mol/L HCl was treated as the experiment medium to test the inhibitive effect of CMCT on mild steel. The inhibition of bacterial growth was tested by the epifluorescence microscopy observation. Through weight loss experiment and electrochemical tests, the inhibition of CMCT was determined. The results showed that the inhibiting efficiency increased with the rise of CMCT concentration and reached the maxium at 200mg/L. The adsorption of CMCT on mild steel obeyed Langmuir rule, some thermodynamic parameters were obtained and the adsorption model was established. The correctness of the model was proved by quantum chemical calculation and optimization of molecular structure. The proper addition of Cu~(2+) could improve inhibiting efficiency and reached the maxium at 20mg/L CMCT +10~(-4) mol/L Cu~(2+). The mechanism was determined as that Cu~(2+) and CMCT could interact to form a protective layer on mild steel, increasing the charge transfer resistance and decreasing the double layer capacitance, and inhibit the electrochemical corrosion.
引文
[1] Jones D.A., Amy P.S. A thermodynamic interpretation of microbiologically influenced corrosion [J]. Corrosion, 2002, 58: 638-645
    [2] Little B, Ray R. A perspective on corrosion inhibition by biofilms [J]. Corrosion, 2002, 58: 424-428
    [3] Ornek D, Wood TK, Hsu CH, Sun Z, Mansfeld F. Pitting corrosion control of aluminum 2024 using protective biofilms that secrete corrosion inhibitors [J]. Corrosion, 2002, 58:761-767
    [4] Federal Highway administration, Corrosion Cost and Preventive Strategies in the United States [M]. FHWA-RD-01-156.2002 March
    [5] Flemming, H.-C, economical and technical overview, in Heitz, E., Flemming, H.-C, and Sand, W. (Eds), Microbially Influenced Corrosion of Materials [M], Springer-Verlag,Berlin/Heidelberg, 1996
    [6] Ghassem H., Adibi N. Bacterial corrosion of reformer heater tubes [J], MP, 1997, 34 (3):47-48
    [7] Gaines, R.H. Bacterial activity as a corrosion influence in the soil [J]. J. Eng. Ind. Chem.,1910,2: 123-133
    [8] Von Wolzogen K(?)hr,G.A.H.,van der Vlugt L.R. De Graphiteering Van Gietijzer A is Electrobiochemisch Proces In Anaerobe Gronden [J]. Water, 1934,18:147-165
    [9] Butlin K.R. Sulphate-reducing bacteria and internal corrosion of ferrous pipes conveying water [J]. Nature,1949, 163: 26-27
    [10] Postgate J.R.The Sulphate Reducing Bacteria, 2~(nd) Edition [M].Cambridge, England: Camb Univ press, 1984
    [11] Pak KR, Lee HJ, Lee HK, Kim YK, Oh YS, Choi SC. Involvement of organic acid during corrosion of iron coupon Desulfovibrio desulfuricans [J]. J. Microbiol. Biotechnol., 2003,13:937-941
    [12] Pitonzo BJ, Castro P, Amy PS, Southam G, Jones DA, Ringelberg D. Microbiologically influenced corrosion capability of bacteria isolated from Yucca Mountain [J]. Corrosion, 2004, 60: 64-74
    [13] Beech IB, Coutinho CLM. Biofilms on corroding materials. In Biofilms in Medicine, Industry and Environmental Biotechnology -Characteristics, Analysis and Control.Edited by Lens P, Moran AP, Mahony T, Stoodly P, O'Flaherty V: IWA Publishing of Alliance House; 2003:115-131
    [14] Baker PW, Ito K, Watanabe K. Marine prosthecate bacteria involved in the ennoblement of stainless steel. Environ [J]. Microbiol., 2003, 5: 925-932
    [15] Kjellerup BV, Olesen BH, Nielsen JL, Frolund B, Odum S, Nielsen PH. Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography [J]. Water. Sci. Technol., 2003,47:117- 122
    [16] Zhang T, Fang HHP, KO BCB. Methanogen population in a marine biofilm corrosive to mild steel [J]. Appl. Microbiol. Biotechnol., 2003, 63:101-106
    [17] Shi X, Avci R, Lewandowski Z. Microbially deposited manganese and iron oxides on passive metals-their chemistry and consequences for material performance [J]. Corrosion, 2002, 58:728-738
    [18] Shi XM, Avci R, Lewandowski Z. Electrochemistry of passive metals modified by manganese oxides deposited by Leptothrix discophora: two-step model verified by ToF-SIMS [J]. Corros. Sci., 2002, 44:1027-1045
    [19] Dexter SC, Xu K, Luther GL. Mn cycling in marine biofilms: effect on the rate of localized corrosion [J]. Biofouling, 2003, 19:139-149
    [20] Carpen L, Raaska L, Kujanpaa K, Hakkarainen T. Effects of Leptothrix discophora on the potential behavior of stainless steel [J]. Materials Corrosion-Werkstoffe Korrosion, 2003, 54:515-519
    [21] Lee AK, Newman DK. Microbial iron respiration: impacts on corrosion processes [J]. Appl. Microbiol. Biotechnol., 2003, 62:134-139
    [22] Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F. Iron corrosion by novel anaerobic microorganisms [J]. Nature, 2004, 427: 829-832
    [23] Beech IB, Coutinho CLM. Biofilms on corroding materials. In Biofilms in Medicine,Industry and Environmental Biotechnology- Characteristics [J]. Analysis and Control.,2003:115-131
    [24] Beech IB. Biocorrosion: role of sulphate-reducing bacteria [J]. In Encyclopaedia of Environ. Microbiol, 2002:465-475
    [25] F.L. Roe, Z. Lewandowski, T. Funk. Simulating Microbiologically Influenced Corrosion by Depositing Extracellular Biopolymers on Mild Steel Surfaces [J]. Corros. Sci., 52(10):744-752
    [26] J.K. Glenn, M.H. Gold. Purification and characterization of an extracellular Mn(Ⅱ)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium [J]. Arch. Biochem. Biophys, 1985, 242: 329-341
    [27] Beech IB. Sulfate-reducing bacteria in biofilms on metallic materials and corrosion [J]. Microbiol. Today, 2003, 30: 115-117
    [28] Da Silva S, Basseguy R, Bergel A. Electron transfer between hydrogenase and 316L stainless steel: identification of a hydrogenase-catalyzed cathodic reaction in anaerobic MIC [J]. J Electroanal. Chem., 2004, 561:93-102
    [29] L'Hostis V, Dagbert C, Feron D. Electrochemical behavior of metallic materials used in seawater- interactions between glucose oxidase and passive layers [J]. Electrochim Acta, 2003,48:1451-1458
    [30] Busalmen JP, Vazquez M, de Sanchez SR. New evidences on the catalase mechanism of microbial corrosion [J]. Electrochim Acta, 2002, 47:1857-1865
    [31] Wang W, Wang J, Li X, Xu H, Wu J. Influence of biofilms growth on corrosion potential of metals immersed in seawater [J]. Materials Corrosion-Werkstoffe Korrosion, 2004,55:30-35
    [32] Von Wolzogen Kuehr, C A H Van der Vlugt, L S. Graphization of cast iron as an electrobiochemical process in anaerobic soils [J]. Water, 1934, 18:147-165
    [33] Booth G H, Tiller A K.Cathodic characteristics of mild steel in suspensions of sulphate-reducing bacteria [J]. Corros. Sci., 1968, 8: 583-600
    [34] de Romero MF, Duque Z, de Rincon OT, Perez O, Araujo I. Study of the cathodic despolarization theory with hydrogen permeation and the bacteria Desulfovibrio desulfuricans [J]. Revista De Metalurgia, 2003:182-187
    [35] de Romero MF, Duque Z, de Rincon OT, Perez O, Araujo I, Briceno B. Microbiological corrosion: hydrogen permeation and sulfate-reducing bacteria [J]. Corrosion, 2002, 58:429-435
    [36] Isabelle Dupont, Damien Fhon, Georges Novel. Effect of glucose oxidase activity on corrosion potential of stainless steels in seawater [J]. Int. Biodeterio. Biodegrad., 1998, 41:13-18
    [37] Dexter, S., Gao, G.Y.. Effect of seawater biofihns on corrosion potential and oxygen reduction of stainless steel [J]. Corrosion Nace, 1988, 44: 717-723
    [38] Lewandoski, Z., Lee, W., Characklis, W... Dissolved oxygen and pH microelectrode measurements at water immersed metal surfaces [J]. Corrosion Nace, 1989,45: 92-99
    [39] Chandrasekaran, P., Dexter, S... Mechanism of potential ennoblement on passive metals by seawater biofilms [J]. Corrosion Nace, 1993: 493-496
    [40] B.J. Little, P.A. Wagner, Z. Lewandowski. The relationship between biomineralization and microbiologically influenced corrosion. LABS 3, eds. C.C. Gaylarde, T.C.P. Barbosa and N.H. Gabilan, the Bri. Phycol. Soc., UK, 1998
    [41] I.G. Chamritski, G.R. Burns, B.J. Webster, N.J. Laycock, in: Proceeding of Corrosion 2001, Paper no. 01254, NACE, Houston, TX, 2001
    [42] W.H. Dickinson, F. Caccavo Jr., Z. Lewandowski. The ennoblement of stainless steel by manganic oxide biofouling [J]. Corros. Sci., 1996, 38 (8): 1407-1422
    [43] Z. Lewandowski, W. Dickinson, W. Lee. Electrochemical interactions of biofilms with metal surfaces [J]. Wat. Sci. Technol., 1997, 36 (1): 295-302
    [44] W.A. Hamilton. Microbially influenced corrosion in the context of metal microorganism interactions, in: L.V. Evans (Ed.), Biofilms: Recent Advances in Their Study and Control [M], Harwood Academic Publishers, Australia, 2001: 419 - 434
    [45] Kinzler K, Gehrke T, Telegdi J, Sand W. Bioleaching-a result of interfacial processes caused by extracellular polymeric substances (EPS) [J]. Hydrometallurgy, 2003, 71:83-88
    [46] Sand W. Microbial life in geothermal waters [J]. Geothermics, 2003, 32:655-667
    [47] Rohwerder T, Gehrke T, Kinzler K, Sand W. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation [J]. Appl.Microbiol. Biotechnol., 2003, 63:239-248
    [48] Hamilton WA. Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis [J]. Biofouling, 2003, 19:65-76
    [49] R P GEORGE, P MURALEEDHARAN, K R SREEKUMARI and H S KHATAK. Influence of Surface Characteristics and Microstructure on Adhesion of Bacterial Cells onto a Type 304 Stainless Steel [J]. Biofouling, 2003,19 (1):1-8
    [50] J.S. Potekhina, N.G. Sherisheva, L.P. Povetkina, A.P. Pospelov, T.A. Rakitina, F.Warnecke, G. Gottschalk. Role of microorganisms in corrosion inhibition of metals in aquatic habitats [J]. Appl. Microbiol. Biotechnol., 52 (1999) 639-646
    [51] C.O. Obuekwe, D.W.S. Westlake, J.A. Plambeck, F.D. Cook. Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil. I. Polarization Characteristics [J]. Corrosion, 1981, 37: 461-467
    [52] A. Jayaraman, E.T. Cheng, J.C. Earthman, T.K. Wood. Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion [J]. Appl. Microbiol. Biotechnol., 1997,48: 11-17
    [53] M. Dubiel, C.H. Hsu, C.C. Chien, F. Mansfeld, D.K. Newman. Microbial iron respiration can protect steel from corrosion [J]. Appl. Environ. Microbiol., 2002, 68 (3): 1440-1445
    [54] A.K. Lee, D.K. Newman. Microbial iron respiration: impacts on corrosion processes [J]. Appl. Microbiol. Biotechnol., 2003, 62:134-139
    [55] F. Mansfeld, C.H. Hsu, D. O╮nek, T.K. Wood, B.C. Syrett. Corrosion Control Using Regenerative Biofilms on Aluminum 2024 and Brass in Different Media [J]. Electrochem. Soc. Proc., 2001, 2000-24: 99-118
    [56] F. Mansfeld, C.H. Hsu, D. O?rnek, T.K.Wood, B.C. Syrett. Corrosion control using regenerative biofilms on aluminum 2024 and brass in different media [J]. J. Electrochem. Soc., 2002, 149:130-138
    [57] D. O?rnek, A. Jayaraman, T.K.Wood, Z. Sun, C.H. Hsu, F. Mansfeld. Pitting corrosion control using regenerative biofilms on aluminium 2024 in artificial seawater [J]. Corros.Sci., 2001,43:2121-2133
    [58] D. O?rnek, T.K.Wood, C.H. Hsu, Z. Sun, F. Mansfeld. Pitting corrosion control of aluminum 2024 using protective biofilms that secrete corrosion inhibitors [J]. Corrosion, 2002,58:761-767
    [59] F. Mansfeld, C.H. Hsu, Z. Sun, D. O╮nek, T.K.Wood. Ennoblement - a common phenomenon? Corrosion, 2002, 58: 187-191
    [60] D. O¨nek, A. Jayaraman, B.C. Syrett, C.H. Hsu, F. Mansfeld, T.K. Wood. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or y -polyglutamate [J]. Appl. Microbiol. Biotechnol., 58 (2002) 651-657
    [61] D. O¨nek, T.K.Wood, C.H. Hsu, F. Mansfeld. Corrosion control using regenerative biofilms (CCURB) on brass in different media [J]. Corros. Sci., 2002, 44:2291-2302
    [62] J.C. Earthman, P. Arps, Z.S. Farhangrazi, K. Trandem, T. Wood, Corrosion/2001 Paper no. 1271, NACE, 2001
    [63] A. Nagiub, F. Mansfeld. Evaluation of microbiologically influenced corrosion inhibition (MICI) with EIS and ENA [J]. Electrochim Acta, 2002,47:2319-2333
    [64] M. Dubiel, C.C. Chien, C.H. Hsu, F. Mansfeld, D.K. Newman. Microbial Iron Respiration Can Protect Steel from Corrosion [J]. Appl. Environ. Mirobiol, 2002, 68: 1440-1445
    [65] G.Geesey, L.Jang. Binding of Metal Ions by Extracellular polymers, in Metals, Ions, and Bacteria [M].T.Beveridge, R.Doyle, New York, NY: John Wiley &Sons, 1988:325
    [66] Little and R.Ray. A perspective on corrosion Inhibition by biofilms [J].Corrosion, 2002,58(5):424-428
    [67] Florian Mansfeld, Brenda Little. A Technical Review of Electrochemical TechniquesApplied to Microbiologically Influenced Corrosion [J]. Corros. Sci., 1991, 32(3): 247-272
    [68] 吴建华,刘光洲,于辉,等.海洋微生物腐蚀的电化学方法.腐蚀与防护,1999, 5(2):231-237
    [69] MARIA JO(?) O VIEIRA, ISABEL ALEXANDRA PINHO, SALOM(?) GIA~ O and MARIA IRENE MONTENEGRO. The Use of Cyclic Voltammetry to Detect Biofilms formed byPseudomonas fluorescens on Platinum Electrodes [J]. Biofouling, 2003, 19 (4):215-222
    [70] Chang H T, Rittmann B E. Biofilm loss during samp le p reparation for scanning electron microscopy [J]. Wat. Res., 1986, 20: 1451-1456
    [71] Little B, Wagner P, Ray R, et al. Biofilms: an ESEM evaluation of artifacts introduced during SEM p reparation [J]. J. Ind. Microbial., 1991, 8: 213-222
    [72] Sutton N A, HughesN, Handley P S. A comparison of conventional SEM techniques, low temperature SEM and the electroscan wet scanning electron microscope to study the structure of a biofilm of Strep tococcus crista CR3 [J]. J. Appl. Bacteriol., 1994, 76: 448-454
    [73] Patricia S Guiamet, Sandra G, G(?)mez de Saravia, H(?)ctorA Videla. An innovative method for p reventing biocorrosion through microbial adhesion inhibition [J]. Int. Biodeterio. Biodegrad., 1999,43:31-35
    [74] Lawrence JR, Wolfaardt GM & Korber DR. Determination of diffusion coefficients in biofilm by confocal laser microscopy [J]. Appl. Environ. Microbiol., 1994, 60 (4): 1166-1173
    [75] Beech IB, Cheung CW S, Johnson D B, et al. Comparative studies of bacterial biofilms on steel surfaces using atomic force microscopy and environmental scanning electron microscopy [J]. Biofouling, 1996, 10: 65-77
    [76] Xu L C, Fang H H P, Chan K Y. Atomic force microscopy study of microbiologically influenced corrosion ofmild steel [J]. J. Electrochem. Soc., 1999,146:4455-4460
    [77] GeiserM, Avci R, Lewandowski Z. Microbially initiated p itting on 316L stainless steel [J].Int. Biodeterio. Biodegrad., 2002,49: 235-243
    [78] Xu L C, Chan K Y, Fang H H P. App lication of atomic force microscopy in the study ofmicrobiologically influenced corrosion [J]. Mater. Characterization, 2002,48: 195-203
    [79] Goddard D T, Steele A,Beech IB. Towards in situ atomic force microscopy imaging of biofilm growth on stainless steel [J]. Scanning Microsc., 1996, 10: 983-988
    [80] Telegdi J, Keresztes Zs, Palinkas G, et al. Microbially influenced corrosion visualized by atomic force microscopy [J]. Appl. Phys. A, 1998, 66: 639-642
    [81] Bremmer P J,Geesey G G,Drake B.Elucidating corrosion phenomena related to biofilms on metals surface using atomic force microscopy[J].Corr. Microbiol, 1992,24:223-229
    [82] Steele A, Goddard D T, Beech I B. Atomic force microscopy study of microbionlogical influenced corrosion SRB biofilms on steel surface [J].Int. Biodeterior. Biodegrad., 1994, 34:35
    [83] BusscherH J, Poortinga A T, Bos R. Lateral and perpendicular interaction forces involved in mobile and immobile adhesion of microorganisms on model solid surfaces [J]. Cur. Microbiol., 1998, 37(5): 319-323
    [84] Heber J R, Sevenson R, Boldman O. Infrared spectroscopy as a means for identification of bacteria [J]. Science, 1952, 116: 111-112
    [85] Norris K P. Infrared spectroscopy and its app lication to microbiology [J]. Hygiene, 1959, 57: 326-345
    [86] NivensD E, Schmitt J. Multichannel ATR /FTIR spectrometer for online examination of microbial biofilms [J]. Appl. Spectroscopy, 1993, 5: 668 -671
    [87] Schmitt J, Flemming H C. Water binding in biofilms [J]. Wat. Sci. Tech., 1999, 39: 77-82
    [88] Schmitt J, NivensD, White D C, et al. Changes of biofilm p roperties in response to sorbed substances-an FTIR-ART study [J]. Wat. Sci. Tech., 1995, 32: 149 -155
    [89] Bremer PJ, Geesey GG, Drake B, Jolley JG & Hankins MR. Characterization of a thin copper film to investigate microbial biofilm formation [J]. Surface and Interface Anal. 1991, 17:767-772
    [90] Chen G, Sadowski RA & Clayton CR. Influence of sulfatereducing bacteria on passive film formed on austenitic stainless steel AISI 304 [J]. Corrosion, 1995:217-225
    [91] Chen G, Kagwade S, French GE, Clayton CR, Ford TE & Mitchell R. Metal ion and exopolymer interaction: a surface analytical study [J]. Corrosion, 1996, 52 (12): 891-899
    [92] Chen G. [D]. Department of Materials Science and Engineering, State University of New York at Stony Brook, New York
    [93] Sadowski R.A., Chen G., et al.A scanning auger microprobe analysis of corrosion products associated with SRB [J].Corrosion, 1995, 218-225
    [94] Clayton R, Investigation to the susceptibility of corrosion resistant alloys to biocorrosion [J]. Report, 1996:251-270
    [95] 王伟,王佳,徐海波,李相波.微生物腐蚀研究中微生物学方法和微生物膜的化学分析.腐蚀科学与防护技术,2007,19(1):38-41
    [96] M Greetham, B Holden, J Scutt. Use of enzyme in the measurement of biofilm using bioluminescence [J]. Wat. Sci. Tech., 1995, 32:221-230
    [97] Webster J J, Hamp ton G J, Wilson J T, et al. Determination of microbial cell number in subsurface samples [J]. Ground water, 1985, 23:17-25
    [98] Amann R I, LudwigW, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiol. Rev, 1995, 59: 143-149
    [99] Mark Hemandez, Eric A Marchand, Deborah Roberts, et al. In situ assessment of active Thiobacillus species in corroding concrete sewers using fluorescent RNA p robes [J]. Int. Biodeterio. Biodegrad., 2002, 49:271-276
    [100] Satoshi Okabe, Hisashi Satoh, Tsukasa Itoh, et al. Microbial ecology of sulfate-reducing bacteria in wastewater biofilms analyzed by microelectrodes and FISH ( fluorescent in situ hybridization) technique [J]. Wat. Sci. Tech, 1999, 39 (7): 41-48
    [101] S Campbell, G Geesey, Z Lewandowski, et al. Influence of the distribution of the Manganese Oxidizing bacterium, Lep tothrix Discophora, on ennoblement of type 316L stainless steel [J]. Corrosion, 2004, 60:670-678
    [102] Mrrt Chattotaj,Miehael J Fehr, Steven R Hatch, et al. Online measurement and control of microbiological activity in industrial water systems [J]. Mat. Perf., 2002, 4:40-48
    [103] Phillip W Butterfield ,AlexM Bargmeyer, Anne K Camper, et al. Modified enzyme activity assay to determine biofilm biomass [J]. J. Microbiol. Meth., 2002, 50:23-30
    [104] Brenda J Little, Patricia Wagner. Factors Influencing the Adhesion of Mcroorganisms to Surfaces [J]. J Adhesion, 1986, 20:187-210
    [105] 陈传煊.生物物理化学.北京:科学技术文献出版社,1997:221-223
    [106] Mina Okochi, Tadashi Matsunaga. Electrochemical disinfection of bacteria in drinking water using activated carbon fibers [J]. Biotechn. Bioeng., 1994, 43: 429-433.
    [107] Reza Javaherdashti. A review of some characteristics of MIC caused by sulfate-reducing bacteria: past, present and future [J]. Anti Corrosion and Materials ,1999,46(3) :173-180.
    [108] 朱绒霞,那静彦.综述硫酸盐还原菌腐蚀的防护措施.石油化工腐蚀与防护,1999,16(3):50-52
    [109] Gevertz D, Jenneman G E, Zimmerman S. Field demonstration of sulfide removal in reservoir brine by bacteria indigenous to a Canadian reservoir [J]. Proceeding of the Fifth International Conference on MEOR and Related Biotechnology for Solving Environmental Problems. Bryand: US Dept. Of Energy, 1995, 295-307
    [110] 汪梅芳,刘宏芳,许立铭.细菌竞争生长在微生物腐蚀防治中的应用研究.中国腐蚀与防护学报,2004,124(13):159-162
    [111] Hamza, A., Pham, V.A., Matsuura, T., Santerre, J.P.. Development of membranes with low surface energy to reduce the fouling in ultrafiltration applications [J]. J. Memb. Sci., 1997, 131:217-227
    [112] Dexter, S.C., Sullivan, J.D., Williams, J., Watson, S.W... Influence of substrate wettabilityon the attachment of marine bacteria to various surfaces [J]. Appl. Microbiol., 1975, 30:298-308
    [113] Milne, A., Callow, M.E... Non-biocidal anti-fouling processes. In: Smith, R. (Ed.), Polymers in Marine Environment [M]. The Institute of Marine Engineers, London, 1985: 229-233
    [114] Brink, L.E.S., Elbers, S.J.G., Robbertsen, T., Both, P... The anti-fouling action of polymers preadsorbed on ultrafiltration and microfiltration membranes [J]. J. Memb. Sci., 1993, 76: 281-291
    [115] Fletcher, M., Marshall, K.C... Are solid surfaces ecological significance to aquatic bacteria? [J]. Adv. Microb. Ecol., 1982, 47:135-143
    [116] Fattom, A., Shilo, M... Hydrophobicity as an adhesion mechanism of benthic cyanobacteria [J]. Appl. Environ. Microbiol., 1984, 47:135-143
    [117] Baier, R.E... Adsorption of Micro-organisms to Surface [M]. Wiley Interscience Publishers, New York, 1980:59-104
    [118] Banerjee, G.; Malhotra, S. N. Contribution to adsorption of aromaticamines on mild steel surface from HCl solutions by impedance, UV, and raman spectroscopy [J]. Corrosion 1992, 48:10-15
    [119] El Sayed, A. Phenothiazine as inhibitor of the corrosion of cadmium in .acidic solutions [J]. J. Appl. Electrochem., 1997, 27: 193-198
    [120] El Azhar, M.; Mernari, B.; Traisnel, M.; Bentiss, F.; Lagrene'e, M. Corrosion inhibition of mild steel by the new class of inhibitors [2, 5-bis-(n-pyridyl)-1, 3, 4-thiadiazoles] in acidic media [J]. Corros. Sci., 2001, 43:2229-2238
    [121] Bentiss, F.; Lebrini, M.; Vezin, H.; Lagrene'e, M. Experimental and theoretical study of 3-pyridyl-substituted 1, 2, 4-thiadiazole and 1, 3, 4-thiadiazole as corrosion inhibitors of mild steel in acidic media [J]. Mater.Chem. Phys., 2004, 87: 18-23
    [122] Zhang, D.; Gao, L.; Zhou, G. Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercaptogroup [J]. Corros. Sci., 2004, 46: 3031-3040.
    [123] Tan, Y. S.; Srinivasan, M. P.; Pehkonen, S. O. Self-assembled organic thin films on electroplated copper for prevention of corrosion [J]. J. Vac. Sci. Technol. A, 2004, 22: 1917-1925
    [124] Morales-Gil, P.; Negro'n-Silva, G.; Romero-Romo, M.; A(A|¨) ngeles-Cha'vez, C.; Palomar-Pardave', M. Corrosion inhibition of pipeline steel grade API 5L X52 immersed in a 1 M H2SO4 aqueous solution using heterocyclic organic molecules [J]. Electrochim. Acta, 2004, 49:4733-4741
    [125] Geler, E., Azambuja, D. S. Corrosion inhibition of copper in chloride solutions by pyrazole [J]. Corros. Sci., 2000, 42:631-643
    [126] Boulange', I.; Petermann, L. Processes of bioadhesion on stainless steel surfaces and cleanability: a review with special reference to the food industry [J]. Biofouling, 1996, 10: 275-300
    [127] O'Toole, G.; Kaplan, H. B.; Kolter, R. Biofilm formation as microbial development [J]. Annu. Rev. Microbiol., 2000, 54:49-79
    [128] Boyd, A.; Chakrabarty, A. M. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide [J]. J. Ind. Microbiol., 1995, 15:162-168
    [129] Allison, D. G. The biofilm matrix. Biofouling, 2003, 19: 139-150
    [130] Batista, J. F.; Pereira, R. F. C.; Lopes, J. M.; Carvalho, M. F. M.; Feio, M. J.; Reis, M. A. M. In situ corrosion control in industrial water systems [J]. Biodegfadation, 2000, 11, 441-448
    [131] Ramesh, S.; Rajeswari, S. Evaluation of inhibitors and biocide on the corrosion control of copper in neutral aqueous environment [J]. Corros. Sci., 2005, 47, 151-169.
    [132] Xiaoxia Sheng, Yen-Peng Ting, and Simo Olavi Pehkonen. Evaluation of an Organic Corrosion Inhibitor on Abiotic Corrosion and Microbiologically Influenced Corrosion of Mild Steel [J]. Ind. Eng. Chem. Res., 2007, 46:7117-7125
    [133] 薛廷耀.海洋细菌学.北京:科学出版社,1958
    [134] 付玉斌.几种浸海材料表面生物粘膜中异样细菌的演化.材料开发与应用,2000,15(4):17-21
    [135] Suny C W. The use of biocides to control sulfate reduced bacteria in biofilm on mild steel surface [J]. Biofouling, 1996, 9 (3):231-249
    [136] 纪伟尚.海洋细菌在生物表面和非生物表面附着研究.青岛海洋大学学报,1991,21(2):61-68
    [137] 洪义国,孙谧,张云波,李勃生.16SrRNA在海洋微生物系统分子分类鉴定及分子检测中的应用[J].海洋水产研究,2002,23(1):58-63
    [138] 周德庆.微生物学教程.北京:高等教育出版社,1993
    [139] 马迪根,马丁克.微生物生物学.北京:科学出版社,2001,767-763
    [140] Shobhana Chongdar, G.Gunasekaran, Pradeep Kumar. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochimica Acta, 2005, 50:4655-4665
    [141] 王绍树.食品微生物实验.天津:天津大学出版社出版,1996
    [142] James A. Coyer, Alejandro Cabello- Pasini, Hewson Swirl and Randall S. Alberte. N_2 fixation in marine heterotrophic bacteria: Dynamics of environmental and molecular regulation [J]. Proc. Natl. Acad. Sci., 1996, 93:3575-3580
    [143] Baumann P, Schubert R H W. Family Ⅱ Vibrionaceae Veron 1965, 5245AL In: Krieg N R, Holt J G (Eds), Bergey's Manual of Systematic Bacteriology [M]. Ba ltimore: Williams& W Ilkins, 1984:516-517
    [144] Kjell Magne Fagerbakke, Mikal Heldal, Svein Norland. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria [J]. Aquat. Microb. Ecol., 1996, 10:15-27
    [145] 王伟.海洋环境中微生物膜与金属电化学状态相关性研究:[博士学位论文].青岛:中国海洋大学化工学院,2003
    [146] 皮振邦,樊友军,华萍.混合菌种对碳钢腐蚀行为的电化学研究.腐蚀科学与防护技术,2002,14(3):166-168
    [147] 王庆飞,隋静,苏润西.模拟生物膜方法研究钢在海水中的腐蚀行为.电化学,1999,5(1):55-58
    [148] R. Johnsen, E. Bardal. Cathodic properties of different stainless steels in natural seawater [J]. Corrosion, 1985, 41:296-302
    [149] S.Motoda, Y.Suzuki, T.shinohara. The effect of marine fouling on the ennoblement of electrode potential for stainless steels [J]. Corrosion Sci., 1990, 31:515-520
    [150] R. Cottis, S. Turgoose, Analysis of electrochemical impedance spectroscopy data, in: B.C. Syrett (Ed.), Corrosion testing made easy: Electrochemical Impedance and Noise Analysis [M], NACE International, Houston, TX, 1999
    [151] F.Blekkenhorst, G.M. Ferrari, C.J. van der Wekken, et al. Development of high strength low alloy steels for marine applications--Part 2: Simulation of marine exposure of steel by means of laboratory tests in flowing seawater [J]. J. Bri. Corros., 1988, 23 (3): 165-171
    [152] B.D. Craig. Handbook of corrosion data [M], Ohio: ASM International, 1989
    [153] Robert E. Melchers, Robert Jeffrey. Early corrosion of mild steel in seawater [J]. Corros. Sci., 2005, 47:1678-1693
    [154] Robert E. Melchers, Robert Je.rey. Early corrosion of mild steel in seawater [J]. Corros. Sci.., 2005,47:1678-1693
    [155] 赵永韬,李海洪,陈光章.铜合金在海水中电化学阻抗谱特征研究.海洋科学,2005,29:21-25
    [156] WERN ER S E, JO HNSON C A, LA YCOCK N J, et al. Pitting of type 304 stainless steel in the presence of a biofilm containing sulphate reducing bacteria [J]. Corros. Sci., 1998, 40 (3):465-480
    [157] Koenig D W, Mishra S K. Removal of burkholderiacepacca biofilm with oxidants [J]. Biofouling, 1995, 9(1):51-62
    [158] Ravenschlag K, Sahm K, Pernthaler J, et al. High bacterial diversity in permanently cold marine sediments [J]. Appl. Environ. Microbiol., 1999, 65(9):3982-3989
    [159] 蔡妙英.细菌名称.北京:科学出版社,1996
    [160] M. Papapetropoulou. Anaerobes in Waters [J]. Anaerobe, 1997, 3:111-115
    [161] 朱素兰,侯宝荣,张经磊,等.微型生物与金属腐蚀的研究.海洋环境科学,2000,19(4):27-30
    [162] Iverson W P.Microbial corrosion of metals [J]. Adv. Appl. Microbiol., 1987, 32:36
    [163] 郑淳之.水处理剂和工业循环冷却水系统分析方法.北京:化学工业出版社.2000
    [164] 刘建华,杨应广,李松梅.A3钢在厌氧环境中的微生物腐蚀电化学特性研究.材料保护,2000,33(11):32-37
    [165] D.E. Nivens, P.D. Nichols, J.M. Henson, G.G.Geesey and D.C. White. Reversible acceleration of the corrosion of AISI 304 stainless steel exposed to seawater induced by growth and secretions of the marine bacterium Vibrio natriegens [J]. Corrosion, 1986, 42: 204-210
    [166] Nadia D. Benboudiz-rolletn, M. Conte, J.Guezennec, D. Prieur. Monitoring of a Vibrio natriegens and Desulfovibrio vulgaris marine aerobic biofilm on a stainless steel surface in a laboratory tubular flow system [J]. Journal of Appli. Bacteriol., 1991, 71:244-251
    [167] N.E. Dowling, J.Guezennec, M.L. Lemoine, A.Tunlid and D.C. White. Analysis of carbon steels affected by bacteria using electrochemical impedance and direct current techniques [J]. Corrosion, 1988, 44:869-874
    [168] T.M.P. Nguyen, Microbiologically induced corrosion of AISI 304 stainless steel by Desulfovibrio desulfuricans in artificial seawater, Master Thesis, National University of Singapore, 2004.
    [169] 黄桂桥.金属在海水中的腐蚀电位研究.腐蚀与防护,2000,21(1):8-11
    [170] 王佳.有机缓蚀剂作用机理和脱附行为的研究:[博士学位论文].沈阳:中国科学院金属研究所,1990
    [171] Mansfeld F, Kendig MW. 162nd Meeting, the Etetrochem. Soc.Abstract, Detroit, 1982.64
    [172] R. Cottis, S. Turgoose, Analysis of electrochemical impedance spectroscopy data, in: B.C. Syrett (Ed.), Corrosion testing made easy: Electrochemical Impedance and Noise Analysis, NACE International [M], Houston, TX, 1999, pp. 35-49
    [173] Xiaoxia Sheng, Yen-Peng Ting, Simo Olavi Pehkonen. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316 [J]. Corros. Sci., 2007, 49: 2159-2176
    [174] 赖春晓.金属材料的微生物腐蚀研究进展.腐蚀与防护,1989,11(3):4-10
    [175] Mcneil M B. Cathodic Characteristics of Mild Steel in Suspection of Sulfate-Reducing Bacteria [J]. Corrosion, 1991, 47(9): 74-91
    [176] Pope D H, Duquet Te D J, Johannes A H, et al .Microbiologically influenced corrosion of indust rial alloys [J]. Mat. Perf., 1984, 23 (4):4
    [177] Mcneil M B. Odom A. L. Prediction of sulfide corrosion of alloys induced by consortia containing SRB[C]. Int. Sympos. on MIC Testing, 1992
    [178] Laque F L and Clapp W F. Relationships between corrosion and fouling of Cu-Ni alloys in sea water [J]. Trans. Electrochem. Soc., 1945, 87:103-115
    [179] Efird K D., Moller, G.E... Electrochemical characteristics of AISI 304 and 316 stainless steels in fresh water as functions of chloride concentration and temperature [J]. Mat. Perf., 1979, 18(7): 34-38
    [180] Moreton B. Copper alloys in marine environments today and tomorrow-Part Ⅰ. [J]. Corrosion Prevention & Control, 1985, (12): 122-126
    [181] 曹楚南.电化学腐蚀原理.北京:化学工业出版社,2004
    [182] M.E.Folquer, S.B.Ribotta, S.GReal, et al. Study of Copper Dissolution and Passivation Processes by Electrochemical Impedance Spectroscopy [J]. Corrosion,2002,58 (3) :240-247
    [183] G.Kear, B.D.Barker, K.Stokes, F.C.Walsh. Electrochemical corrosion behaviour of 90-10 Cu-Ni in chloride-based electrolytes [J]. Appl. Electrochem., 2004, 34:659-669
    [184] 徐海波,付洪田,赵广宇,等.铜阳极活性区溶解机制的电化学研究.中国腐蚀与防护学报,1999,19(1):27-33
    [185] H.P.Dhar, R.E.White, G.Bumell, et al. Corrosion of Cu and Cu-Ni Alloys in 0.5M NaCl and in Synthetic Seawater [J]. Corrosion, 1985, 41 (6): 317-323
    [186] James A. Coyer, Alejandro Cabello- Pasini, Hewson Swirl and Randall S. Alberte. N_2 fixation in marine heterotrophic bacteria: Dynamics of environmental and molecular regulation [J]. Proc. Natl. Acad. Sci., 1996, 93:.3575-3580
    [187] James B. Howard and Douglas C. Rees, Structural Basis of Biological Nitrogen Fixation [J].Chem. Rev., 1996 96:2965-2982
    [188] V. Zinkevich, I. Bogdarina, H. Kang, M.A.W. Hill, R. Tapper, I.B. Beech. Characterisation of exopolymers produced by different isolates of marine sulphate-reducing bacteria [J]. Int. Biodeterio. Biodegrad., 1996, 37: 163-172
    [189] X.H. Zhang, S.O. Pehkonen, N. Kocherginsky, G.A. Ellis. Copper corrosion in mildly alkaline water with the disinfectant monochloramine [J]. Corros. Sci., 44 (2002) 2507-2528
    [190] S.J. Yuan, S.O. Pehkonen. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corros. Sci., 49 (2007) 1276-1304
    [191] 朱小龙,雷廷权.70Cu-30Ni合金海水腐蚀产物膜形成过程.金属学报,1997,33(12):1257-1260
    [192] 刘绍峰,林乐耘.Cu-Ni合金表面膜在海水中的转化行为.材料研究学报,1998,12(1):20-24
    [193] Peter Angell, Understanding Microbially Influenced Corrosion as biofilm-medicated changes in surface chemistry [J]. Cur. Opin. Biotechnol. 1999, 10(3):269-272
    [194] R.G.J.Edyvean, J.Benson, C.J.Thomas, I.B.Beech, H.A.Videla, Biological influences on Hydrogen Effects in Steel in seawater [J].MP, 1998, 37(4):40-44
    [195] Durk de Beer, Paul Stooldley, et al., Effects of biofilm structures on oxygen distribution and mass transport [J].Biotechn. Bioeng., 1994, 43(11): 1131-1138
    [196] R.D.Bryant, W.Jansen, J.Boivin, E.J.Laisheley, J.W.Costerton, Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries [J], Appl.Environ. Microbiol., 1991, 57(8):2293-2301
    [197] 孙成,韩恩厚,张淑泉.土壤中SRB对1Cr13不锈钢腐蚀的影响.材料研究学报,2003,17(2):192-197
    [198] 李相波,王伟,王佳,等.海水中微生物膜的生长对金属腐蚀过程的影响.腐蚀科学与防护技术,2002,14(4):221-225
    [199] 蒋挺大.壳聚糖.北京:化学工业出版社,2001,3:1-17
    [200] 郎亚军,张答花,王运吉.甲壳素的研究和应用.中国食品添加剂,2004,1:83-86
    [201] Tokura, S.K.UenoS, MiyazakiandN. Molecular Weight Dependent Antimicrobial Activity of Chitosan [J]. Macromol. Symp., 1997, 120:1-6.
    [202] 郑连英,朱江峰,孙昆山.不同分子量壳聚糖的抗菌性能研究.中国甲壳资源研究开发应用学术研讨会,青岛,1997.7
    [203] I.M.Helander, E.-L.Nurmiaho-Lassila, R.Ahvenainen, J.Rhoades, S.Roller. Chitosan Disrupts the Barrier Properties of the Outer Membrane of Gram-negative Bacteria[J].Int. Food Microbiol.2001.71: 235-244
    [204] 黎军英,李红叶.壳聚糖对桃褐腐病菌的抑菌作用.电子显微报,2002,21(2):138-140
    [205] 安正国.新型防污涂料组成设计及其防污性能研究:[硕士学位论文].青岛:中国海洋大学化工学院,2007
    [206] G. Chen, R.J. Palmer, D.C. White. Instrumental analysis of microbiologically influenced corrosion [J]. Biodegradation, 1997, 8:189-200
    [207] Sathiyanarayanan S, Marikkannu C, Palaniswamy N, Corrosion inhibition effect of tetramines for mild steel in 1M HCl [J]. Appl. Surf. Sci., 2005(241):477-484
    [208] M.Lebrini,M.Lagren(?)e,H.Vezin,L.Gengembre et.al,Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel innormal hydrochloric acid medium[J]. Corros. Sci., 2005(47): 485-505
    [209] M.E1 Azhara, M.Traisnelb, B.Mernaria, etal, Electrochemical and XPS studies of 2,5-bis(n-pyridyl)-1,3,4-thiadiazoles adsorption on mild steel in perchloric acid solution[J]. Appl. Surf. Sci., 2002(185): 197-205
    [210] F. Bentiss, Mounim Lebrini, Herv(?)Vezin, etal. Experimental and theoretical studyof 3-pyridyl-substituted 1, 2, 4-thiadiazole and 1, 3, 4-thiadiazole as corrosion inhibitors of mild steel in acidic media [J]. Mat. Chem. Phys., 2004(87): 18-23
    [211] M.Lagren(?)e, B.Mernari, M.Bouanis etal. Study of the mechanism and inhibiting efficiency of 3, 5-bis (4-methylthiophenyl)-4H-1, 2, 4-triazole on mild steel corrosion in acidic media [J]. Corros. Sci., 2002(44):573-588
    [212] M.El Azhar,B.Mernari,M.Traisnel etal Corrosion inhibition of mild steel by the new class of inhibitors [2,5-bis(n-pyridyl)-1,3,4-thiadiazoles] in acidic media [J].Corros.Sci.,2001(43):2229-2238
    [213] E.McCafferty and N.Hackerman. Double layer capacitance of iron and corrosion inhibition with polymethylene diamines [J]. J. Electrochem. Soc., 1972, 119(1):146-154
    [214] L I Antropov. A correlation between kinetics of corrosion and the inhibition by organic compounds [J]. Corros. Sci., 1965(7):607-620
    [215] A. Popova, E. Sokolova, S. Raicheva,M. Chritov. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives [J].Corros. Sci., 2003, 45: 33-58
    [216] A.P. Yadav, A. Nishikata, T. Tsurn. Degradation mechanism of galvanized steel in wet-dry cyclic environment containing chloride ions [J]. Corros. Soc, 2004, 56:361-376
    [217] I.L. Rozenfeld, Corrosion Inhibitors [M], McGraw-Hill Inc., New York, 1981: 182
    [218] T. Mimani, S.M. Mayanna, Munichandraiah. Influence of additives on the electrodeposition of nickel from a Watts bath: a cyclic voltammetric study [J]. J. Appl. Electrochem, 1993,23: 339-345
    [219] J. Ueara, K. Aramaki. A surface-enhanced Raman spectroscopy study on adsorption of some sulfur-containing corrosion inhibitors on iron in hydrochloric acid solutions [J]. J.Electrochem. Soc., 1991, 138:3245-3251
    [220] I. Granese. Study of the inhibitory action of nitrogen-containing compounds [J]. Corrosion,1988,44:322-327
    [221] R.F.V. Villamil, P. Corio, J.C. Rubin, S.M.L. Agostinho. Sodium dodecylsulfate-benzotriazole synergistic effect as an inhibitor of processes on copper | chloridric acid interfaces [J]. J. Electroanal.Chem, 2002, 535:75-83
    [222] R.F.V. Villamil, P. Corio, J.C. Rubin, S.M.L. Agostinho. Effect of sodium dodecylsulfate on copper corrosion in sulfuric acid media in the absence and presence of benzotriazole [J]. J. Electroanal.Chem, 1999, 472:112-119
    [223] F. Bentiss, M. Lagren(?)e, M. Traisnel. The corrosion inhibition of mild steel in acidic media by a new triazole derivative [J]. Corros. Sci, 1999, 41:789-503
    [224] J.B.Foresman, A E Frish, Exploring Chemistry With Electronic Structure Metheds, 2nd Edition, Gaussian. Inc., 1998
    [225] M.Letini, M.Lagrenee, H.Vezin, L.Gengembre, etal, Electrochemical and quznrum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium [J]. Corros. Sci., 2005,470: 485-506
    [226] M.EI Azhara, M.Trainelb, B.Mrenaria, etal, Electrochemical and XPS studies of 2,5-bis(n-pyridyl)-1,3,4-thiadiazoles adsorption on mild steel in perchloric acid slution [J].Appl. Surf. Sci., 2002,185:197-205
    [227] F Bentiss, Mounim Lebrii, Herve Vezin et al. Experimental and theoretical study of 3-pyridyl-substituted 1, 2, 4-thiadiazole and 1, 3, 4-thiadiazole as corrosion inhibitors of mild steel in acidic media [J]. Mat. Chem. Phys., 2004, 87:18-23
    [228] R.S.Mulliken, Electronic Population Analysis on LCAO-MO Molecular Wave Functions [J]. J. Chem. Phys., 1955, 23: 1833-1840
    [229] Donald W.Rogers, Computation Chemistry Using the PC [M], Third Edition, John Wiley & Sons, 2003
    [230] M.EI. Azhar, B. Mernari, M. Traisnel, F. Bentiss, M. Lagrenee. Corrosion inhibition of mild steel by the new class of inhibitors [2, 5-bis (n-pyridyl)-1, 3, 4-thiadiazoles] in acidic media [J]. Corros. Sci., 2001, 43:2229-2238
    [231] M. Ozcan, J. Dehri, M. Erbil. Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure [J]. Appl. Surf. Sci., 2004, 236:155-164
    [232] H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh. Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid [J]. Appl. Surf. Sci., 2005, 239:154-164
    [233] E. McCafferty, N. Hackerman. Double layer capacitance of iron and corrosion inhibition with polymethylene diamines [J]. J. Electrochem. Soc., 1972, 119 (2): 146-154
    [234] Romana Sulakova, Radim Hrdina, Grac,a M.B. Soares. Oxidation of azo textile soluble dyes with hydrogen peroxide in the presence of Cu (Ⅱ)-chitosan heterogeneous catalysts [J].Dyes and Pigments, 2007, 73:19-24
    [235] Fan Zhao, Binyu Yu, Zhengrong Yue, Ting Wang, Xian Wen, Zongbin Liu, Changsheng Zhao. Preparation of porous chitosan gel beads for copper (Ⅱ) ion adsorption [J]. J. Haz. Mat., 2007, 147:67-73
    [236] A. Chetouani, A. Aouniti, B. Hammouti. Corrosion inhibitors for iron in hydrochloride acid solution by newly synthesized pyridazine derivatives [J]. Corros. Sci., 2003, 45: 1675-1664
    [237] A.E. Stoyanova, E.I. Sokolova, S.N. Raicheva. The inhibition of mild steel corrosion in 1 M HCL in the presence of linear and cyclic thiocarbamides桬ffect of concentration and temperature of the corrosion medium on their protective action [J]. Corros. Sci., 1997, 39:1595-1604
    [238] M. Lagrenee, B. Mernari, M. Bouanis, M. Traisnel, F. Bentiss. Study of the mechanism and inhibiting efficiency of 3, 5-bis (4-methylthiophenyl)-4H-1, 2, 4-triazole on mild steel corrosion in acidic media [J]. Corros. Sci., 2002,44:573-588
    [239] F. Bentiss, M. Traisnel, N. Chaibi. 2, 5-Bis (n-methoxyphenyl)-1, 3, 4-oxadiazoles used as corrosion inhibitors in acidic media: correlation between inhibition efficiency and chemical structure [J]. Corros. Sci., 2002,44: 2271-2289
    [240] T. Szauer, A. Brandr. On the role of fatty acid in adsorption and corrosion inhibition of iron by amine-fatty acid salts in acidic solution [J]. Electrochim. Acta, 1981,26: 1257-1260
    [241] S. Sankarapapavinasam, F. Pushpanaden, M. F. Ahmed. Piperidine, piperidones and tetrahydrothiopyrones as inhibitors for the corrosion of copper in H2SO4 [J]. Corros. Sci., 1991, 32: 193-203
    [242] D.D.N.Singh, R.S.Chaudhary, B. Prakash, C.V.Agarwal. Inhibitive efficiency of some substituted thioureas for the corrosion of aluminum in nitric acid [J]. Br. Corros. J., 1979,14: 235-239
    [243] M.El Azhar,B.Mernari,M.Traisnel etal Corrosion inhibition of mild steel by the new class of inhibitors[2,5-bis(n-pyridyl)-1,3,4-thiadiazoles]in acidic media [J]. Corros. Sci., 2001,43: 2229-2238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700