用户名: 密码: 验证码:
纳米聚苯胺、二氧化钛及其复合材料的制备和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺具有优良的环境稳定性,独特的酸/碱掺杂/脱掺杂性质,合成简易,原料价廉易得,使其成为“合成金属”家族的重要成员,已经成为导电高分子的研究热点。而具有纳米结构的聚苯胺具有更加独特的性能,不仅在聚苯胺传统的应用领域中具有更好的性能,而且能够在更新的应用领域中发挥重要作用。本文在综述聚苯胺的性质和制备的基础上,结合当前制备聚苯胺纳米材料的方法,特别是非模板法制备聚苯胺纳米纤维的方法,提出了紫外光辅助化学氧化法,在不同的聚合条件下制备聚苯胺纳米纤维,特别是聚苯胺纳米线。本文研究了氧化剂种类、浓度、搅拌以及反应温度等各种实验参数在紫外光照和避光条件下对合成产物形貌、酸掺杂和脱掺杂能力的影响。结果表明光辅助制备聚苯胺纳米纤维的方法不仅适用于具有不同氧化能力的氧化剂,而且适合在常规方法无法合成纳米纤维的条件下进行。有趣的是,光辅助法低温聚合可以在没有任何模板的存在下合成出聚苯胺纳米线。
     基于苯胺及其聚合物被质子化能力与其它导电高分子体系相比较,第三章提出了一个新的理论模型来解释聚苯胺纳米纤维的形成机理,即“双电层”理论模型。该理论模型可以更加合理地解释为什么纳米纤维是聚苯胺的本质形貌。在手性樟脑磺酸的诱导下,本文同时探讨了各种实验参数对合成聚苯胺的形貌及其光学活性的影响,进一步证明“双电层”理论模型的合理性,并建立聚苯胺一维螺旋生长与其光学活性的关联性。
     二氧化钛半导体光催化氧化技术因其自身突出的优点而成为科研工作者的研究热点。本文通过研究二氧化钛一维纳米化来提高二氧化钛紫外光催化活性;其次,利用聚苯胺可见光敏化来拓展二氧化钛可见光催化。第四章改进碱水热法,通过盐效应裁剪钛酸盐和二氧化钛的纳米结构,并重新审查了氢氧化钠在碱水热法中所扮演的重要角色。基于对产物形貌的演变规律,提出了一种合理的生长机理来解释各种钛酸盐和二氧化钛纳米结构的形成原因。
     第五章通过自组装和嫁接聚合的方法制备二氧化钛与聚苯胺的纳米复合材料,并通过各种手段对该纳米复合材料进行表征。研究结果证实了二氧化钛表面自组装层和聚苯胺的形成,以及表明该复合材料具有更好的热稳定性和更高的可见光催化活性。我们进一步研究了不同浓度的苯胺在二氧化钛光催化表面的氧化行为,推荐了一种去除废水中苯胺的方法。此方法建议采用二氧化钛光催化技术降解并矿化低浓度苯胺;采用光催化法促进高浓度苯胺氧化聚合,制备二氧化钛与聚苯胺的纳米复合材料。
Polyaniline is unique among the family of conducting polymers due to its ease ofsynthesis,environmental stability and simple doping/dedoping chemistry,which hasreceived growing interest in recent years.Nanostructures of polyaniline can lead to betterperformance in the already established areas and create new opportunities.In thisdissertation,on the basis of the review on the properties and preparation of polyaniline andin combination with current ways of synthesizing polyaniline nanomaterials,especiallyfree-template methods to prepare polyaniline nanofibers,a new approach for the synthesisof polyaniline nanostructures (nanofibers and nanowires) under UV light illumination hasbeen developed.This dissertation investigated the effect of various experimentalparameters,such as the kind of oxidants,their concentration,stirring and reactiontemperature et al.on the morphology and the ability of acid doping/dedoping of theproducts from UV illumination and in dark,respectively.The results indicate that thisphoto-assisted method not only is fitted for various oxidants with different oxidationability,but also prepares polyaniline nanofibers on the rigorous conditions,in which thenanofibers can not be obtained by conventional routes in dark.It is interesting thatphoto-assisted method at lower temperature can produce polyaniline nanowires withoutany template.
     In the consideration on the comparison of the protonation ability of aniline and itspolymer with other conductive polymers,a theoretical model was proposed to explain theformation of polyaniline nanofibers,namely“electric double layers”model.Thistheoretical model can better explain why the nanofibers are intrinsic morphology ofpolyaniline.In the presence of chiral CSA,this dissertation studied the effect of variousexperimental parameters on the polyaniline morphology and its optical activity,whichfurther confirms that it is rational for“electric double layers”model,and found the correlation between polyaniline one-dimensional growth and its optical activity.
     TiO_2 photocatalytic technology attracts increasingly intesest due to its various merits.Inthe present work,in allusion to the existing problems,we tried to prepare one-dimensionalTiO_2 nanomaterials to enhance the UV photocatalytic activity;on the other hand,wedeveloped TiO_2 visible photocatalysts via the visible light sensitization of polyaniline.Infourth chapter,this dissertation modified alkaline hydrothermal method,salt effecttailoring TiO_2 and titanate nanostructures.We repeated investigating the important role ofNaOH in this alkaline hydrothermal method,and proposed a rational mechanism toexplain the formation of TiO_2 and titanate nanostructures on the basis of the evolutiveregulation of products morphology.
     In fifth chapter,we successfully synthesized TiO_2/polyaniline nanocomposites viaself-assembling and graft polymerization.The resulted nanocomposites were characterizedby using various measuremental technologies.The results indicated the formation ofself-assembling layer and outside polyaniline,and the better thermal stability of thesenanocomposites.Moreover,these composites showed better photocatalytic activity undersunlight due to the sensitizing effect of polyaniline.We further studied the oxidationcharacteristics of aniline at different concentration on TiO_2 photocatalysts,and proposed away of removing aniline in aqueous systems.Our strategy is to degrade and mineralizelow-level aniline by using a photocatalytic degradation process,and to convert high-levelaniline to TiO_2/polyaniline nanocomposites via a photocatalytic polymerization approach.
引文
[1] Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc, Chem. Comm. 1977: 578-580.
    [2] Chiang C K, Fischer C R, Park Y W, et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 1977, 39: 1098-1101.
    [3] Chiang C K, Druy M A, Gau S C, et al. Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J. Am. Chem. Soc. 1978, 100: 1013-1015.
    [4] Hagiwara T, Yamaura M, Iwata K. Structural analysis of deprotonated polyaniline by solid-state ~(13)C-NMR. Synth. Met. 1987, 26: 195-201.
    [5] MacDiarmid A G, Chiang C K, Richter A F, et al. Polyaniline: a new concept in conducting polymers. Synth. Met. 1987, 18: 285-290.
    [6] Kolla H S, Surwade S P, Zhang X, et al. Absolute molecular weight of polyaniline. J. Am. Chem. Soc. 2005,127: 16770-16771.
    [7] Zhang X, Kolla H S, Wang X, et al. Fibrillar growth in polyaniline. Adv. Funct. Mater. 2006,16:1145-1152.
    [8] Kang E T, Neoh K G, Tan K L. Polyaniline: a polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 1998, 23: 277-324.
    [9] Tan C K, Blackwood D J. Interactions between polyaniline and methanol vapour. Sensor. Actual. B. 2002, 71: 184-191.
    [10] Sukeerthi S, Contractor A Q. Molecular Sensors and Sensor Arrays Based on Polyaniline Microtubules. Anal. Chem. 1999, 71: 2231-2236.
    [11] Srivastava M P, Mohanty S R, Annapoorni S, et al. Diode like behaviour of an ion irradiated polyaniline film. Phys. Lett. A. 1996, 215: 63-68.
    [12] Kagan C R, Mitzi D B, Dimitrakopoulos C D, et al. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect trasistors. Science. 1999,286:945-947.
    [13] Drury C J, Mutsaers C M J, Hart, C M, et al. Low cost all-polymer intergrated circuits. Appl. Phys. Lett. 1998, 73: 108-110.
    [14] Geng Y, Li J, Jing X, et al. Polyaniline doped with macromolecular acids. Synth. Met. 1997,84:81-82.
    [15] Joo J, Epstein A J. Electromagnetic radiation shielding by intrinsically conducting polymers. Appl. Phys. Lett. 1994, 65: 2278-2280.
    [16] Wang Y-G, Wu W, Cheng L, et al. A polyaniline-intercalated layered manganese oxide nanocomposite prepared by an inorganic/organic interface reaction and its high electrochemical performance for Li storage. Adv. Mater. 2008, 20: 2166-2170.
    [17] Kobayashi T, Yoneyama H, Tamura H, et al. Polyaniline film-coated electrodes as electrochromic display devices. J. Electroanal. Chem. 1984, 161: 419-423.
    [18] Otero T F, Boyano I, Cortes M T, et al. Nucleation, non-stoiquiometry and sensing muscles from conducting polymers. Electrochimica. Acta. 2004,49: 3719-3726.
    [19] Cai Z, Martin C R. Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J. Am. Chem. Soc. 1989, 111: 4138-4139.
    [20] Liang W, Martin C R. Template-synthesized polyacetylene fibrils show enhanced supermolecular order. J. Am. Chem. Soc. 1990, 112: 9666-9668.
    [21] Martin C R. Template Synthesis of electronically conductive polymer nanostructures. Ace. Chem. Res. 1995, 28: 61-68.
    [22] Martin C R. Membrane-based synthesis of nanomaterials. Chem. Mater. 1996, 8: 1739-1746.
    [23] Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host Science. 1994,264: 1757-1759.
    [24] Drury A, Chaure S, Kroll M, et al. Fabrication and characterization of silver/polyaniline composite nanowires in porous anodic alumina.Chem.Mater.2007,19:4252-4258.
    [25]Dong H,Prasad S,Nyame V,et al.Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates.Chem.Mater.2004,16:371-373.
    [26]Delvaux M,Duchetm J,Stavaux P V,et al.Chemical and electrochemical synthesis of polyaniline micro-and nano-tubes.Synth.Met.2000,113:275-280.
    [27]Zhang X,Song W,Harris P J F,et al.Chiral polymer-carbon nanotube composite nanofibers.Adv.Mater.2007,19:1079-1083.
    [28]Pringsheim E,Zimin D,Wolfbeis O S.Fluorescent beads coated with polyaniline:a novel nanomaterial for optical sensing of pH.Adv.Mater.2001,13:819-822.
    [29]Li G C,Peng H R,Wang Y,et al.Synthesis of polyaniline nanobelts.Macromol.Rapid.Commun.2004,25:1611-1614.
    [30]Li G C,Zhang Z K.Synthesis of dendritic polyaniline nanofibers in a surfactant gel.Macromol.Rapid.Commun.2004,37:2683-2685.
    [31]Qiu H,Wan M,Mathews B,et al.Conducting polyaniline nanotubes by template-free polymerization.Macromolecules.2001,34:675-677.
    [32]Wei Z,Zhang Z,Wan M.Formation mechanism of self-assembled polyaniline micro/nanotubes.Langmuir.2002,18:917-921
    [33]Wei Z,Wan M.Synthesis and characterization of self-doped poly(aniline-co-amino naphthalene sulfonic acid)nano-tubes.J.Appl.Polym.Sci.2003,87:1297-130
    [34]Liu J,Wan M.Synthesis,characterization and electrical properties ofmicrotubules of polypyrrole synthesized by a template-free method.J.Mater.Chem.2001,11:404-407.
    [35]Huang K,Wan M.Self-assembled nanostructural polyaniline doped with azobenzenesulfonic acid.Synth.Met.2003,135-136:173.
    [36]Yang Y,Liu J,Wan M.Self-assembled conducting polypyrrole micro/nanotubes.Nanotechnology.2002,13:771-773.
    [37] Wei Z, Zhang L, Yu M, et al. Self-assembling sub-micrometer-sized tube junctions and dendrites of conducting polymers. Adv. Mater. 2003, 15: 1382-1385.
    [38] Long Y, Zhang L, Ma Y, et al. Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method. Macromol. Rapid. Commun. 2003, 24: 938-942.
    [39] Zhang L, Wan M. Self-assembly of polyaniline: from nanotubes to hollow microspheres. Adv. Funct. Mater. 2003, 13: 815-820.
    [40] Zhang L, Long Y, Chen Z, et al. The effect of hydrogen bonding on self-assembled polyaniline nanostructures. Adv. Funct. Mater. 2004, 14: 693-698.
    [41] Li W, Wang H-L. Oligomer-assisted synthesis of chiral polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126: 2278-2279.
    [42] Li W, Wang H-L. Electrochemical synthesis of optically active polyaniline films. Adv. Funct. Mater. 2005, 15: 1793-1798.
    [43] Li W, Bailey J A, Wang H-L. Toward optimizing synthesis of nanostructured chiral polyaniline. Polymer. 2006, 47: 3112-3118.
    [44] Y Ma, Zhang J, Zhang G, et al. Polyaniline nanowires on silicon surfaces fabricated with DNA templates. J. Am. Chem. Soc. 2004, 126: 7097-7101.
    [45] Zhang X Y, Goux W J, Manohar S K. Synthesis of polyaniline nanoflbers by "nanofiber seeding". J. Am. Chem. Soc. 2004, 126: 4502-4503.
    [46] Reneker D H, Chun I. Nanometer diameter fibers of polymer, produced by electrospinning. Nanotechnology. 1996, 7: 216-223.
    [47] Sanders E H, Kloefkorn R, Bowlin G L, et al. Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibers. Macromolecules. 2003, 36: 3803-3805.
    [48] Norris I D, Shaker M M, Ko F K, et al. Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth. Met. 2000, 114: 109-114.
    [49] Ghanbari K h, Mousavi M F, Shamsipur M. Preparation of polyaniline nanofibers and their use as a cathode of aqueous rechargeable batteries. Electrochimica Acta, 2006, 52: 1514-1522.
    [50] Liang L, Liu J, Windiseh C F, et al. Direet assembly of large arrays of oriented conducting polymer nanowires. Angew. Chem. Int. Ed. 2002, 41: 3665-668.
    [51] Huang J, Virji S, Weiller B H, et al. Polyaniline nanofibers facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125: 314-315.
    [52] Huang J, Kaner R B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126: 851-855.
    [53] Huang J, Virji S, Weiller B H, et al. Nanostructured polyaniline sensors. Chem. Eur. J. 2003,9:604-611.
    [54] Virji S, Huang J, Kaner R B, et al. Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano. Lett. 2004, 4: 491-496.
    [55] Li D, Kaner R B. Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chem. Commun. 2005: 3286-3288.
    [56] Virji S, Fowler J D, Baker C, et al. Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. Small. 1: 624-627.
    [57] Tseng R J, Huang J, Ouyang J, et al. Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory. Nano. Lett. 2005, 5: 1077-1080.
    [58] Huang J, Kaner R B. Flash welding of conducting polymer nanofibres. Nat. Mater. 2004, 3: 783-786.
    [59] Huang J, Kaner R B. Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. Int. Ed. 2004, 43: 5817-5821.
    [60] Huang J, Kaner R B. The intrinsic nanofibrillar morphology of polyaniline. Chem. Commun. 2006: 367-376.
    [61] Li D, Kaner R B. Shape and aggregation control of nanoparticles: not shaken, not stirred. J. Am. Chem. Soc. 2006,128: 968-975.
    [62] Li D, Huang J, Kaner R B. Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2009, 42: 135-145.
    [63] Tran H D, Wang Y, D'Arcy J M, et al. Toward an understanding of the formation of conducting polymer nanofibers. ACS. Nano. 2008, 2,1841-1848.
    [64] Chiou N-R, Epstein A J. Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater. 2005, 17: 1679-1683.
    [65] Chiou N-R, Epstein A J. A simple approach to control the growth of polyaniline nanofibers. Synth. Met. 2005,153: 69-72.
    [66] Fujishima A, Hond K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238: 37-38.
    [67] Kobayashi S, Hanabusa K, Hamasaki N, et al. Preparation of TiO_2 hollow-fibers using supramolecular assemblies. Chem. Mater. 2000,12: 1523-1525.
    [68] Jung J H, Kobayashi H, Bommel K J C, et al. Creation of novel helical ribbon and double-layered nanotube TiO_2 structures using an organogel template. Chem. Mater. 2002, 14: 1445-1447.
    [69] Gundiah G, Mukhopadhyay S, Tumkurkar U G, te al. Hydrogel route to nanotubes of metal oxides and sulfates. J. Mater. Chem. 2003, 13: 2118-2122.
    [70] Peng T, Hasegawa A, Qiu J, et al. Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method. Chem. Mater. 2003, 15: 2011-2016.
    [71] Fujikawa S, Kunitake T. Surface fabrication of hollow nanoarchitectures of ultrathin titania layers from assembled latex particles and tobacco mosaic viruses as templates. Langmuir. 2003, 19: 6545-6552.
    [72] Hippe C, Wark M, Lork E, et al. Platinum-filled oxidic nanotubes.Microporous. Mesoporous. Mater. 1999, 31: 235-239.
    [73] Michailowski A, Al-Mawlawi D, Cheng G S, et al. Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem. Phys. Lett. 2001, 349: 1-5.
    [74] Liu S M, Gan L M, Liu L H, et al. Synthesis of single-crystalline TiO_2 nanotubes. Chem. Mater. 2002,14: 1391-1397.
    [75] Chu S-Z, Wada K, Inoue S, et al. Synthesis and characterization of titania nanostructures on glass by Al anodization and sol-gel process. Chem. Mater. 2002, 14: 266-272.
    [76] Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16: 3331-3334.
    [77] Taveira L V, Macak J M, Tsuchiya H, et al. Initiation and growth of self-organized TiO_2 nanotubes anodically formed in NH_4F/(NH_4)_2SO_4 electrolytes. J. Electrochem. Soc. 2005, 152: B405-B410.
    [78] Ruan C, Paulose M, Varghese O K, et al. Fabrication of highly ordered TiO_2 nanotube arrays using an organic electrolyte. J. Phys. Chem. B. 2005, 109: 15754-15759.
    [79] Ghicov A, Tsuchiya H, Macak J M, et al. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem. Commun. 2005, 7: 505-509.
    [80] Tsuchiya H, Macak J M, Taveira L, et al. Self-organized TiO_2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem. Commun. 2005, 7: 576-580.
    [81] Macak J M, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na_2SO_4/NaF electrolytes. Electrochim. Acta. 2005, 50: 3679-3684.
    [82] Richter C, Wu Z, Panaitescu E, et al. Ultrahigh-aspect-ratio titania nanotubes. Adv. Mater. 2007, 19: 946-948.
    [83] Panaitescu E, Richter C, Menon L. A study of titania nanotube synthesis in chloride-ion-containing media. J. Electrochem. Soc. 2007, 155: E7-E13.
    [84] Richter C, Panaitescu E, Willey R, et al. Titania nanotubes prepared by anodization in fluorine-free acids. J. Mater. Res. 2007, 22: 1624-1631.
    [85] Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube. Langmuir. 1998, 14: 3160-3163.
    [86] Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999,11: 1307-1311.
    [87] Yuan Z-Y, Zhou W, Su B-L. Hierarchical interlinked structure of titanium oxide nanfibers. Chem. Commun. 2002: 1202-1203.
    [88] Yuan Z-Y, Su B-L. Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2004, 241: 173-183.
    [89] Lan Y, Gao X, Zhu H, et al. Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 2005,15: 1310-1318.
    [90] Peng X, Chen A. Large-scale synthesis and characterization of TiO_2-based nanostructures on Ti substrates. Adv. Funct. Mater. 2006, 16: 1355-1362.
    [91] Jr. Morgado E, de Abreu M A S, Moure G T, et al. Characterization of nanostructured titanates obtained by alkali treatment of TiO_2-anatases with distinct crystal sizes. Chem. Mater. 2007, 19: 665-676.
    [92] Zhu Y C, Li H L, Gedanken A, et al. Sonochemical synthesis of titania whiskers and nanotubes. Chem. Commun. 2001: 2616-2617.
    [93] Du G, Chen Q, Che R, et al. Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 2001, 79: 3702-3704.
    [94] Chen Q, Zhou W, Du G, et al. Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 2002, 14: 1208-1211.
    [95] Zhang S, Peng L-M, Chen Q, et al. Formation Mechanism of H_2Ti_3O_7 Nanotubes. Phys. Rev. Lett. 2003, 91: 256103-1-4.
    [96] Zhang S, Chen Q, Peng L-M. Structure and formation of H_2Ti_3O_7 nanotubes in an alkali environment. Phys. Rev. B. 2005, 71: 014104-1-11.
    [97] Bavykin D V, Parmon V N, Lapkin A A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 2004, 14: 3370-3377.
    [98] Kukovecz A, Hodos M, Horvath E, et al. Oriented crystal growth model explains the formation of titania nanotubes. J. Phys. Chem. B. 2005,109: 17781-17783.
    [99] Bavykin D V, Friedrich J M, Walsh F C. Protonated titanates and TiO_2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 2006, 18: 2807-2824.
    [100] Zhang H, Zong R, Zhao J, et al. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO_2 with PANI. Environ. Sci. Technol. 2008,42: 3803-3807.
    [101] Somani P R, Marimuthu R, Mulik U P, et al. High piezoresistivity and its origin in conducting polyaniline/TiO_2 composites. Synth. Met. 1999, 106: 45-52.
    [102] Xia H S, Wang Q. Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem. Mater. 2002, 14: 2158-2162.
    [103] Zhang L J, Wan M X. Polyaniline/TiO_2 composite nanotubes. J. Phys. Chem. B. 2003,107: 6748-6753.
    [104] Zheng J, Li G, Ma X, et al. Polyaniline-TiO_2 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies. Sens. Actuat. B: Chem. 2008, 133: 374-380.
    [105] Palmero S, Colina A, Munoz E, et al. Layer-by-layer electrosynthesis of Pt-polyaniline nanocomposites for the catalytic oxidation of methanol. Electrochem. Commun. 2009, 11: 122-125.
    [106] Manohar S K, MacDiarmid A G, Epstein A J. Polyaniline: pernigraniline, an isolable intermediate in the conventional chemical synthesis of emeraldine. Synth. Met. 1991, 41:711-714.
    [107] Wei Y, Hsueh K F, Jang G-W. Monitoring the chemical polymerization of aniline by open-circuit-potential measurements. Polymer. 1994, 35: 3572-3575.
    [108] Lee K, Cho S, Park S H, et al. Metallic transport in polyaniline. Nature. 2006, 441: 65-68.
    [109] Huang J, Egan V M, Guo H, et al. Enantioselective discrimination of D- and L-phenylalanine by chiral polyaniline thin films. Adv. Mater. 2003, 15: 1158-1161.
    [110] McManus P M, Yang S C, Cushman R J. Electrochemical doping of polyaniline: effects on conductivity and optical spectra. J. Chem. Soc, Chem. Commun. 1985,22: 1556-1557.
    [111] Yue J, Wang Z H, Cromack, K R, et al. Effect of sulfonic acid group on polyaniline backbone. J. Am. Chem. Soc. 1991,113: 2665-2671.
    [112] Thiyagarajan M, Samuelson L A, Kumar J, et al. Helical conformational specificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites. J. Am. Chem. Soc. 2003, 125: 11502-11503.
    [113] Wu D, Liu J, Zhao X, et al. Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem. Mater. 2006, 18: 547-553.
    [114] Bavykin D V, Friedrich J M, Lapkin A A, et al. Stability of aqueous suspensions of titanate nanotubes. Chem. Mater. 2006, 18: 1124-1129.
    [115] Horvath E, Kukovecz A, Konya Z, et al. Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave. Chem. Mater. 2007, 19: 927-931.
    [116] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001, 293: 269-271.
    [117] Radhakrishnan S, Siju C R, Mahanta D, et al. Conducting polyaniline-nano-TiO_2 composites for smart corrosion resistant coatings. Electrochimica. Acta. 2009, 54: 1249-1254.
    [118] Qiao Y, Bao S-J, Li C M, et al. Nanostructured polyaniline titanium dioxide composite anode for microbial fuel cells. ACS. Nano. 2008, 2: 113-119.
    [119] Senadeera G K R, Kitamura T, Wadab Y, et al. Deposition of polyaniline via molecular self-assembly on TiO_2 and its uses as a sensitizer in solid-state solar cells. J. Photochem. Photobiol. A: Chem. 2004, 164: 61-66.
    [120] Li X W, Wang G C, Lu D M, et al. Surface properties of polyaniline/nano-TiO2 composites. Appl. Surf. Sci. 2004, 229: 395-401.
    [121] Li Y, Hagen J, Haarer D. Novel photoelectrochromic cells containing a polyaniline layer and a dye-sensitized nanocrystalline TiO_2 photovoltaic cell. Synth. Met. 1998, 94: 273-277.
    [122] Li X, Wang D, Cheng G, et al. Preparation of polyaniline-modified TiO_2 nanoparticles and their photocatalytic activity under visible light illumination. Appl. Catal.B. 2008, 81:267-273.
    [123] Wang L, Zhang C, Wu F, et al. Photodegradation of aniline in aqueous suspensions of microalgae. J. Photochem. Photobiol. B: Biol. 2007, 87: 49-57.
    [124] Song S, He Z, Chen J. US/O_3 combination of aniline in aqueous solution. Ultrason. Sonochem. 2007,14: 84-88.
    [125] Li Y, Wang F, Zhou G, et al. Aniline degradation by electrocatalytic oxidation. Chemosphere. 2003, 53: 1229-1234.
    [126] Matsushita M, Kuramitz H, Tanaka S. Electrochemical oxidation for low concentration of aniline in neutral pH medium: Application to the removal of aniline based on the electrochemical polymerization on a carbon fiber. Environ. Sci. Technol. 2005, 39: 3805-3810.
    [127] Sauleda R, Brillas E. Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe~(2+) and UVA light. Appl. Catal. B. 2001, 29: 135-145.
    [128] Anotai J, Lu M-C, Chewpreecha P. Kinetic of aniline degradation by Fenton and electro-Fenton processes. Water. Res. 2006, 40: 1841-1847.
    [129] Fukushima M, Tatsumi K, Morimoto K. The fate of aniline after a photo-Fenton reaction in an aqueous system containing iron (Ⅲ), humic acid, and hydrogen peroxide. Environ. Sci. Technol. 2000, 34: 2006-2013.
    [130] Karunakaran C, Senthilvelan S, Karuthapandian S. TiO_2-photocatalyzed oxidation of aniline. J. Photochem. Photobiol. A: Chem. 2005, 172: 207-213.
    [131] Kumar A, Mathur N. Photocatalytic oxidation of aniline using Ag~+-loaded TiO_2 suspensions. Appl. Catal. A. 2004,275: 189-197.
    [132] Canle L M, Santaballa J A, Vulliet E. On the mechanism of TiO_2-photocatalyzed degradation of aniline derivatives. J. Photochem. Photobiol. A: Chem. 2005, 175: 192-200.
    [133] Park J S, Choi W. Enhanced remote photocatalytic oxidation on surface-fluorinated TiO_2. Langmuir. 2004, 20: 11523-11527.
    [134] De Albuquerque J E, Mattoso L H C, Faria R M, et al. Study of the interconversion of PAN oxidation states by optical absorption spectroscopy. Synth. Met. 2004, 146: 1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700