用户名: 密码: 验证码:
低维V_2O_5材料的制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决人类社会发展带来的能源需求和环境恶化的世界性问题,新能源材料的探索已经成为全球广泛关注的热点。V_2O_5材料因其独特的层状结构,不仅可以作为锂离子二次电池的正极材料,而且还是少数几种有望应用于镁电池正极的活性材料。因此,V_2O_5是一类重要的新能源材料,系统研究V_2O_5材料的制备、结构及其特性有着重要的意义。
     本论文通过磁控反应溅射法制备了α-V_2O_5和β-V_2O_5薄膜,利用热蒸发化学气相沉积获得了形貌多样的V_2O_5纳米材料,采用水热法得到了VO_x纳米管(VOx-NTs),并使用各种表征手段研究了V_2O_5薄膜与纳米材料的形貌、结构与形成机理。
     (1)V_2O_5薄膜的溅射法制备及其循环伏安特性研究
     研究了实验条件对α-V_2O_5薄膜结构的影响。结果表明,在氧气分压较大的环境下,容易得到层状结构较完整的α-V_2O_5薄膜。当退火温度过高时(大于550℃),α-V_2O_5结构中的钒氧双键V=O键将容易断裂,产生氧空位,使得α-V_2O_5(001)晶面坍塌。适当的沉积温度有利于α-V_2O_5薄膜结晶。
     系统的研究了溅射制备β-V_2O_5薄膜及其形成机理,这方面的研究目前国内外未见报道。在550℃沉积温度(40%的氧气分压)的条件下,得到了具有β-V_2O_5结构的薄膜。实验结果表明,氧气分压和沉积温度是β-V_2O_5薄膜形成的必要因素。溅射过程中,较高的沉积温度不仅导致钒氧原子具有较高的能量,而且抑制了α-V_2O_5结构的形成。在沉积温度较高,氧气分压较大的情况下,不易生成低价态的钒氧化合物,而是有利于β-V_2O_5薄膜的形成。在合适的沉积温度(500℃)下可以得到α-和β-V_2O_5两相共存的薄膜,经过退火后α相将转变为β相。在单晶硅、石英、玻璃和ITO衬底上均可以生长β-V_2O_5薄膜。
     报道了β-V_2O_5薄膜的循环伏安特性,这对探索β-V_2O_5薄膜的电化学应用有着积极的意义。在ITO上分别制备了α-和β-V_2O_5薄膜,并对其循环伏安性质进行研究。结果表明,α-V_2O_5薄膜具有电化学可逆性,Li~+和Mg~(2+)均能在α-和β-V_2O_5薄膜中可逆的嵌入/脱嵌。在没有水存在的Mg(ClO_4)_2/PC溶液中,Mg~(2+)在V_2O_5中的循环性能不稳定,这可能是Mg~(2+)的电荷密度较大,嵌入过程中,使V_2O_5的结构发生不可逆畸变。
     (2)不同形貌V_2O_5纳米材料的热蒸发化学气相沉积(CVD)制备及其生长机理
     在低真空(约1Torr)650℃下,直接加热VO(acac)_2粉末制备了V_2O_5纳米片。这是一种简单有效制备V_2O_5纳米片的方法。
     加热VO(acac)_2粉末,在不同温度区域得到了各种形貌的VO_x材料,包括V_2O_5纳米棒和VO_x微米球。不同生长区域中温度的差异,使得钒氧化合物中V~(5+)/V~(4+)的含量比例有所不同,最终引起VO_x形貌的变化。
     将蒸发源VO(acac)_2粉末和V_2O_5的生长衬底分别安置于低温区和高温区,得到了V_2O_5纳米线和V_2O_5纳米球。我们提出了以金属有机物为蒸发源的化学气相生长各种纳米材料的机理。V_2O_5纳米线和纳米球的形成属于两个不同的形成机理:前者是由VO(acac)_2分解后生成的各种钒氧离子团成核、生长所形成;后者是由源蒸汽在传输过程中直接化合生成。
     (3)VOx纳米管(VOx-NTs)的水热法制备及其循环伏安特性。
     以V_2O_5粉末、H_2O_2溶液和十二胺乙醇溶液为原料制备纳米管,并研究了pH值对纳米管形成的影响。结果表明,强酸条件下,得到了V_6O_(13)结构的微米片和微米带。碱性条件下合成了VO_x-NTs。水热反应过程中,前驱液的酸碱性,一方面与V_2O_5·nH_2O溶胶的形成密切相关,另一方面对十二胺的质子化产生影响。强酸性条件阻碍了纳米管的形成,而在碱性条件下会促进V_2O_5层状结构的生成,有利于纳米管的生长。
     延长V_2O_5·nH_2O与十二胺乙醇溶液的搅拌时间,将V_2O_5·nH_2O与十二胺的摩尔比增大到1:1,提高了纳米管的产率。
     将V_2O_5粉末、去离子水和十二胺乙醇溶液(V_2O_5与十二胺摩尔比为1:1)混合制备V_2O_5·nH_2O/十二胺悬浊液,制备出了质量较好的VO_x-NTs。在pH=8和10时,得到的纳米管长度达到几微米。
     循环伏安测试结果表明,相对于片状的VO_x,VO_x-NTs表现出较好的Li~+嵌入/脱嵌性能。
In order to solve the global problems of the energy demand and environmentpollution from the human societal development,exploiting the new energy resource isan important hot point of global investigating field.Vanadium pentoxide (V_2O_5)materials with the special layer structure are not only the cathode material of Li ionrechargeable battery,but also one of the rare active materials that are hoped to use forthe active materials in the cathode of Mg rechargeable battery.Therefore,V_2O_5 is akind of important new energy materials and it is significant to study the preparation,structure and properties of V_2O_5
     In this thesis,α-V_2O_5 andβ-V_2O_5 films were prepared using sputtering,VOxwith various morphologies were formed by thermal evaporation chemical vapordeposition (CVD)and VOx-NTs were synthesized through hydrothermal treatment.The morphologies,structure and formation mechanism of V_2O_5 films andnanomaterials were studied.
     (1)V_2O_5 films were prepared by sputtering and electrochemical properties werestudied.
     The influence of conditions on the structure ofα-V_2O_5 films was investigated.α-V_2O_5 films with perfect layer structure were easily obtained at the high oxygenpartial pressure.As the annealing temperature is too high (over 550℃),the V=Obonds can be broken,which leaded to the oxygen vacancies and the collapse ofα-V_2O_5(001)planes.A proper depositing temperature is favorable for thecrystallization ofα-V_2O_5 films.
     The preparation and formation mechanism ofβ-V_2O_5 films were studiedsystemically,which has not been reported.β-V_2O_5 films were formed at 550℃(40%oxygen partial pressure).It is revealed that the depositing temperature and oxygenpartial pressure are the needed factor forβ-V_2O_5 films.During the sputtering process,high depositing temperature gives the V and O atoms strong energy to move and keeps from the formation ofα-V_2O_5 structure.The vanadium oxides with low valencestate are not formed in the high oxygen partial pressure,butβ-V_2O_5.In the medialdepositing temperature,films withα-andβ-V_2O_5 were obtained,andαphase cantransform toβphase by annealing.β-V_2O_5 films can be prepared on Si,quartz,glassand ITO substrates.
     The electrochemical properties of V_2O_5 films deposited on ITO substrates werestudied by cyclic voltammograms.The results revealed thatα-andβ-V_2O_5 filmsshowed electrochemical reversible to Li~+ and Mg~(2+).In the inaqueous Mg(ClO_4)_2/PCsolution,the reversible properties of V_2O_5 were poor for Mg~(2+),might result form thestructure distortion of V_2O_5 caused by the insertion of Mg~(2+).
     (2)Different vanadium oxides were prepared by thermal evaporation CVD usingVO(acac)_2 powder as V source and formation mechanism were investigated.
     In the low vacuum and at 650℃,V_2O_5 nanosheets were obtained by directlyheating VO(acac)_2.This is a simple and effective way for preparation V_2O_5nanosheets.
     Heating VO(acac)_2 at 650℃,VOx with various morphologies were formed atdifferent temperature zones.The content ratio of V~(5+)/V~(4+)in VO_x,caused by thevarious growth temperatures,was the main factor for the different morphologies.
     Planting the VO(acac)_2 and the substrates in the low and high temperaturezones respectively,V_2O_5 nanowires and V_2O_5 nanospheres were prepared.Themechanism was suggested for the nanomaterials formation using metal organic asprecurs during thermal evaporation CVD process.The formation of V_2O_5 nanowireand V_2O_5 nanospheres from two different mechanism:the former comes from thenucleation and growth of VO ion groups which were produced by the decompositionand oxidation of VO(acac)_2 powder;the latter were formed directly through thedecomposition of VO(acac)_2 powder during the transfer process.
     (3)VOx nanotubes (VOx-NTs)were prepared by hydrothermal treatment andelectrochemical properties were studied.
     VOx-NTs were prepared by hydrothermal treatment using V_2O_5powder,H_2O_2and dodecylamine/ethanol solution.The relationship between the formation of VO_x-NTs and pH value was studied.It revealed that nanosheets and nanobelts withV_6O_(13)structure were found under strong acid conditions.Under alkaline conditions,VO_x-NTs were formed.However,other products including sheets and belts were alsoobtained.During the hydrothermal treatment process,the pH value is important to theformation of VO_x-NTs.On one hand,the creation of V_2O_5·nH_2O sol depends on thepH value;on the other hand,it can influence the dodecylamine's proponation.Thestrong acid conditions disturbed the formation of VO_x-NTs.
     Prolong the stirring time of V_2O_5·nH_2O sol and dodecylamine/ethanol solution,meanwhile increasing the mol ratio of V_2O_5·nH_2O and dodecylamine to 1:1,samplescontained a great deal of VOx-NTs were synthesized.
     Using V_2O_5 powder,deionized water and HAD/ethanol solution as source,desirable VO_x-NTs were prepared.When the pH value was adjusted as high as 8 or 10,VOx-NTs with several micrometers were synthesized.
     The results from cyclic voltammograms showed that the Li~+ can insert/deinsert inVO_x-NTs better than that in the VO_xsheet.
引文
[1]王革华主编,艾德生副主编,新能源概论,北京:化学工业出版社2006年.
    [2]雷永泉主编,万群,石永康副主编,新能源材料,天津:天津大学出版社2000年.
    [3]童忠良,张淑谦,杨京京编著,新能源材料与应用,北京:国防工业出版社2008年.
    [4]Kalyan Adhikary,Shinichi Kikkawa,Solid State Ionics 99 (1997) 53.
    [5]K.Nagase,Y.Shimizu,N.Miura,N.Yamazoe,Appl.Phys.Lett.60 (1992) 802.
    [6]T.Homann,T.Bredow,K.Jug,Surface Science 515 (2002) 205.
    [7]D.Gourier,A.Tranchant,N.Baffier,R.Messina,Electrochim.Acta 37 (1992)2755.
    [8]P.Novk,J.Desilvestro,J.Electrochem.Soc.140 (1993) 140.
    [9]T.Yamauchi,Y.Ueda and N.M(?)ri.PHYSICAL REVIEW LETTERS 89 (2002)057002-1.
    [10]V.L Volkov,V.G.Golovkin,A.S.Fedyukov,G.Yu.Zaynulin,Izv.Akad.Nauk SSSR Neorg.Mater.24 (1988) 1836.
    [11]J.M.Cocciantelli,P.Gravereau,J.P.Doumerc,M.Pouchard,P.Hanenmuller,Journal of Solid State Chemistry 93 (1991) 497.
    [12]X.Rocquefelte,F.Boucher,P.Gressier,G.Ouvrard,Chem.Mater.15(2003)1812.
    [13]J.Yamaura,T.Yamauchi,E.Ninomiya,H.Sawa,M.Isobe,H.Yamada,Y.Ued,Journal of Magnetism and Magnetic Materials 272-276 (2004) 438.
    [14]Y.Q.Chu,Q.Z.Qin,Chem.Mater.14 (2002) 3152.
    [15]B.Pecauenard,J.C.Badot,D.Gourier,N.Baffler,R.Morineau,Journal of Solid State Chemistry 118 (1995) 10.
    [16]Y.Ueda,M.Isobe,T.Yamauchi,Journal of Physics and Chemistry of Solids 63 (2002) 951.
    [17]V.Eyert,PHYSICAL REVIEWB 57 (1998) 12727.
    [18]M.Veronica Ganduglia-Pirovano,Joachim Sauer,J.Phys.Chem.B 109 (2005),374.
    [19]M.Willinger,N.Pinna,D.S.Su,R.Schl(o|¨)gl,PHYSICAL REVIEWB 69 (2004)155114.
    [20]T.Suzuki,I.Yamauchi,M.Itoh,PHYSICAL REVIEWB 73 (2006) 224421.
    [21]T.Yamauchi,M.Isobe,Y.Ueda,Journal of Magnetism and Magnetic Materials 272-276 (2004) 442.
    [22]G.P.Zhang,PHYSICAL REVIEWB 73 (2006) 125102.
    [23]J.M.Cocciantelli,M.M&trier,C.Delmas,J.P.Doumerc,M.Pouchard,M.Broussely,J.Labat,Solid State Ionics 78 (1995) 143.
    [24]L.Ottaviano,A.Pennisi,F.Simone,A.M.Salvi,Optical Materials 27 (2004)307.
    [25]T.Giornelli,A.L(o|¨)fberg,E.Bordes-Richard,Thin Solid Films 479 (2005) 64.
    [26]R.Baddour-Hadjean,J.P.Pereira-Ramos,C.Navone,M.Smirnov,Chem.Mater.20 (2008)1916.
    [27]R.T.Rajendra Kumar,B.Karunagaran,S.Venkatachalam,D.Mangalaraj,Sa.K.Narayandass and R.Kesavamoorthy,Materials Letters 57 (2003) 3820.
    [28]X.J.Wamg,H.D.Li,Y.J.Fei,X.Wang,Y.Y.Xiong,Y.X.Nie,K.A.Feng,Applied Surface Science 177 (2001) 8.
    [29]Eiichi Shouji,Daniel A.Buttry,Electrochimica Acta 45 (2000) 3757.
    [30]H.Watanabe,K.Itoh,O.Matsumoto,Thin Solid Films 386 (2001) 281.
    [31]U.Qureshi,T.D.Manning,I.P.Parkin,J.Mater.Chem.14 (2004) 1190.
    [32]R.T.Rajendra Kumar,B.Karunagaran,S.Venkatachalam,D.Mangalaraj,Sa.K.Narayandass and R.Kesavamoorthy,Materials Letters 57 (2003) 3820.
    [33]R.T.Rajendra Kumar,B.Karunagaran,V.Senthil Kumar,T.L.Jeyachandran,D.Mangalaraj,Sa.K.Narayandass,Materials Science in Semiconductor Processing 6 (2003) 543.
    [34]N.Fateh,G.A.Fontalvo and C.Mitterer,J.Phys.D:Appl.Phys.40 (2007) 7716.
    [35]K.Le Van,H.Groult,A.Mantoux,L.Perrigaud,F.Lantelme,R.Lindstr(o|¨)m,R.Badour-Hadjean,S.Zanna,D.Lincot,Journal of Power Sources 160 (2006) 592.
    [36]M.B.Sahana,C.Sudakar,C.Thapa,G.Lawes,V.M.Naik,R.J.Baird,G.W.Auner,R.Naik,K.R.Padmanabhan,Materials Science and Engineering B 143 (2007) 42.
    [37]C.V.Ramana,R.J.Smith,O.M.Hussian,M.Massot,C.M.Julien,Surf.Interface Ana137 (2005) 406.
    [38]M.E.Spahr,P.Bitterli,R.Nesper,M.Miiller,F.Krumeich and H.U.Nissen Angew.Chem.Int.Ed.Engl.37 (1998) 1263.
    [39]F.Krumeich,H.J.Muhr,M.Niederberger,F.Bieri,B.Schnyder,R.Nesper,J.Am.Chem.Soc.1211(999)8324.
    [40]K.S.Pillai,F.Krumeich,H.J.Muhr,M.Niederberger,R.Nesper,Solid State Ionics 141-142(2001)185.
    [41]A.Gloskovskii,S.A.Nepijko,G.Sch(o|¨)nhense,J.Appl.Phys.101 (2007)084301.
    [42]V.Petkov,P.Y.Zavalij,S.Lutta,M.S.Whittingham,V.Parvanov,S.Shastri,PHYSICAL REVIEWB 69 (2004) 085410.
    [43]F.Zhou,X.M.Zhao,C.G.Yuan,L.Li,Crystal Growth & Design 8 (2008) 723.
    [44]W.Chen,J.F.Peng,L.Q.Mai,H.Yu,Y.Y.Q,Solid State Communications 132(2004)513.
    [45]Ch.V.Subba Reddya,J.Weia,Z.Quan-Yao,D.Zhi-Rong,Chen Wen,Sun-il Mho,Rajamohan R.Kalluru,Journal of Power Sources 166(2007)244.
    [46]L.F.Jiao,H.T.Yuan,Y.C.Si,Y.J.Wang,Y.M.Wang,Electrochemistry Communications 8 (2006) 1041.
    [47]F.Li,X.H.Wang,C.L.Shao,R.X.Tan,Y.C.Liu,Materials Letters 61 (2007) 1328.
    [48]C.O'Dwyer,D.Navas,V.Lavayen,E.Benavente,M.A.Santa Ana,G.Gonz(?)lez,S.B.Newcomb,C.M.Sotomayor Torres,Chem.Mater.18 (2006) 3016.
    [49]Katsunori Takahashi,Ying Wang,Guozhong Cao,APPLIED PHYSICS LETTERS 86 (2005) 053102.
    [50]C.D(?)az-Guerra,J.Piqueras,J.Appl.Phys.102 (2007) 084307.
    [51]F.Garcia-Alvarado,J.M.Tarascon,B.J.Wilkens,Electrochem.Soc.139 (1992) 3206.
    [52]P.Balog,D.Orosel,Z.Cancarevic,C.Sch(o|¨)n,M.Jansen,Journal of Alloys and Compounds 429 (2007) 87.
    [53]Junfeng Liu,Xun Wang,Qing Peng,Yadong Li,Sensors and Actuators B 115(2006)481.
    [54]L.Ottaviano,A.Pennisi,F.Simone b,A.M.Salvi,Optical Materials 27(2004)307.
    [55]K.C.Cheng,F.R.Chen,J.J.Kai,Solar Energy Materials & Solar Cells 90(2006)1156.
    [56]刘春艳,中国科学院理化技术研究所博士学位论文2008年.
    [57]E.P.Reddy,R.S.Varma,Journal of Catalysis 221(2004)93.
    [58]N.Kurnagai,H.Kitamoto,M.Baba,Journal of Applied Electrochemistry 28(1998)41.
    [59]Y.S.Cohen,D.Aurbach,Electrochemistry Communications 6 (2004) 536.
    [60]Lifang Jiao,Huatang Yuan,Yijing Wang,Jiansheng Cao,Yongrnei Wang,Electrochemistry Communications 7 (2005)431.
    [61]W.Chen,C.W.Zhou,L.Q.Mai,Y.L.Liu,Y.Y.Qi,Y.Dai,J.Phys.Chem.C 112 (2008) 2262.
    [62]C.W.Zhou,L.Q.Mai,Y.L.Liu,Y.Y.Qi,Y.Dai,W.Chen,J.Phys.Chem.C 111 (2007) 8202.
    [63]T.Yamauchi,Y.Ueda,PHYSICAL REVIEWB 77 (2008) 104529.
    [64]J.Livage,G.Guzrnan,F.Bafille,J.Sol-Gel Sci.Tech.8 (1997) 857.
    [65]J.Bullot,O.Gallais,M.Gauthier,et al.Phys.Stat.Sol.71 (1982) 71.
    [66]陈军,陶占良,苟兴龙编著,化学电源——原理、技术与应用,北京:化学工业出版社2005年.
    [67]A.Manthiram,JOM 7(1997) 47.
    [68]Y.Gao,J.R.Dahn,J.Electrochem.Soc.143 (1996) 100.
    [69]M.Y.Saidi,J.Baker,R.Koksbang,ElectrocehimicaActa 41 (1996) 199.
    [70]W.Li,J.N.Reimers,J.R.Dahn,Phys.Rev.B:Condens.Matter.46 (1992) 3236.
    [71]A.Rougier,P.Gravereau,C.J.Delmas,J.Electrochem.Soc.143 (1996) 1168.
    [72]K.Miure,A.Yamada,Electrochimica Acta 41 (1996) 249.
    [73]M.Winter,J.O.Besebhard,M.E.Spahr,Advanced Materials 10 (1998) 725.
    [74]R.Koksbang,J.Barker,H.Shi,Solid State Ionics 84 (1996) 1.
    [75]G.Li,S.Pang,L.Jiang,Z.Guo,Z.Zhang,J.Phys.Chem.B 110 (2006) 9383.
    [76]Y.Wang,K.Takahashi,H.Shang,G.Cao,J.Phys.Chem.B 109 (2005) 3085.
    [77]K.Takahashi,Y.Wang,G.Cao,J.Phys.Chem.B 109 (2005) 48.
    [78]Y.Wang and G.Cao,Chem.Mater.18 (2006) 2787.
    [1]李学丹,万英超,姜祥祺,杜元成编著,真空沉积技术,浙江:浙江大学出版社1994年.
    [2]田民波编著,薄膜技术与薄膜材料,北京:清华大学出版社2006年.
    [3]刘吉平,廖莉玲编著,无机纳米材料,北京:科学出版社2003年.
    [4]张立德编著,纳米材料和纳米结构,北京:科学出版社2001年.
    [5]徐如人,庞文琴编著,无机合成与制备化学,北京:高等教育出版社2001年.
    [6]徐如人编著,无机合成化学,北京:高等教育出版社1991年.
    [7][美]王中林主编,曹茂盛,李金刚等译,纳米材料表征,北京:化学工业出版社2005年.
    [8]左演声,陈文哲,梁伟,材料现代分析方法,北京:北京工业大学出版社2000年.
    [9]黄春明,兰州大学博士学位论文2007年.
    [1]K.Le Van,H.Groult,A.Mantoux,L.Perrigaud,F.Lantelme,R.Lindstr(o|¨)m,R.Badour-Hadjean,S.Zanna,D.Lincot,Journal of Power Sources 160 (2006) 592.
    [2]H.Groult,K.Le Van,A.Mantoux,L.Perrigaud,P.Doppelt,Journal of Power Sources 174 (2007) 312.
    [3]V.L.Volkov,B.G.Golovkin,and N.V.Podval'naya,Inorganic Materials 40 (2004) 1221.
    [4]T.Yamauchi,Y.Ueda and N.M(?)ri.PHYSICAL REVIEW LETTERS 89 (2002) 057002-1.
    [5]Tomoyuki Suzuki,Ichihiro Yamauchi,and Masayuki ltoh,PHYSICAL REVIEWB 73 (2006) 224421.
    [6]R.T.Rajendra Kumar,B.Karunagaran,S.Venkatachalam,D.Mangalaraj,Sa.K.Narayandass and R.Kesavamoorthy,Materials Letters 57 (2003) 3820.
    [7]N.Fateh,G.A.Fontalvo and C.Mitterer,J.Phys.D:Appl.Phys.40 (2007) 7716.
    [8]X.J.Wamg,H.D.Li,Y.J.Fei,X.Wang,Y.Y.Xiong,Y.X.Nie,K.A.Feng,Applied Surface Science 177 (2001) 8.
    [9]陈爽,余志明,刘凤举,方梅,中国有色金属学报,18(2008)2196.
    [10]Hideto Watanabe,Ken-ichi Itoh,Osamu Matsumoto,Thin Solid Films 386 (2001) 281.
    [11]Elidia Maria Guerra,Glaucio Ribeiro Silva,Marcelo Mulato,Solid State Sciences 11 (2009) 456.
    [12]X.Rocquefelte,F.Boucher,P.Gressier,G.Ouvrard,Chem.Mater.15 (2003) 1812.
    [13]R.T.Rajendra Kumar,B.Karunagaran,V.Senthil Kumar,T.L.Jeyachandran,D.Mangalaraj and Sa.K.Narayandass,Materials Science in Semiconductor Processing 6 (2003) 543.
    [14]刘凤举,余志明,陈爽,方梅,稀有金属材料与工程37(2008)2221.
    [15]Keiji Kusabaa,Eriko Ohshimaa,Yasuhiko Syonoa,Takumi Kikegawab,Journal of Crystal Growth 229 (2001) 467.
    [16]V.P.Filonenko,M.Sundberg,P.E.Wernerb and I.P.Zibrovc,Acta Cryst.B 60 (2004) 375.
    [17]V.P.Filonenkoand I.P.Zibrov,Inorganic Materials 37 (2001) 953.
    [18]Andrzej Grzechnik,Chem.Mater.10 (1998) 2505.
    [19]P.Balog,D.Orosel,Z.Cancarevic,C.Sch(o|¨)n,M.Jansen,Journal of Alloys and Compounds 429 (2007) 87.
    [20]Touru Yamauchi,Masahiko Isobe,Yutaka Ueda,Journal of Magnetism and Magnetic Materials 272-276 (2004) 442.
    [21]Yutaka Ueda,Masahiko Isobe,Touru Yamauchi,Journal of Physics and Chemistry of Solids 63 (2002) 951.
    [22]Touru Yamauchi and Yutaka Ueda,PHYSICAL REVIEWB 77 (2008) 104529.
    [23]Masayuki Itoha,Ichihiro Yamauchia,Tomokazu Kozukaa,Tomoyuki Suzukia,Touru Yamauchib,Jun-Ichi Yamaurab,Yutaka Ueda,Journal of Magnetism and Magnetic Materials 310 (2007) 1122.
    [24]Touru Yamauchi,Masahiko Isobe,Yutaka Ueda,Solid State Sciences 7 (2005) 874.
    [25]Touru Yamauchi,Hiroaki Ueda,Yutaka Ueda,Physica C 460-462 (2007) 66.
    [26]Ichihiro Yamauchia,Masayuki Itoha,Touru Yamauchib,Yutaka Uedab Journal of Magnetism and Magnetic Materials 310 (2007) 1113.
    [27]Arturo Talledo and H(?) ctor Valdivia,J.Vac.Sci.Technol.A 21(2003)1494
    [28]黄春明,兰州大学博士毕业论文, 2007.
    [29]李学丹,万英超,姜祥祺,杜元成编著,真空沉积技术,浙江大学出版社,1994年.
    [30]M.V.Ganduglia-Pirovano,J.Sauer,J.Phys.Chem.B 109 (2005) 375.
    [31]M.V.Ganduglia-Pirovano,J.Sauer,Phys.Rev.B 70 (2004) 045422.
    [32]L.Abello,E.Husson,Y.Repelin,G.Lucazeau,Spectrochimica Acta 39A (1983) 641.
    [33]C.V.Ramana,R.J.Smith,O.M.Hussian,M.Massot,C.M.Julien,Surf.Interface Anal37 (2005) 406.
    [34]M.Veronica Ganduglia-Pirovano and Joachim Sauer,J.Phys.Chem.B 109 (2005)374.
    [1]冯异,赵军武,齐晓霞,高芬,纳米材料及其应用研究进展40(2006)10.
    [2]S.Iijima,Nature 354 (1991) 56.
    [3]E.Bengu,L.D.Marks,Phys.Rev.Lett.86 (2001) 2385.
    [4]Maja Remskar,Ales Mrzel,Zora Skraba,Adolf Jesih,Miran Ceh,Jure Demar,Pierre Stadelmann,Francis Lkvy,and Dragan Mihailovic,Science 292 (2001) 479.
    [5]Yang Yang,Xiaohui Wang,Changku Sun,and Longtu Li,J.Appl.Phys.105 (2009) 094304.
    [6]I.H.Kim,J.H.Kim,B.W.Cho,Y.H.Lee,K.B.Kim,J.Electrochem.Soc.153 A (2006) 989.
    [7]J.F.Xu,R.Czerw,S.Webster,D.L.Carroll,J.Ballato,and R.Nesper,Appl.Phys.Lett.81 (2002) 1711.
    [8]J.S.Sakamoto and B.Dunn,J.Electrochem.Soc.149 A (2002) 26.
    [9]Yang Yang,Xiaohui Wang,Changku Sun,and Longtu Li,J.Appl.Phys.104 (2008) 124108.
    [10]Timothy J.Trentler,Kathleen M.Hickman,Subhash C.Goel,Ann M.Viano,Patrick C.Gibbons,and William E.Buhro,Science 270 (1995) 1791.
    [11]A.M.Morales,C.M.Lieber,Science 279 (1998) 208.
    [12]X.F.Duan,C.M.Lieber,Adv.Mater.12 (2000) 298.
    [13]M.Paladugu,J.Zou,G.J.Auchterlonie,Y.N.Guo,Y.Kim,H.J.Joyce,Q.Gao,H.H.Tan,C.Jagadish,Appl.Phys.Lett.91 (2007) 133115.
    [14]Sungjin Whang,Sungjoo Lee,W.Yang,B.J.Cho,Y.F.Liew,K Li,L.K.Bera,and D.-L.Kwong,ECS Trans.3 (2007) 9.
    [15]G.H.Yue,L.S.Wang,X.Wang,Y.Z.Chen,D.L.Peng,J.Appl.Phys.105 (2009) 074312.
    [16]H.J.Dai,E.W.Wong,Y.Z.Lu,S.S.Fan,C.M.Lieber,Nature 375 (1995) 769.
    [17]L.Manna,E.C.Scher,A.P.Alivisatos,J.Am.Chem.Soc.122 (2000) 12700.
    [18]Katsunori Takahashi,Ying Wang,and Guozhong Cao,Appl.Phys.Lett.86 (2005) 053102.
    [19]S.Mukherjee,C.M.Zhou,and D.Gall,J.Appl.Phys.105 (2009) 094318.
    [20]Z.W.Pan,Z.R.Dai,R.P.Gao,Z.L.Wang,Science 291 (2001) 1947.
    [21]W.Shi,H.Peng,N.Wang,C.P.Li,L.Xu,C.S.Lee,R.Kalish,S.T.Lee,J.Am.Chem.Soc.123 (2001) 11095.
    [22]Zhiyong Fan,Xiaogang Wen,Shihe Yang,and Jia G.Lu,Appl.Phys.Lett.87 (2005) 013113.
    [23]S.H.Lim,J.Y.Lin,Y.W.Zhu,C.H.Sow,W.Ji,J.Appl.Phys.100 (2006) 016105
    [24]Z.R.Dai,Z.W.Pan,Z.L.Wang,J.Phys.Chem.B 106 (2002) 902.
    [25]Yoshinori Kotani,Toshiyuki Taniuchi,Minoru Osada,Takayoshi Sasaki,Masato Kotsugi,F.Z.Guo,Yoshio Watanabe,Masato Kubota,Kanta Ono,Appl.Phys.Lett.93 (2008) 093112.
    [26]Morihiro Saito,Yuya Akeboshi,Naotaka Ohno,Jun Kuwano,Hidenobu Shiroishi,Yoshiharu Uchimoto,ECS Trans.16 (2009) 97.
    [27]A.Talledo,C.G.Granquist,J.Appl.Phys.77 (1995) 4655.
    [28]M.Ponzi,C.Duschatzky,A.Carrascull,E.Ponzi,Appl.Catal.A 169 (1998) 373.
    [29]C.Julien,E.Haro-Poniatowski,M.A.Camacho-Lopez,L.Escobar-Alarcon,J.Jimenez-jarquin,Mater,Sci.Eng.B 65 (1999) 170.
    [30]P.Poizot,S.Grugeon,L.Dupont,J.-M.Tarascon,Nature 407 (2000) 496.
    [31]Q.H.Li,Q.Wan,Y.X.Liang,T.H.Wang,Appl.Phys.Lett.84 (2004) 4556.
    [32]J.Goldberger,D.J.Sirbuly,M.Law,P.D.Yang,J.Phys.Chem.B 109 (2005) 9.
    [33]X.Lin,X.B.He,T.Z.Yang,W.Guo,D.X.Shi,and H.-J.Gaoa,Appl.Phys.Lett.89 (2006) 043103.
    [34]J.H.He,Yen H.Lin,Michael E.McConney,Vladimir V.Tsukruk,Zhong L. Wang,and Gang Bao,J.Appl.Phys.102 (2007) 084303
    [35]Jinhu Yang,Guangming Liu,Jun Lu,Yongfu Qiu,and Shihe Yang.Appl.Phys.Lett.90 (2007) 103109.
    [36]Woo-Jin Lee,Mansour Alhosan,Sara L.Yohe,Nathan L.Macy,and William H.Smyrl,J.Electrochem.Soc.155 (2008) 915.
    [37]M.H(a|¨)ffner,A.Heeren,A.Haug,E.Schuster,A.Sagar,M.Fleischer,H.Peisert,M.Burghard,T.Chass(?),and D.P.Kern,J.Vac.Sci.Technol.B 26 (2008) 2447.
    [38]M.F.Goffman,N.Chimot,E.Mile,M.C.Monteverde,J.-P.Bourgoin,and V.Derycke,Proc.SPIE 7037 (2008) 703702.
    [39]Gunho Jo,Woong-Ki Hong,Jongsun Maeng,Minhyeok Choe,Woojin Park,and Takhee Lee,Appl.Phys.Lett.94 (2009) 173118.
    [40]R.S.Wagner,W.C.Ellis.Appl.Phys.Lett.4(1964)89.
    [41]韩新海,中国科学技术大学博士毕业论文,2006年.
    [42]Z.R.Dai,Z.W.Pan,Z.L.Wang,Adv.Funct.Mater.13 (2003) 9.
    [43]X.D.Wang,J.H.Song,Z.L.Wang,Journal of Materials Chemistry 17 (2007) 711.
    [44]Z.L.Wang,J.H.Song.P.Nanogen,Science 312 (2006) 242.
    [45]C.K.Chan,H.Peng,R.D.Twesten,K.Jarausch,X.F.Zhang,Y.Cui,Nano Lettes 7 (2007) 490.
    [46]K.C.Cheng,F.R.Chen,J.J.Kai,Solar Energy Materials & Solar Cells 90 (2006) 1156.
    [47]B.Yan,L.Liao,Y.M.You,X.J.Xu,Z.Zheng,Z.X.Shen,J.Ma,L.M.Tong,T.Yu,Adv.Mater.21 (2009) 1.
    [1] M. Yoshimura, S. Smiya, Materials Chemistry and Physics 61 (1999) 1.
    [2] O. Vasylkiv, Y. Sakka, Studies in Surface Science and Catalysis 132 (2001) 233.
    [3] G T. Chandrappa, N. Steunou, S. Cassaignon, C. Bauvais, J. Livage, Catalysis Today 78 (2003) 85.
    [4] T. N. Ramesh, P. Vishnu Kamath, C. Shivakumara, J. Electrochem. Soc. 152A(2005) 806.
    [5] Dongshe Zhang, Tsukasa Yoshida, Ken Furuta, Hideki Minoura, Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 159.
    [6] Wei-Kang Hu, Xue-Ping Gao, Dag Noreus, Trygve Burchardt, Nils K. Nakstad,Journal of Power Sources 160 (2006) 704.
    [7] Yan Liu, Changhuan Mi, Linghao Su, Xiaogang Zhang, Electrochimica Acta, 53(2008) 2507.
    [8] S. Manafi, H. Nadali, H.R. Irani, Materials Letters 62 (2008) 4175.
    [9] Liang Shi, Keyan Bao, Jie Cao, Yitai Qian, Appl. Phys. Lett. 93 (2008) 152511.
    [10] Ai Rong Wang, Hui Xiao, Materials Letters 63 (2009) 1221.
    [11] M. E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich and H. U. Nissen Angew. Chem. Int. Ed. Engl. 37 (1998) 1263.
    [12] F. Krumeich, H.J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, R. Nesper,J.Am. Chem. Soc. 121 (1999) 8324.
    [13] Hans-Joachim Muhr, Frank Krumeich, Urs P. Schonholzer, Fabian Bieri, Markus Niederberger, Ludwig J. Gauckler, Reinhard Nesper,Adv. Mater. 12 (2000) 231.
    [14] X. Chen, X.M. Sun, Y.D. Li, Inorg. Chem. 41 (2002) 4524.
    [15]Liqiang Mai, Wen Chen, Qing Xu, Quanyao Zhu, Chunhua Han, Junfeng Peng,Solid State Communications 126 (2003) 541.
    [16] A. G Souza Filho, O. P. Ferreira, E. J. G Santos, J. Mendes Filho, O. L. Alves,NanoLett. 4(2004)2099.
    [17] Wen Chen, Junfeng Peng, Liqiang Mai, Quanyao Zhu, Qing Xu, Materials Letters 58 (2004) 2275.
    [18] X. Q. Liu,C. M. Huang, Jiawen Qiu, Y. Y. Wang,Applied Surface Science 253(2006) 2747.
    [19] C. M Huang, X. Q. Liu, L. B. Kong, H. J. Zhou, Y. Q. Liu, J. W. Qiu Y. Y. Wang,Rare Metal 2 (2006) 88.
    [20] Marcos Malta, Guy Louarn, Nicolas Errien, Roberto M. Torresi, Journal of Power Sources 156 (2006) 533.
    [21] Fabian Bieri, Frank Krumeich, Hans-Joachim Muhr, and Reinhard Nesper,Helvetica ChimicaActa 84 (2001) 3015.
    [22] F. Sediri, F. Touati, N. Gharbi, Materials Letters 61 (2007) 1946.
    [23] F. Sediri, N. Gharbi, Journal of Physics and Chemistry of Solids 68 (2007) 1821.
    [24] A. Augustsson,T. Schmitt, L.C. Duda, J. Nordgren, J. Appl. Phys. 94 (2003)5083.
    [25] H. X. Li, L. F. Jiao, H. T. Yuan, M. Zhang, J. Guo, L. Q. Wang, M. Zhao, Y. M.Wang, Electrochemistry Communications 8 (2006) 1693.
    [26] A. H. Liu, M. S. Ichihara, I. Honma, H. S. Zhou, Electrochemistry Communications 9 (2007) 1766.
    [27] Ying Wang, Katsunori Takahashi, Huamei Shang, and Guozhong Cao, J. Phys.Chem. B 109 (2005) 3085.
    [28] Michael E. Spahr, Petra Stoschitzki-Bitterli, Reinhard Nesper, Otto Haas, Petr Novak, Journal of The Electrochemical Society 146 (1999) 2780.
    [29] Lifang Jiao , Huatang Yuan, Yuchang Si, Yijing Wang, Jiansheng, Xiuling Gao,Ming Zhao, Xingdi Zhou, Yongmei Wang. Journal of Power Sources 156 (2006)673.
    [30] Lifang Jiao, Huatang Yuan, Yijing Wang, Jiansheng Cao, Yongmei Wang,Electrochemistry Communications 7 (2005) 431.
    [31] V. V. Ivanovskaya, A. N. Enyashin, A. A. Sofronov, Yu. N. Makurin, N. I.Medvedeva, A.L. Ivanovskii, Solid State Communications 126 (2003) 489.
    [32] Anastasia V. Grigorieva, Aleksey B. Tarasov, Eugene A. Goodilin, Siranuysh M.Badalyan, Marina N. Rumyantseva, Alexander M. Gaskov, Alexander Birknerc,Yuri D. Tretyakov, Mendeleev Commun. 18 (2008) 6.
    [33] M. E. Saleta, J. Curiale, H. E. Troiani, S. Ribeiro Guevara, R. D. Sanchez , M.Malta, R. M. Torresi,Applied Surface Science 254 (2007) 371.
    [34] I. Boyano, M. Bengoechea, I. de Meatza, 0. Miguel, I. Cantero, E. Ochoteco, H.Grande, M. Lira-Cant(?)u, P. Gomez-Romero, Journal of Power Sources 174 (2007)1206.
    [35] C. O'Dwyer, D. Navas, V. Lavayen, E. Benavente, M. A. Santa Ana, G.Gonzalez, S. B. Newcomb, C. M. Sotomayor Torres, Chem. Mater. 18 (2006)3016.
    [36] Michael W(?)rle, Frank Krumeich, Fabian Bieri, Hans-Joachim Muhr, Reinhard Nesper, Z. Anorg. Allg. Chem. 628 (2002) 2778.
    [37] F. Krumeich, H. J. Muhr, M. Niederberger, Bieri F., B. Schnyder, R. Nesper,J.Am. Chem. Soc. 121 (1999) 8324.
    [38] Jacques Livage, Coordination Chemistry Reviews 178-180 (1998) 999.
    [39] Junfeng Liu, Qiuhong Li, Taihong Wang, Dapeng Yu and Yadong Li, Angew.Chem. Int. Ed. 43 (2004) 5048.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700