用户名: 密码: 验证码:
低渗含裂缝砂岩油藏渗流规律及综合模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宝浪油田地理位置处于新疆维吾尔自治区巴音郭楞蒙古自治州焉耆回族自治县境内。构造上位于焉耆盆地博湖坳陷北部凹陷宝浪苏木构造带。主要产油层为三工河组。沉积相以上辫状河三角洲前缘水下分流河道和下三角洲前缘水下分流河道为主。岩性包括砂砾岩、砾岩、粗砂岩、细砂和粉砂岩等。岩石成分成熟度和结构成熟度较低。
     储层属辫状河三角洲上发育起来的粗粒低渗储层类型。单层砂体厚度从1m至6m不等,常见多层叠加。河道频繁迁移加剧了储层的非均质性。不同砂体内平均孔隙度从12%-14%,平均渗透率从2.972×10~(-3)μm~2-27.3×10~(-3)μm~2。储层属性和流体分布复杂,砂体厚度大(Ⅲ_1油组接近20m),同时,独特的高陡背斜构造及裂缝的发育,使该地区储层成为典型的非常规储层类型:低密度、低孔孔隙度、低渗透率、粗粒、高粘土矿物、裂缝和复杂构造。
     开发13年以来,一些与地质有关的问题仍然影响该地区储层的有效开发。例如:砂体的三维分布;流动单元的分布;裂缝的特征及其对流体渗流的影响;含水率上升的控制因素,等。
     本文主要利用地质统计学、随机模拟和数值模拟等方法,首次提出并开展了针对低渗含裂缝储层进行了综合表征和模拟的方法和实现;首次采用小尺度和大尺度数值模拟相结合的方法系统评价了不同裂缝及不同流动单元组合情况下的地质模型的开发特征及参数。
     具体内容主要包括以下五个方面:
     第一,流动单元综合研究:在地层划分、岩心分析、岩心测试、储层特征参数和岩石物理相的基础上,采用聚类方法划分了流动单元类型。通过多元回归方法建立了流动单元的预测模型。对比砂体的空间分布,分析了流动单元在平面和剖面上的分布规律。
     第二,裂缝单元综合表征:通过岩心观察测定了岩心裂缝的密度、倾角、走向等参数;并通过测井和构造曲率方向分别建立了低角度裂缝和高角度裂缝的预测模型,预测并绘制了不同裂缝的裂缝密度平面分布图。
     第三,对建立随机离散裂缝分布模型的方法和参数进行了研究,并对不同裂缝密度的随机离散分布模型进行了比较。
     第四,通过对预测的低角度和高角度裂缝的平面分布图进行数字化,并对裂缝的计数密度进行了面积密度的转化,最后建立了研究区的低角度和高角度裂缝随机离散分布模型。并采用多界面(多级界面主要包括油组界面、小层界面和单砂体界面)及流动单元的约束方法建立了低渗基质的地质模型。
     第五,对岩心规模及小尺度规模的不同流动单元及不同裂缝产状的模型进行了数值模拟和比较。并在储层地质模型的粗化基础上,对Ⅲ_1油组进行了数值模拟,在历史拟合的基础上,分析了剩余油分布和剩余可采储量的平面分布。
     通过研究,取得的主要成果和认识如下:
     (1)通过FZI=4μm、FZI=2.72μm、FZI=1.85μm和FZI=1.36μm.可以把本地区流动单元类型可以分为5类,流动单元A、流动单元B、流动单元C、流动单元D和流动单元E。在流动单元基础上建立的储层孔渗测井解释模型预测的储层物性与岩心分析的物性的相关系数大于0.7,能满足精细储层建模的要求。
     (2)研究区裂缝类型按成因主要分为两类:构造成因和构造-沉积复合成因。复合成因的层状裂缝最发育,断层有关的裂缝次之。将近60%裂缝属于复合成因,40%属于构造成因。裂缝按倾角主要分为两种类型,低角度裂缝和高角度裂缝。高角度裂缝走向以东北、南西和东南方向为主,平均为156°。其倾角分布范围为15°-85°之间,大多数在40°-75°之间分布,平均为54.2°。背斜的不同部位倾角不同,西北部大于东南部。低角度裂缝的倾角在0°-20°之间不等,常呈“薄饼状”,一些裂缝的宽度小于5cm。
     (3)三孔隙度方法能够很好的预测该地区的低角度裂缝的密度,临界值为0.3。利用SPSS软件建立了低角度裂缝密度预测的多元回归方程,利用该方法预测的裂缝密度和岩性测量的裂缝之间的相关系数为0.716。在模型建立的基础上,编写了VB代码自动计算了除部分没有补偿中子、声波和密度测井的所有井,并分析了低角度裂缝的密度平面分布。高角度裂缝的预测模型通过分析裂缝发育指数和岩心裂缝密度的关系来建立。
     (4)流动单元组合下的岩心尺度数值模拟结果是不同的流动单元储层单独开采下的采收率最高,其次是流动单元A和流动单元B组合,其他组合均低于这两种组合。流动单元组合下的小尺度模拟表明,在相对注入速度相等的情况下,井距对综合采出程度的影响较小;而注入速度对综合采出程度影响较大。
     (5)四种不同倾角的裂缝模拟结果显示,在含水量达到98%时,流动单元A、流动单元B和流动单元C中采收率的关系是135°<45°<0°<90°<无裂缝模型。
     (6)和没有裂缝的模型比较,具有裂缝的岩心当含水饱和度达到98%时,流动单元A和流动单元B的含水率减少,流动单元C的含水率增加。由于串通裂缝的层间流动影响,流动单元A的采收率增加,流动单元B和流动单元C的减少,总的采收率降低。
     (7)离散裂缝等效模拟结果显示,裂缝的等效处理网格大小对基质渗透率较低的模型模拟结果影响较大。当垂向网格大小等于模型厚度时,模拟的含水率比离散裂缝模型的结果低20%。合理的垂向网格大小和基质渗透率成正比关系。
     (8)多界面和流动单元共同控制储层地质建模方法能很好的控制砂体形态和砂体属性参数分布。流动单元A、B、C、D、E和泥岩的最大主变程分别为635m、429m、520m、558m、556m和783m。孔隙度在流动单元B、C、D和E中的最大主变程分别为483m、676m、516m和628m。孔隙度在流动单元B、C、D和E中的最小次变程分别为248m、200m、264m和232m。流动单元A、B、C、D和E的渗透率控制范围分别为52.5~162.6×10~(-3)μm~2、18.3~97×10~(-3)μm~2、6.6~51.6×10~(-3)μm~2、2.5~17.8×10~(-3)μm~2、1.4~16.8×10~(-3)μm~2。最后,建立了各种储层属性分布模型。
     (9)运用随机模拟方法建立了不同裂缝参数条件下的裂缝分布模型,探讨了裂缝密度参数与裂缝模型结果参数的关系。当裂缝面积密度为0.05m~2/m~3、0.1m~2/m~3、0.5m~2/m~3、1m~2/m~3、2m~2/m~3和10m~2/m~3时,裂缝模型的平均孔隙度分别为0.0000、0.0002、0.0019、0.0028、0.0087和0.0461;平均渗透率分别为1×10~(-3)μm~2、10×10~(-3)μm~2、79×10~(-3)μm~2、119×10~(-3)μm~2、369×10~(-3)μm~2、1260×10~(-3)μm~2和1941×10~(-3)μm~2;裂缝形状系数平均值分别为3984m~(-2)、371m~(-2)、1476m~(-2)、3×10~6m~(-2)、8×10~5m~(-2)、和1×10~5m~(-2)。粗化的孔隙度和渗透率值与裂缝面密度成直线关系。
     (10)利用数值模拟方法对(9)的模型在基质结合不同流动单元情况下的渗流特征进行了对比。发现不同模型的采收率和累计采油量与裂缝面积密度没有直线关系。采收率在基质为流动单元A、流动单元B和流动单元C时的拐点分别为2m~2/m~3、2m~2/m~3和1m~2/m~3;累计产油量在裂缝面密度大于0.5 m~2/m~3时递增,小于0.5 m~2/m~3时递减。注采井连线与裂缝走向平行时的采收率和累计产油量均小于相应的在注采井连线与裂缝走向垂直下的模拟结果。而含水饱和度达到98%的时间关系为:当基质为流动单元A时,垂直模型晚于平行模型,当基质为流动单元B和C时,垂直模型早于平行模型。
     (11)运用随机模拟方法建立了Ⅲ_1油组的高角度裂缝和低角度裂缝离散分布模型。并利用Oda方法对该离散裂缝网络模型进行了粗化,得出了裂缝孔隙度、渗透率和裂缝形状指数。模型的平均孔隙度为0.4%,I、J和K方向的平均渗透率分别为11×10~(-3)μm~2、22×10~(-3)μm~2和13×10~(-3)μm~2。I、J和K方向的平均裂缝间距分别为2.78m、4.19m和0.58m。整个模型的裂缝形状指数为18836/m~2.在该模型的基础上,利用数值模拟方法对剩余油分布进行了研究。剩余油分布主要受注采井网不完善、次级断层、砂体分布和流动单元储层非均质性等因素影响控制和影响。
Baolang oilfield is situated in Yanqi,the Hui nationality autonomous county of BayingolMonglian autonomous state,Xinjiang Vygur Autonomous Region.It is also situated on theBaolang-Sumu structural zone,north of Bohu depression,Yanqi basin.The main productionformation is Sangonghe formation of Baolang oilfield,Northwest China.The facies are,underwater distributary channel of braided delta front in upper section,and distributary channel ofbraided delta plain in lower section.Main lithologies are Gravel,Pebbled Sandstone,Coarsesandstone,Siltstone and fine sandstone,etc.The maturities of rock content and rock structure arelow.
     The reservoir is a coarse grain and low permeability reservoir (LPR) developed frombraided delta.The sand thickness varies from lm to 6m,with distinct multi-interlayer.Thechannel path change frequently,which caused the high heterogeneity reservoir.The averageporosity ranges from 12% to 14%,and average permeability ranges from 2.97 mD to 27.3 mD,ofdifferent oil groups,within Sangonghe formation.Distribution of reservoir properties and fluidare complex.The thickness is large,average thickness ofⅢ1-oilgroup is about 20 meters.Alsothe structure is unique with the growth of many fractures.The reservoir is a representative ofunconventional reservoirs,low density,low porosity,low permeability,coarse grain,high claycontent,fractures and complex structure.
     After 13 years' production,some geological related problems still affects the efficientexploration of the reservoir.First is the 3D sand structure and flow unit distribution,second is fracture characterization and how it affects the fluid flow.third are the controlling factors thatcause increasing water production.All these problems need to be studied to enhance the oilproduction of this area.
     This thesis brings forward a systematic and efficient method to construct an integratedmodel for fractured low permeability reservoir,and evaluate the fluid flow performance withindifferent orientation fracture and different flow units reservoirs by using statistics,geostatistics,stochastic modeling,and large and small scale numerical simulation methods.
     The main contents of this thesis include five parts:
     First,divide the FU type based on layers correlation,core analysis,core test,reservoircharacter parameters,petrophysical facies,etc.by clustering method.Then build the FUprediction model by multi regression method.At last,figure out and analysis the FU distributionin section and plane,integrated with the distribution of sandstone.
     Second,make an integrated characterization for the fractures,include measure the fractureline density,dip,and azimuth,and construct the identifying and predicting model for low anglefracture and high angle fracture by log and structural curvature,respectively.At last,plot thecontour map of fracture density.
     Third,compare the fracture modeling results which is constructed by different stochasticmodeling parameters and methods
     Fourth,build 3D discrete fracture modeling for low angle fracture and high angle fracture,based on digitize and convert the fracture line density into fracture area density.And,construct ageo-model for the low permeability matrix,controlled by multi-surface and flow units.
     Fifth,make comparisons of the fluid flow performance for models with different flow unitsand different fracture character by large- and small-scale simulation models.Also,make a casenumerical simulation for the III1 oil layer group,and analyze the oil distribution character basedon well history lnatch.
     The main results as follows:
     1.The FU are divided into 5 types,FU-A,FU-B,FU-C,FU-D,and FU-E,by FZI=4μm,FZI=2.72μm,FZI=1.85μm and FZI=1.36μm,respectively.The correlation coefficientbetween predicted permeability,controlled by FUs,and core measured permeability ishigher than 0.7.The predicted permeability can meet the demand for fine reservoircharacterization.
     2.The fractures in the studied area can be divided into two types,tectonic and complex(include tectonic and sedimentary) formation.Complex formation fracture is frequentlyobserved,fault-related fracture is second.Complex formation fractures account for 60%,while tectonic fracture account for 40%.Ahnost,the fractures are divided into two types,low angle fracture and high angle fracture by the fracture dip.The azimuth of HAF,has three directions,NE,SW,and SE,with average of 156°.Dip angles are varied from15-85°,most of them between 40-75°,and the average is 54.2°.It is varied in differentsections of the anticline,NW higher than SE.Dip of LAF ranges from 0°to 20°,havingno constant trend direction.They growth like“thin biscuit”,some fracture space is smallthan 5cm.
     3.Tri-porosity can be used to predict the fracture intensity (FI) of LAF.The critical valueis 0.3.Multiple regression method was used to construct the fracture intensity calculationmodel by software SPSSTM.The correlation coefficient between predict FI and cored FIis 0.716.With this model,VB programs were written and used to calculate the FI ofmost wells except some wells which having no logs of CNL,AC,and DEN.Then thecontour maps of predicted fracture density distributions were plotted.HAF distribution ispredicted by calculating and comparing the fracture growth index with the cored fractureintensity.
     4.The FU grouped core-scale simulation results show that it got the highest recovery witheach FU produced individually,and it got an equivalent recovery with grouping FU-Aand FU-B and separating FU-C.Other group-models got lower recovery.Pilot studyresults show that there are no big changes of the total oil recovery for different wellspacing model when the relative pore volume injection speed is equivalent;but there arebigger differences for different injection speed models with same well spacing.
     5.Four simulation results,each with a different orientation fracture,show that when watercut increased up to 98%,the relationship of oil recovery is,fracture oriented 135°againstdisplacing direction<45°<0°<90°<Non-fracture model,with FU-A,FU-B and FU-Cmatrix.
     6.Compared with non-fracture model,when water cut increasing up to 98%,the water cutof FU-A and FU-B decrease,but that of FU-C increase.The recovery of FU-A increase,of FU-B and FU-C decrease,and the total recovery decrease,since the cross flowthrough fracture.
     7.The simulation results for discrete fracture with equivalent method show that the impactis bigger by fracture equivalent grid size when the permeability of matrix is lower;whenthe cell size in vertical equal the reservoir thickness,the decrease of water cut more than20 %;the suitable grid size in vertical is proportionally with matrix permeability.
     8.The multi-surfaces and FU controlled modeling method can simulate the sandstoneaccurately.Also the distribution of properties can be simulated properly.The biggestmajor range of Mud,FU-A,FU-B,FU-C,FU-D and FU-E are 635m,429m,520m,558m,556m,and 783m,respectively.The maximum major range of porosity in FU-B,FU-C,FU-D and FU-E are 483m,676m,516m and 628m,respectively.The minimumMinor range of FU-B,FU-C,FU-D and FU-E are 248m,200m,264m and 232m,respectively.The transformations of permeability versus FU-A,FU-B,FU-C,FU-D and FU-E are 52.5 to 162.6,18.3 to 97,6.6 to 51.6,2.5 to 17.8 and 1.4 to 16.8,respectively.Several properties models have been generated.
     9.Discrete fracture models with different fracture parameters were constructed andcompared.It shows that when fracture area density are 0.05m~2/m~3,0.1m~2/m~3,0.5m~2/m~3,1 m~2/m~3,2m~2/m~3,and 10m~2/m~3,the average porosity are 0.0000,0.0002,0.0019,0.0028,0.0087 and 0.0461,respectively;the average sigma are 3984m~(-2),371m~(-2),1476m~(-2),3x106m~(-2),8x105m~(-2),and 1x105m~(-2),respectively;the average permeability are lmD,10mD,79mD,119mD,369mD,1260mD and 1941mD,respectively.The upscaledporosity and permeability of the fracture model have linear relationship with fracturearea density.
     10.The simulation results,using above models,show that there are no linear relationshipbetween oil recovery and cumulative oil production and fracture area density.Theinflexions of the oil recovery trend for FU-A,FU-B and FU-C are 2m~2/m~3,2m~2/m~3 and1 m~2/m~3,respectively.Cumulative oil production decrease when fracture area density lessthan 0.5m~2/m~3,and increase when it bigger than 0.5m~2/m~3.When the production andinjection well situated in fracture azimuth (Parallel model),the oil recovery andcumulative oil production both less than that when they situated perpendicular withfracture azimuth (Perpendicular model).The time,when water cut up to 98%,ofperpendicular models is later than parallel model when matrix is FU-A,andperpendicular model is earlier than that of parallel model when matrix is FU-B andFU-C.
     11.DFN model of HAF and LAF have been generated with stochastic modeling methodrespectively.And then the DFN model was upscaled for porosity,permeability,sigmawith Oda method.The average porosity of total model is 0.4%.The average permeabilityin I-,J-,and K-direction,of total model are l lmD,22mD and 13mD,respectively.Themean of fracture space in I-,J-,K-direction are 2.78m,4.19m,and 0.58m respectively.The average sigma of total model is 18836 m~(-2).The residual oil is controlled by,inefficient network between production and injection,the little fault,sandstonedistribution and the heterogeneity properties of FU.
引文
[1]蒋凌志,顾家裕,郭彬程.中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J].沉积学报,2004,22(01):13-18.
    [2]王夕宾,钟建华.濮城油田南区沙二上4-7砂层组低渗储层特征及成因分析[J1.中国石油大学学报(自然科学版),2006,30(6):19-23.
    [3]张立强,纪友亮.羌塘盆地侏罗系低渗透砂岩储层成因分类及有利储层预测[J].石油大学学报(自然科学版),2001,25(5):6-10.
    [4]姚光庆,蔡忠贤,编著.油气储层地质学原理与方法[M].2005,武汉:中国地质大学出版社.
    [5]陈景山,周彦,彭军,等.富县探区低孔低渗砂体的成因类型与层内非均质模式[J].沉积学报,2007,25(01):53-58.
    [6]郑浚茂,应凤祥.煤系地层(酸性水介质)的砂岩储层特征及成岩模式[J].石油学报,1997,18(4):19-24.
    [7]Surdam R C,Crossey L J,Hagen E S,et al.Organic-inorganic interactions and sandstone diagenesis[J].AAPG Bulletin,1989,77(1):1-23.
    [8]姚光庆,孙尚如,周锋德.非常规陆相油气储层—以湖相低渗透砂砾岩和裂缝性白云岩储层为例[M].武汉:中国地质大学出版社,2004.
    [9]Henry A O,Austin A,Federica M C.A hydraulic(flow)unit based model for the determination of petrophysical properties from NMR relaxation measurements,SPE 30626[A].Presented at the SPE Annual Technical Conference and Exhibition[C].Dallas,USA,Oct 22~25 1995:983-996.
    [10]Gunter G W,F J M,Hartmann D J.Early Determination of Reservoir Flow Units Using an Integrated Petrophysical Method[C].SPE Annual Technical Conference and Exhibition,San Antonio,Texas.[S.l.]:SPE38679,1997:373-380.
    [11]刘吉余,王建东,吕靖.流动单元特征及其成因分类[J].石油实验地质,2002,24(4):381-384.
    [12]Ti G,Baker H,Ogbo D O,et al.Use of flow units as a tool for reservoir description:A case study[M].SPE Formation Evaluation,1995,10(2):122-128.
    [13]窦之林.储层流动单元研究[M].北京:石油工业出版社,2000.
    [14]Aguilera R.,Aguilera M S.The Integration of Capillary Pressures and Pickett Plots for Determination of Flow Units and Reservoir Containers[J].SPE 71725,2001:1-13.
    [15]Amaefule J O,Altunbay M.Enhanced reservoir description:Using core and log data to identify hydraulic(flow)units and predict permeability in uncored intervals/well, SPE26436[A].Presented at the 68 th Annual SPE Conference and Exhibition[C].USA:Houston,1993:205-220.
    [16]Sllseth J K,李彦平译.流动单元油藏描述对模拟水驱动态的影响[J].石油勘探开发情报,1994,6(1):82-90.
    [17]姚光庆,赵彦超,张森龙.新民油田低渗细粒储集砂岩岩石物理相研究[J].地球科学:中国地质大学学报,1995,20(3):355-360.
    [18]Larue D K,Legarre H.Flow Units,Connectivity,and Reservoir Characterization in a Wave-Dominated Deltaic Reservoir:Meren Reservoir,Nigeria[J].AAPG Bulletin,2004,88(3):303-324.
    [19]Babadagli T,Al-Salmi S A.Review of Permeability-Prediction Methods for Carbonate Reservoirs Using Well-Log Data[J].SPEREE,2004,75-87.
    [20]Ahmed U,Crary S F,Coates G R.Permeability Estimation:the Various Sources and Their Interrelationship[J].JPT,1991,78-87.
    [21]Berg R R.Method for Determining Permeability from Reservoir Rock Properties[J].Trans.,Gulf Coast Assn.of Geol.Soc.1973,57(2):349.
    [22]Krumbein W C,Monk G D.Permeability as a Function of the size Parameters of Unconsolidated Sand[J].Trans.,AIME,1943:151-153.
    [23]Lucia F J.Rock Fabric Petrophysical Classification of Carbonate Pore Space for Reservoir Characterization[J].AAPG Bull,1995,79(9):1275-1300.
    [24]Nelson P H.Permeability-Porosity Relationship in Sedimentary Rocks[J].The Log Analyst,1994,35(3):38.
    [25]Pape H,Clauser C,Joachim I.Permeability Prediction Based on Fractal Pore-Space Geometry[J].Geophysics,1999,64(5):1447-1460.
    [26]Sen P N,et al.Surface-to-Volume Ratio,Charge Denisty,Nuclear Magnetic Relaxation,and Permeability in Clay-Bearing Sandstone[J].Geophysics,January 1990,55(1):61.
    [27]Swanson B F.A Simple Correlation between Permeability and Mercury Capillary Pressure[J].JPT,December 1981,2498.
    [28]Tixier M P.Evaluation of Permeability from Electric-Log Resistivity Gradients[J].Journal of Oil and Gas.June 1949,48(6):113.
    [29]刘芬霞,程启荣,原海涵,等.低孔低渗储层测井解释方法研究—以陕甘宁盆地中部气田上古生界求孔隙度、渗透率为例[J].高校地质学报,1996,2(01):65-74.
    [30]张龙海,周灿灿,刘国强.不同类型低孔低渗储集层的成因、物性差异及测井评价对策[J].石油勘探与开发,2007,34(6):702-710.
    [31]杨百全,黄华梁,李玉华.低渗透储层特征参数研究与应用[J].天然气工业,2001,21(2):32-35.
    [32]高旺来.安塞油田低渗透储层岩石物性特征实验研究[J].特种油气藏,1998,4:53-57.
    [33]杨晓敏,张本华,朱之锦,等.孤北地区低渗透储层测井评价[J].油气地质与采收率,2002,9(02):26-27.
    [34]宋惠珍,欧阳健,孙君秀,等.裂缝性储集层定量研究的一套新方法[J].地震地质,1994,16(3):254-254.
    [35]宋慧珍,贾承造,欧阳建,等.裂缝性储集层研究理论与方法[M].北京:石油工业出版社,2001.
    [36]王志章,等.裂缝性油藏描述及预测[M].石油工业出版社,1995.5.
    [37]T.D.范高尔夫—拉特.裂缝油藏工程基础-石油科学进展[M].北京:石油工业出版社,1989.
    [38]黄辅琼,欧阳健,肖承文.储层岩心裂缝与试件裂缝定量描述方法研究[J].测井技术,1997,20(4):356 360.
    [39]谭廷栋.裂缝性油气藏测井解释模型与评价方法[M],北京:石油工业出版社,1987.
    [40]汪涵明,张庚骥,李善军,等.单一倾斜裂缝的双侧向测井响应[J].石油大学学报,1995,19(6):21-24.
    [41]王允诚,等.裂缝性致密油气储集层[M].北京:地质出版社,1992.
    [42]Colleen A B,Mark D Z.Discrimination of Natural Fractures from Drilling-Induced Wellbore Failures in Wellbore Image Data-Implications for Reservoir Permeability[C].SPE,June 2002,249-254.
    [43]吴时国,王秀玲,季玉新.3Dmove构造裂缝预测技术在古潜山的应用研究[J].中国科学D辑,2004,34(9):818-824.
    [44]Gray F D,Head,K J.Fracture Detection in the Manderson Field:A 3D AVAZ Case History[J].The Leading Edge,2000,19(11):1214-1221.
    [45]Gray F D,Head K J,Chamberlain C K,et al.Using 3D Seismic to Identify Spatially Variant Fracture Orientation in the Manderson Field[C],SPE Paper 55636,1999.
    [46]罗省贤,李录明.基于横波分裂的地层裂缝预测方法与应用[J].成都理工大学学报(自然科学版),2003,30(1):52-59.
    [47]彭晓波,彭苏萍,詹阁,等.P波方位AVO在煤层裂缝探测中的应用[J].岩石力学与工程学报,2005,24(16):2960-2965.
    [48]Hall S,Kendall J M,Barkved O,et al.Fracture characterization using P-wave AVOA in 3-D OBS data[C].70th Ann.Internat.Mtg:Soc.OfExpl.Geophys.,Session:RC 1.3,2000:1409-1412.
    [49]Lynn H B,Simon K M,Bates C R.Correlation between P-wave AVOA and S-wave traveltime anisotropy in naturally fractured gas reservoir[J].The Leading Edge,1996,15:931 ~935.
    [50]乐绍东.AVA裂缝检测技术在川西JM构造的应用[J].天然气工业, 2004,24(4):22-24.
    [51]苏朝光刘传虎.相干分析技术在泥岩裂缝油气藏预测中的应用[J].石油物探,2002, 41(2):197-201.
    [52]胡文祥.声波测井资料弱初至波检测新方法[J].江汉石油学院学报,1994,16(12):24-25.
    [53]何涛,史謌.斯通利波在测井应用中的研究进展和现状[J].北京大学学报(自然科学版).2002,38(4):66-72.
    [54]黄捍尔,魏修成,叶连池,等.分形边缘检测在裂缝预测中的应用[J];石油地球物理勘探:2002,37(1):65-68.
    [55]刘翠荣.川西坳陷喜山期构造应力场数值模拟及裂缝预测[J].工然气工业,2002,22(3):10-15.
    [56]宋惠珍,曾海容,孙君秀,等..储层古应力场的数值模拟[J].地震地质,1999,21(3):193-204.
    [57]岳乐平,张莉,吴诗平,等.鄯善油田裂缝特征及构造应力场[J].地质力学学报,1999,5(2):59-64.
    [58]曾联波,田崇鲁.构造应力场与低渗透油田开发[J].石油勘探与开发,1998,25(3):91-93
    [59]Nelson R A.Geologic Analysis of Naturally Fractured Reservoires[M].Houston:Gulf Publ.Company.1985:123-157.
    [60]李行船,谢桂学,孟祥和.古构造应力场反演在储层裂缝预测中的应用——以埕北30潜山油藏为例[J].山东科技大学学报(自然科学版),2001,20((01):74-77.
    [61]孙尚如.预测储层裂缝的两种曲率方法应用比较[J].地质科技情报,2003,22(4):71-74.
    [62]王侃昌,师帅兵.自由曲面的高斯曲率计算方法[J].西北农业大学学报,2000,28(6):150-153.
    [63]J Lisle,吴官省,译.运用高斯曲率分析可确定构造中的异常变形带[J].石油勘探开发情报,1995,5:1-9.
    [64]郭科,胥泽银,倪根生.用主曲率法研究裂缝性油气藏[J].物探化探计算技术,1998,20(4):335-337.
    [65]康义逵,任文清,朱用斌,等.极值主曲率法预测天然裂缝发育带的方法[J].油气井测试,2002,11(4):23-25.
    [66]Bao J G.The Solvability for the Equation of Prescribed Nonnegative Gauss Curvature[J].Advance in Mathematics,1999,28(6):506-510.
    [67]汪嘉月,奥立德,屈红,等.运用神经网络法研究微裂缝的分布规律——以苏北盆地高邮凹陷CA油田为例[J].石油实验地质, 2006,28(04):395-398.
    [68]李海燕,彭仕宓.应用分形技术预测井问裂缝[J].石油大学学报(自然科学版),2002, 26(06):33-35.
    [69]钟思瑛.有限元应力法在构造裂缝预测中的应用[J].石油天然气学报,2005,27(4):556-558.
    [70]陈波,赵海涛.利用随机建模技术预测裂缝分布方向——以王徐庄油田为例[J].江汉石油学院学报, 2004,26(4):42-44.
    [71]Shook G,Michael S.A simple,fast method of estimating fractured reservoir geometry from tracer tests[C].Transactions-Geothermal Resources Council,2003,27,407-411.
    [72]Beliveau D,Payne D A,Mundry M.Analysis of the waterflood response of a naturally fractured reservoir[A].Proceedings SPE Annual Technical Conference and Exhibition,Sigma,Reservoir Engineering,1991:603-613.
    [73]Axelsson G O,Flovenz S,Hauksdottir A,et al.Analysis of tracer test data,and injection-induced cooling,in the Laugaland geothermal field,N-Iceland[J].Geothermics,2001,30(6):573-589.
    [74]张永贵,陈明强,吴莹.利用动态资料研究巴喀油田裂缝分布[J].石油勘探与开发,1998,25(5):68-71,
    [75]王秀娟,孙贻铃,庞彦明.三肇地区扶杨油层裂缝和地应力分布特征对注水开发的影响[J].大庆石油地质与开发,2000,19(5):9-14.
    [76]王仲茂,胡江明.水力压裂形成裂缝形态的研究[J].石油勘探与开发,1994,21(6):66-69
    [77]Stephen E,Lanbach A.Method to detect natural fracture strike in sandstones[J].AAPG Bulletin,1997,81(4):604-623.
    [78]Oman O,Richard P.Fractured reservoir characterization using dynamic data in a carbonate field[C].SPE Middle East Oil and Gas Show and Conference,MEOS,Proceedings,14th SPE Middle East Oil and Gas Show and Conference,MEOS 2005,Proceedings,2005:401-413.
    [79]Barman I,Ouenes A,Wang M.Fractured reservoir characterization using streamline-based inverse modeling and artificial intelligence tools[C].Proceedings SPE Annual Technical Conference and Exhibition,v OMEGA,2000:371-379.
    [80]Singh P K,Halvorsen H,York S D.Fractured reservoir characterization through injection falloff and flowback tests[C].Proceedings,SPE Annual Technical Conference and Exhibition,Omega,Formation Evaluation and Reservoir Geology,1990:399-410.
    [81]Jon E O,Yuan Q,Jon H,Peggy R.Constraining the Spatial Distribution of Fracture Networks in Naturally Fractured Reservoirs Using Fracture Mechanics and Core Measurements[C].SPE Annual Technical Conference and Exhibition,New Orleans,Louisiana,30 September-3 October 2001.
    [82]Tran N H.Characterisation and Modeling of Naturally Fractured Reservoirs[D].Sydney,University of New South Wales,2004.
    [83]裘亦楠,刘雨芬.低渗透砂岩油藏开发模式[M].北京:石油工业出版社,1998.4.
    [84]金燕,张旭.测井裂缝参数估算与储层裂缝评价方法研究[J].天然气工业,2002,22(S1):64-67.
    [85]黄文新,历元彬.用反射斯通利波确定地层裂缝宽度和渗透率[J].江汉石油学院学报, 1994,16(S1):26-31.
    [86]杨威,王清华,刘效曾,等.和田河气田碳酸盐岩岩心裂缝分维数及与物性的关系[J].石油勘探与开发,2001,28(3):46-48.
    [87]张吉昌,刘月田,丁燕飞,等.裂缝各向异性油藏孔隙度和渗透率计算方法[J].中国 石油大学学报(自然科学版),2006,30(05):62-65.
    [88]Cosentino L,Coury Y,Daniel J M,etc.Integrated Study of a Fractured Middle East Reservoir with Stratiform Super-K Intervals-Part 2:Upscaling and Dual-Meddia Simulation[J].SPEREE 75542,February 2002:24-32.
    [89]Snow D.A parallel plate model of fractured permeable media[D].Ph.D thesis.University of California,Berkeley,1965.
    [90]Liu J J,Feng X T,Liu X G.Physical and numerical simulation of water flooding effect in fractured sandstone oil reservoir[J].Source:Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering,2004,23(14):2313-2318
    [91]杨正明.低渗透油藏渗流机理及其应用[D].博士论文,2004.
    [92]黄延章等.低渗透油层渗流机理[M].北京:石油工业出版社,1998.
    [93]刘慈群,郭尚平.多重介质渗流研究进展[J].力学进展,1982,12(4):360-364.
    [94]林玉保,史晓波.特低渗透储层油水相对渗透率实验研究[J].大庆石油地质与开发,2000,19(2):30-33.
    [95]王启蒙,汪强,诸葛镇.低渗储层渗流规律及水驱油机理的试验研究[J].江汉石油学院学报,2003,25(S1):102.
    [96]肖鲁川,甄力,郑岩.特低渗透储层非达西渗流特征研究[J].大庆石油地质与开发,2000,19(5):27-30.
    [97]周克明,李宁,袁小玲.残余水状态下低渗储层气体低速渗流机理[J].天然气工业,2003, 23(6):103-105.
    [98]贺伟,冯曦,王阳.低渗气藏气井产能影响因素分析[J].天然气勘探与开发, 2000, 23(02):23-26.
    [99]冯金德,程林松,李春兰.裂缝性油藏单井渗流规律研究[J].石油钻探技术,2007, 35(3).
    [100]Sudipta S,Toksoz M N,Daniel R B.Fluid flow simulation in fractured reservoirs.2004,N/A.(http://www-eaps.mit.edu/erl/research/report1/pdf2004/sarkar.pdf)
    [101]Mohamed A,Ahmed K.Performance of horizontal wells with longitudinal fractures in reservoirs with bottom-water drive[J].Petroleum Sciences and Technology,19(7):949-959.
    [102]吴建发,郭建春,赵金洲.裂缝性地层气水两相渗流机理研究[J].天然气工业,2004, 24(11):85-87.
    [103]常宗旭,赵阳升,胡耀青,等.三维应力作用下单一裂缝渗流规律的理论与试验研究[J].岩石力学与工程学报,2004,23(04):620-624.
    [104]刘建军,刘先贵,胡雅礽.裂缝性砂岩油藏渗流的等效连续介质模型[J].重庆大学学报(自然科学版),2000,23(S1):158-160.
    [105]周娟,薛惠,郑德温,等.裂缝油藏水驱油渗流机理[J].重庆大学学报(自然科学版), 2000,23(S1):65-67.
    [106]李其深,段永刚,陈伟,等.裂缝-孔隙油藏耦合模型的精确解[J].重庆大学学报(自 然科学版),2000,23(S1):166-168.
    [107]刘晓丽,梁冰,王思敬,等.水气二相渗流与双重介质变形的流固耦合数学模型[J].水利学报,2005,36(4):405-412.
    [108]刘建军,裴桂红.裂缝性低渗透油藏流固耦合渗流分析[J].应用力学学报,2004,1:38-41.
    [109]张玄奇,郭小强,尉立岗等.超低渗透油层温度-应力-渗流的流固耦合效应[J].西安石油大学学报(自然科学版),2007,22(2):45-51.
    [110]尹艳树,吴胜和.储层随机建模研究进展[J].天然气地球科学,2006,17(02):210-216
    [111]盖凌云.随机建模的研究进展及应用软件[J].科学技术与工程,2007,7(02):245-248.
    [112]冯国庆,陈浩,张烈辉,等.利用多点地质统计学方法模拟岩相分布[J].西安石油大学学报(自然科学版),2005,20(05):9-11.
    [113]吴胜和,李文克.多点地质统计学—理论、应用与展望[J].古地理学报,2005,7(01):137-143.
    [114]白鹤翔,葛咏,李德玉.多点模拟算法与试验对比分析[J].地球信息科学,2006,8(04):117-121.
    [115]吴胜和,李宇鹏.储层地质建模的现状与展望[J].海相油气地质, 2007,12(03):53-60.
    [116]李少华,张昌民,尹艳树,等.多物源条件下的储层地质建模方法[J].地学前缘,2008, 15(01):196-201.
    [117]刘建华,朱玉双,胡友洲,等.安塞油田H区开发中后期储层地质建模[J].沉积学报,2007,25(01):110-115.
    [118]Bruce S.Hart,等著,钟锴译.用有限井控3D地震属性确定储层物性——Alabama地区侏罗系Smackover组地层实例[J].石油物探译丛,2001,1:54-62.
    [119]霍春亮,古莉,赵春明,等.基于地震、测井和地质综合一体化的储层精细建模[J].石油学报,2007,28(6):66-71.
    [120]Michael J P,Octavian C,Deutsch C V.Stochastic surface-based modeling of turbidite lobes[J].AAPG Bulletin,February 2005,89(2):177-191.
    [121]Matthew J P,Amanda I E,Rex D C,et al.Analysis and modeling of intermediate-scale reservoir heterogeneity based on a fluvial point-bar outcrop analog,Williams Fork Formation,Piceance Basin,Colorado[J].AAPG Bulletin,2007,91(7):1025-1051.
    [122]吴胜和,武军昌,储勇,等.陡坡扇储集层三维沉积相建模研究[J].石油勘探与开发, 2003,30(03):111-113.
    [123]印兴耀,刘永社.储层建模中地质统计学整合地震数据的方法及研究进展[J].石油地球物理勘探,2002,37(04):423-430.
    [124]Angerer E,Lanfranchi P,Rogers S F.Fractured reservoir modeling from seismic to simulator:A reality[J].Leading Edge,2003,22(7):684-689
    [125]Gauthier B D M,Garcia M,Daniel J M.Integrated Fractured Reservoir Characterization:A Case Study in a North Africa Field[J].SPE,2002,284-293.
    [126]Bourdiaux B,Cacas M C,Sarda S,et al.A rapid and efficient fractured reservoir images into a dual-porosity model [J].Oil & Gas Science and Technology,1998,53(6).
    [127]Daly C,Mueller D.Characterisation and Modelling of Fractured Reservoirs:Static Model [C].9th European Conference on the Mathematics of Oil Recovery-Cannes,France,30 August-2 September 2004.
    [128]Gallagher J,Prado L,Pieters J.Simulation of coning in a thin oil rim in a fractured reservoir [C].Source:Proceedings of the Middle East Oil Show,v 2,1993:181-190.
    [129]Weber A,Brauckmann F,Rijkels L,et al.Modelling water breakthrough in a fractured carbonate gas reservoir [C].Source:Proceedings of the Middle East Oil Show,2001:717-725.
    [130]Boerrigter P M,Leemput B L,Pieters E C,et al.Fractured reservoir simulation:case studies [C].Source:Proceedings of the Middle East Oil Show,v 2,1993:191-202.
    [131]Van Golf-Racht T D,Sonier F.Water-coning in a fractured reservoir [C].Source:Proceedings-SPE Annual Technical Conference and Exhibition,v Sigma,n pt 1,SPE 28572,Reservoir Engineering,1994:53-59.
    [132]孙庆和,何玺,李长禄.特低渗储层微裂缝特征及对注水开发效果的影响[J].石油学报,2000,21(4):52-57.
    [133]Dholakia S K,Aydin A,Pollard D D,et al.Fault-controlled hydrocarbon pathways in the Monterey formation,California [J].1998,AAPG Bulletin,V.82,No.8,P1551-1574.
    [134]Yano Y,Ishido T.Production and Reinjection Behavior of Fractured Two-Phase Reservoirs [C].Proceedings World Geothermal Congress 2000,Kyushu-Tohoku,Japan,May 28-June 10,2000.
    [135]Thomas L K,Thomas N D,Ray G P.Fractured Reservoir Simulation [J].SPE J.P.,1983,42-54.
    [136]Denney D S.Integrated fractured-reservoir characterization and simulation:Tunisian application [J].JPT (Journal of Petroleum Technology),2004,56(8):37-38,47.
    [137]Friedel T,Voigt H D.Investigation of non-Darcy flow in tight-gas reservoirs with fractured wells [J].Journal of Petroleum Science and Engineering,2006,54:112-128.
    [138]Eker E,Akin E.Lattice Boltzmann Simulation of Fluid Flow in Synthetic Fractures [J].Transport in Porous Media,2006,65:363-384.
    [139]Tran N H.Characterisation and Modelling of Naturally Fractured Reservoirs [D].2004,UNSW,Sydney,AU.
    [140]Berkowitz B.Characterizing flow and transport in fractured geological media:A review [J].Advances in Water Resources,2002,25:861-884.
    [141]Michael J O S,Karsten P,Marcelo J L.Geothermal Reservoir Simulation:The State-Of-Practice and Emerging Trends [C].Proceedings World Geothermal Congress 2000,Kyushu-Tohoku,Japan,May 28-June 10,2000.
    [142]Jane C S,Witherpoon P A.A model for steady fluid flow in random three dimensional networks of disc-shaped fractures[J].Water Resource Res.,1985,21(8):1105-1115.
    [143]Cacas M C,Ledoux E,Marsily G D,et al.Modeling fracture flow with a stochastic discrete fracture network:Calibration and validation 2.The transport model[J].Water Resources Research,1990,26(3):491-500.
    [144]Donato G D,Huang W F,Blunt M.Streamline-Based Dual Porosity Simulation of Fractured Reservoirs[C].SPE 84036,2003,1-11.
    [145]Wang E Z,Yue Z Q,Tham L G,et al.A dual fracture model to simulate large-scale flow through fractured rocks[J].Can.Geotech.J.2002,39:1302-1312.
    [146]Ozkaya S I,Lewandoswki H J,Coskun S B.Fracture study of a horizontal well in a tight reservoir-Kuwait[J].Journal of Petroleum Science and Engineering,2007,55:6-17.
    [147]陈崇希,万军伟,詹红兵,等.“渗流-管流耦合模型”的物理模拟及其数值模拟[J].水文地质工程地质,2004,1:1-8.
    [148]熊琦华,彭仕宓,黄述旺,等.岩石物理相研究方法初探一以辽河冷东—雷家地区为例[J].石油学报,1994,S1:68-75.
    [149]AmaefuIe J O,Altunbay M.Enhanced Reservoir Description:Using Core and Log Data to Identify Hydraulic(Flow)Units and Predict Permeability in Uncored Intervals/Wells,SPE 26436[A].Presented at the 68th Annual SPE Technical Conference and Exhibition[C].Houston,Texas,1993:205-220.
    [150]Jian F X,Chork C Y,Yagart I J.A Genetic Approach to the Prediction of Petrophysical Properties[J].Journal of Petroleum Geology,1994,17(1):71-88.
    [151]Hearn C L,Ebanks.,W J,Tye R S,et al.Geological Factors influencing Reservoir performance of the Hartzog Draw Field,Wyoming[J].JPT,1984,36(9):1335-1344.
    [152]Kozeny J,Uber Kapillare Leitung des Wassers im Boden,Sitzungsberichte[J].Royal Academy of Sciences,Vienna,Proc.Class I,1927,136:271-306.
    [153]Carman P C.Fluid flow through granular beds[J].Trans,AICHE,1937,15:150-166.
    [154]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
    [155]Zhou F D,Yao G Q,Wang G C,et al.Integrated Modeling of Fractured Low Permeability Reservoir,Sangonghe Formation,Baolang Oilfield,Northwest China[C].ITPC 12080,Kuala Lumpur,Malaysia,3-5 December 2008.
    [156]Allen J R L.Studies in fluviatile sedimentation:an exploratory quantitative model for the architechure of avulsion-controlled alluvial suites[J].Sedimentary geology,1978,121:129-147.
    [157]Nelson R A.Geologic analysis of naturally fractured reservoirs[M].Second Edition.Houston,Tx,Gulf Professional Publishing,2001.
    [158]Stearns D W.Fracture as a Mechanism of Flow in Naturally Deformed Layered Rock.Kink Bands and Brittle Deformation,AJ.Baer and D.K.Norris,Eds.,Geol.Surv.Can.,1968a,Paper 68-52,pp.79-95.
    [159]Stearns D W.Certain Aspects of Fracture in Naturally Deformed Rocks.NSF Advanced Science Seminar in Rock Mechanics,R.E.Rieker,Ed.,Special Report,Air Force Cambridge Research Laboratories,Bedford,Massachusetts,1968b,AD 6693751,pp.97-118.
    [160]Nelson R A,Steams D W.Inter formational Control of Regional Fracture Orientations.Rocky Mtn.Assoc.Geol.,1977 Field Trip Guidebook,Exploration Frontiers,Central and Southern Rockies,pp.95-101.
    [161]Arango S,Eduardo A,Perez H H.A new methodology to estimate fracture intensity index for naturally fractured reservoirs[C].SPE 86935,Bakersfiedl,California,U.S.A,16-18 March 2004.
    [162]计秉玉,战剑飞,苏致新.油井见效时间和见水时间计算公式[J].大庆石油地质与开发,2000,19(5):24-26.
    [163]Kazemi H.Merrill L S.Numerical simulation of water imbibitions in fracture cores[C].SPE 6895,Denver,Oct 9-12,1977.
    [164]Maryska J,Severyn O,Vohralik M.Numerical simulation of fracture flow with mixed-hybrid FEM stochastic discrete fracture network model[J].Computational Geosciences,2004,8:217-234.
    [165]Monteagudo J E P,Firoozabadi.Conrrol-volume method for numerical simulation of two-phase immiscible flow in two-and three-dimensional discrete-fractured media[J].Water Resources Research,2004,40:1-20.
    [166]Andersson J,Dverstorp 13.Conditional simulations of fluid flow in three-dimensional networks of discrete fractures[J].Water Resources Research,23(10):1876-1886.
    [167]Karimi-Fard M,Firoozabadi A.Numerical simulation of water injection in fractured media using the discrete-fracture model and the Galerkin Method[J].SPEREE 83633,2003,117-126.
    [168]刘建军,刘先贵,胡雅礽.裂缝性砂岩油藏渗流的等效连续介质模型[J].重庆大学学报(自然科学版).2000,23(S1):65-67.
    [169]王瑞骏,吕海东,李炎隆.裂缝密集面板渗流的等效准连续介质模型[J].西北农林科技大学学报(自然科学版).2006,34(12):209-214.
    [170]王芝银,郭书太,李云鹏.等效连续岩体流固耦合流变分析模型[J].岩土力学.2006,27(12):2122-2126.
    [171]Paul R.,Pointe L,Pamey R,et al.Modeling,visualization enhance fractured reservoir development[J].Oil & Gas Journal,2002,100(19):45.
    [172]Ahmed O,Lee J H.Integrated fracture reservoir modeling using both discrete and continuum approaches[C].SPE 62939,Dallas,Texas,1-4 Oct,2000.
    [173]Sahimi M.New models for natural and hydraulic fracturing of heterogeneous rock[C].SPE 29648,California,USA,1995,Mar.8-10.
    [174]Jensen C L,Lee S H,Milliken W J,et al.Field simulation of naturally fractured reservoirs using effective permeabilities derived from realistic fracture characterization [C].SPE 48999,Louisiana,USA,1998,Sep.27-30.
    [175]Gurpinar O,Kalbus J,List D.Numerical modeling of a triple porosity reservoir [C].SPE 57277,kuala Lumpur,Malaysia,1999,Oct.25-26.
    [176]Richards W J.Progress toward a stochastic rock mechanics model of engineered geothermal systems [J].Journal of Geophysical Research,101 (B8):17481-17496.
    [177]Sahimi M.Fractal-wavelet neural-network approach to characterization and up-scaling of fractured reservoirs [J].Computers & Geosciences,2000,26:877-905.
    [178]Hisham M A Q,Mohammad A A K,Zaki A A,et al.New integrated 3D-fracture modeling and flow simulation study:A giant Saudi Arabian carbonate reservoir [C].SPE 78295,Aberdeen,Scotland,2002,Oct.29-31.
    [179]Oda M.Permeability tensor for discontinuous rock masses [J].Geotechnique,1985,35:483.
    [180]Oda M.A method for evaluating the representative elementary volume based on joint survey of rock masses [J].Canadian Geotechnical Journal,1998,25(3):440-447.
    [181]Wang H,Forster C,Deo M.Simulating naturally fractured reservoir:comparing discrete fracture network models to the upscaled equivalents [C].AAPG Annual Convention,San Antonio,Texas,April 20-23,2008.
    [182]Sarda S,Jeannin L,Basquet R,et al.Hydraulic characterization of fracture reservoirs:simulation on discrete fracture models [J].SPEREE 77300,2002:154-162.
    [183]Fard M K,Durlofsky L J,Aziz K.An Efficient Discrete Fracture Model Applicable for General[J].Paper SPE 79699 presented at the SPE Reservoir Simulation Symposium in Houston,Texas,February 3rd-5th 2003.
    [184]Gross M E.Discrete Fracture Modeling for Fractured Reservoirs Using Voronoi Grid Blocks [D].M.s thesis,2006,Texas A&M University.
    [185]Lough M F,Lee S H,Kamath J.An efficient boundary integral formation for flow through fractured porous media [J].Journal of Computational Physics,1998,143:462-483.
    [186]Wang M Y.Discrete fracture fluid flow modeling and field applications in fractured rocks [D].PhD thesis,2000,University of Arizona.
    [187]Diomampo G P.Relative Permeability through Fractures [D].MS Thesis,2001,Stanford University,Stanford,California.
    [188]Dershowitz B,Lapointe P,Eiben T,et al.Integration of discrete feature network methods with conventional simulator approaches[C].SPE 62498,1998,SPE Annual Technical Conference and Exhibition held in New Orleans,Louisiana,Sept 27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700