用户名: 密码: 验证码:
希夫碱配合物的合成、表征及抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
希夫碱及其金属配合物被证明具有抗癌、抑菌、与DNA相互作用等生物活性,引起了科学界的广泛关注。近几年来,有关希夫碱金属配合物抗肿瘤活性的研究有一定的报道,但是关于希夫碱金属配合物抑制蛋白酶体活性及诱导肿瘤细胞凋亡的机理方面的研究鲜有报道。泛素-蛋白酶体通路(Ubiquitin-proteasome pathway,UPP)在肿瘤治疗中的作用引起广泛关注。泛素-蛋白酶体通路是真核细胞蛋白质降解的重要途径。特异性阻断UPP通路,可以显著的影响许多负责细胞周期和肿瘤生长的蛋白,如细胞周期蛋白、P53、Bax、IκB等的降解,继而影响到多个细胞内过程,从而导致细胞凋亡。因此,蛋白酶体抑制剂则是一类很有希望的抗肿瘤活性化合物,成为肿瘤治疗的新靶点。
     本论文正是在蛋白酶体抑制剂研究的基础,合成了一系列希夫碱及其金属配合物,对其进行了表征,用MTT法及台盼兰(Trypan Blue)染色法筛选出几种抗肿瘤性能良好的铜、锌配合物,对这些高活性化合物的抗肿瘤机制进行了深入研究,确定了该类希夫碱配合物的生物靶标为蛋白酶体。具体内容如下:
     (1)合成了11种牛磺酸氨基酸希夫碱金属配合物,探讨其对26S蛋白酶体的抑制作用,结果表明大部分铜配合物均可抑制26S蛋白酶体的活性,MTT法筛选出对肿瘤细胞增殖具有较好抑制能力的配合物-牛磺酸缩水杨醛铜邻菲咯啉的三元配合物(Y6),考察了Y6对纯化的20S蛋白酶体的抑制作用,结果表明其对纯化的20S蛋白酶体的抑制作用呈浓度依赖方式,半抑制率IC50约为12μM;Y6作用于人乳腺癌细胞MDA-MB-231的实验表明,此配合物以浓度及时间依赖方式抑制人乳腺癌细胞MDA-MB-231内蛋白酶体的活性进而诱导细胞凋亡;Y6作用于白血病细胞Jurkat T,台盼兰染色法表明此配合物对白血病细胞的致死率呈浓度依赖方式,且以浓度及时间依赖方式抑制白血病细胞Jurkat T内蛋白酶体的活性进而诱导细胞凋亡。Y6对人乳腺癌细胞MDA-MB-231及白血病细胞Jurkat T的蛋白酶体诱导能力及凋亡诱导方式相似,证明了其抗肿瘤广谱性。
     (2)合成了3,5-二溴酪氨酸希夫碱配体(KL)及其它的5种配合物,运用元素分析、红外光谱、紫外光谱、摩尔电导率及热分析等手段,对合成的配体和配合物进行了表征。各配合物的组成分别为[CuL (CH_3COO)(CH_3OH)]·2H_2O、[ZnL (CH_3COO)(CH_3OH)]·H_2O、[CdL (CH_3COO) (CH_3OH)]·H_2O、[La LNO_3] NO_3·H_2O、[SmLNO_3] NO_3·H_2O。
    
     对部分配合物进行了非等温热分解动力学研究,得出了配合物某步热分解的反应机理、热分解动力学方程、相应的动力学参数及活化熵△S≠和活化吉布斯函数△G≠,结果如下:
     [CuL (CH_3COO)(CH_3OH)]·2H_2O第3步热分解动力学函数为:f(α)=1/3(1-α)[-ln(1-α)]-2,热分解动力学方程为:dα/dt = A·e-E/RT·f(α) = 1/3A·e-E/RT (1-α)[-ln(1-α)]-2,E = 327.03 kJ/mol,lnA =55.24,r = 0.9952,△S≠=-209.48J/mol·K,△G≠=112.58 kJ/mol。
     [ZnL (CH_3COO)(CH_3OH)]·H_2O的第2步热分解动力学函数为:f(α)=1/3(1-α)[-ln(1-α)]-2 ,热分解动力学方程为:dα/dt = A·e-E/RT·f(α) = 1/3A·e-E/RT (1-α)[-ln(1-α)]-2,E = 471.70 kJ/mol,lnA =82.58,r = 0.968,△S≠=-436.19 J/mol·K,△G≠=-220.45 kJ/mol。
     [SmLNO_3] NO_3·H_2O的第2步热分解动力学函数为: f (α)= 1/4(1?α)[?ln(1?α)]?3,热分解动力学方程为:dα/dt = A·e-E/RT·f(α) = 1/4(1-α)[-ln(1-α)]-3A·e-E/RT,E = 295.98 kJ/mol,lnA =88.68,r = 0.9899,△S≠=-486.68 J/mol·K,△G≠=-21.95 kJ/mol。
     对配体KL和部分配合物的荧光特性进行了研究。配体KL的激发和发射峰λex/λem为286nm/505 nm ,配合物[CuL (CH_3COO)(CH_3OH)]·2H_2O、[ZnL(CH_3COO)]·H_2O、[LaLNO_3] NO_3·H_2O的激发和发射峰λex/λem分别为373nm/444 nm、285nm/500 nm、375nm/478nm,与配体相比较,[CuL(CH_3COO) (CH_3 OH)]·2H_2O配合物形成后,荧光强度、激发光谱和发射光谱的位置均产生了变化,尤其是荧光强度发生了明显的变化;[ZnL(CH_3COO)]·H_2O、[La LNO_3] NO_3·H_2O配合物的荧光强度、激发光谱和发射光谱的位置均未产生大的变化,荧光性质与配体较相似。
     (3)利用合成的3,5-二溴酪氨酸希夫碱配体KL及其铜配合物[CuL (CH_3COO)(CH_3OH)]·2H_2O(Z1)为研究对象,考察了其对人乳腺癌细胞MDA-MB-231内蛋白酶体活性抑制及凋亡诱导作用。结果表明,此铜配合物可以通过抑制蛋白酶体的活性诱导肿瘤细胞凋亡,凋亡机理与牛磺酸希夫碱铜配合物Y6相似。
     (4)合成了邻苯二胺缩邻香草醛希夫碱配体B2及邻苯二胺缩水杨醛希夫碱配体B7,分别将B2、B7溶液与铜盐或锌盐溶液混合得到几种配合物混合溶液。分别用各混合物溶液处理人乳腺癌细胞MDA-MB-231及白血病细胞Jurkat T,详细考察了其对两种肿瘤细胞的蛋白酶体抑制作用及细胞凋亡的诱导作用。结果表明:Cu(Ⅱ)、Zn(Ⅱ)混合液均能通过抑制蛋白酶体的活性进而诱导肿瘤细胞凋亡,Cu(Ⅱ)混合液的作用能力较Zn(Ⅱ)混合液稍强,但是二者对两种肿瘤细胞的凋亡诱导机理相似,都是钙蛋白酶参与的结果,这与Y6及Z1配合物诱导细胞凋亡机理不同。同时比较了不同结构的配体B2、B7形成的铜混合液对白血病细胞Jurkat T的蛋白酶体活性抑制能力及细胞凋亡的诱导能力,探讨了配体结构对配位能力的影响。
     (5)比较了Cu(I)和Cu(II)对纯化的20S蛋白酶体的抑制作用。结果表明:两种价态的铜均可抑制蛋白酶体的活性,但Cu(I)较Cu(II)抑制作用稍强;纯化的20S蛋白酶体将Cu(II)还原为Cu(I);DMSO和乙醇等羟基自由基抑制剂部分的保护纯化的20S蛋白酶体活性被CuCl2抑制;NC-铜混合物处理MDA-MB-231细胞后,在细胞内有活性氧簇(ROS)产生,铜氧化还原产生ROS可能是铜配合物抑制蛋白酶体活性进而诱导细胞凋亡的可能原因。
     (6)合成了2-(2-羟基-3-甲氧基-苯基)醛缩-氨基苯并噻唑希夫碱配体,并得到了其单晶。采用量子化学的密度泛函理论(DFT)B3LYP方法,运用Gaussian03量子化学程序包,在B3LYP/6-31G+基组水平上对获得的单晶结构进行优化,计算了分子稳定构型的总能量、前沿分子轨道能量、原子自然电荷布居、自然键轨道(NBO)及稳定化能等。计算结果表明,实验值与计算值基本吻合,说明此模型是稳定的。并用此模型预测出该标题化合物的化学活性位点可能为N(28), O(29)和O(31)这3个原子,这些活性位点易于发生某些有机反应或与金属离子配位,量子化学计算为设计合成配合物提供了理论基础。
Schiff base and its metal complexes have been proved to have biological activities, such as anti-cancer, antibacterial, and interactions with DNA, which causes widespread concern in the scientific community. In recent years, several reports on anti-tumor activity of the Schiff base metal complexes have been published. However, there are rarely reports about the mechanism of Schiff base metal complexes as the proteasome inhibitor to induce apoptosis in cancer cells. As an important way for degradation of eukaryotic cells, Ubiquitin-proteasome pathway (UPP) causes wide concern in the treatment of tumor. UPP is the major proteolytic mechanism which plays a critical role in the degradation of the proteins involve in the cell cycle control and tumor growth, such as cyclin-dependent kinases, P53 , Bax, IκB and so on. Specified block the UPP, then inhibiting the degradation of such protein should have profound effects on tumor cells proliferation and cause cells to undergo apoptosis. So the proteasome inhibitor is useful compound to targeting this pathway in cancer therapy.
    
     In this dissertation, we synthesis several Schiff base metal complexes, then use proteasome activity and MTT assay to got several copper and zinc Schiff base complexes which can inhibit 26S proteasome activity and proliferation ability in cancer cell lines. The mechanism of these complexes to inhibit proteasome and induce apoptosis in MDA-MB-231 and Jurkat T cancer cells were studied, and make sure the antitumor target of those complexes is proteasome. The details of the contents are as follows,
     (1) 11 taurine Schiff base complexes were synthesized, and theirs proteasome inhibit activity were studied. The results showed that all of the copper complexes could inhibit the 26S proteasome activity, MTT assay showed that only taurine Schiff base copper phen complex (Y6) have anti-proliferation activity in cancer cells. Y6 potently inhibits chymotrypsin-like activity of purified 20S, the IC50 is 12μM. The experiment also showed that Y6 potently inhibits chymotrypsin-like activity of 26S proteasome and induce apoptosis in human breast cancer MDA-MB-231 in dose and time dependent manner; Trypan blue assay showed that Y6 could induce cell death in dose dependent manner, and Y6 potently inhibits activity of 26S proteasome and induce apoptosis in leukemia Jurkat T cells in dose and time dependent manner. The mechanism of Y6 induce apoptosis in these two cancer cells are same. Our results strongly suggest that Y6 are potent proteasome inhibitors.
     (2)The novel Schiff base ligand (KL) which is derived from 3,5-dibromotyrosine and o-vanillin has been prepared, and it’s 5 complexes have been synthesized. Those ligand and complexes were characterized by elemental analysis, IR spectroscopy, UV spectroscopy, TG-DTG analysis and molar conductance analysis. The suggested structure of the complexes are confirmed to be[CuL (CH_3COO)(CH_3OH)]·2H_2O、[ZnL (CH_3COO)(CH_3OH)]·H_2O、[CdL (CH_3COO) (CH_3OH)]·H_2O、[La LNO_3] NO_3·H_2O、[SmLNO_3] NO_3·H_2O.
     The kinetic equations of thermal decomposition for complexes and the corresponding kinetic parameters were gained.The detail are as follows, The thermal decomposition kinetic function of [CuL(CH_3COO)(CH_3O H)]·2H_2O in step 3 may be expressed as f(α)=1/3(1-α)[-ln(1-α)]-2, and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = 1/3A·e-E/RT (1-α)[-ln (1-α)]-2,E = 327.03 kJ/mol,lnA =55.24,r = 0.9952,△S≠=-209.48J/mol·K,△G≠=112.58 kJ/mol.
     The thermal decomposition kinetic function of [ZnL (CH_3COO)(CH_3OH)]·H_2O in step 2 may be expressed as f(α)=1/3(1-α)[-ln(1-α)]-2, and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = 1/3A·e-E/RT (1-α)[-ln(1-α)]-2,E = 471.70 kJ/mol,lnA =82.58,r = 0.968,△S≠=-436.19J/mol·K,△G≠=-220.45 kJ/mol.
     The thermal decomposition kinetic function of [SmLNO_3] NO_3·H_2O in step 2 may be expressed as f(α)=1/4(1-α) [-ln(1-α)]-3, and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = 1/4 A·e-E/RT (1-α) [-ln(1-α)]-3,E = 295.98 kJ/mol,lnA =88.68,r = 0.9899,△S≠=-486.68 J/mol·K,△G≠=-21.95 kJ/mol.
     The fluorescence property of ligand(KL) and part of it’s complexes were studied. The excitation and emission peak wavelengths(λex/λem) of the schiff base ligand KL is 286nm/505 nm, and the complexes of [CuL (CH3COO)(CH3OH)]·2H2O, [ZnL(CH3COO)]·H2O, [La LNO3] NO3·H2O are 373nm/444 nm, 285nm/500 nm, 375nm/478nm. Compared with the ligand, the excitation peaks and the emission peak of [CuL (CH3COO)(CH3OH)]·2H2O have changed, and the fluorescence quenched; the excitation peaks and the emission peak of [ZnL(CH3COO)]·H2O and [La LNO3] NO3·H2O almost same as the ligand, and still have strong fluorescence.
     (3) The anticancer activity of ligand (KL) and copper complex [CuL (CH3COO)(CH3OH)]·2H2O (Z1) were studied. The results showed that this complex could inhibit the chymotrypsin- like activity of proteasome and induce apoptosis in highly metastatic MDA-MB-231 breast cancer cells. The mechanism of how the complex induce apoptosis are same as taurine copper Schiff base complex (Y6).
     (4) The Schiff base ligands (B2, B7) which are derived from o-vanillin, salicylaldehyde with o-phenylenediamine and the mixture of the copper(or zinc) with the ligands have been prepared. The activity of proteasome inhibition and the apoptosis induction in human breast cancer MDA-MB-231 and leukemia Jurkat T cells by the mixture were studied. All the results showed that both copper and zinc mixture could inhibit proteasome and induce apoptosis in human breast cancer MDA-MB-231 and leukemia Jurkat T cells, the copper mixture a little more potent than the zinc mixture; and the calpain protein which plays a critical role in apoptosis involve in both metal mixture induce apoptosis. Compared the ability of proteasome inhibition and apoptosis induction in Jurkat T cells by the mixtures - copper with two different ligands( B2 and B7) .The results showed that the structure of the ligands could effect theirs ability to carry metal ions.
     (5)The mechanism of copper inhibit proteasome were studied. The results showed that both Cu(I)and Cu(II) can inhibit purified 20S proteasome activity, the Cu(I) a little more potent than Cu(II), the purified 20S proteasome can reduce Cu(II) to Cu(I), the hydrogen radical scavenger can partially protect the Cu(II) inhibit the purified 20S proteasome activity, hydrogen radical scavenger is one of reactive oxygen species (ROS), furthermore, treatment of MDA-MB-231 breast cancer cells with copper complex resulted in the production of reactive oxygen species (ROS), which make sure the ROS is one of the reason about copper inhibit proteasome activity.
     (6)The crystal of Schiff base 2-(2-hydroxy-3-methoxy benzaldehyden)- aminobenzothiazole (C15H12N2O2S) was obtained. The molecular structure of 2-(2-hydroxy-3- methoxy benzaldehyden)- aminobenzothiazole is calculated using the density functional theory (DFT) with the gradient corrected B3LYP method. All calculations are performed using the Gaussian 03 program package. The crystal structure of the compound is totally optimized. The energies and components of molecular orbital (HOMO and LUMO), natural population, NBO and stabilization energy were calculated. All data obtained from the calculations are consistent with those gained from the determination, which means the calculation model is stabilized. The possible three chemistry activities atom (N(28), O(29), O(31)) were predicted, that means those three atoms are easy to react with metal. The results of the calculation give a theory direction on the rational design and synthesis of metal–directed complexes in coordination chemistry.
引文
[1] Schiff H., Annalen. Mittheilungen aus dem Universit?tslaboratorium in Pisa: Eine neue Reihe organischer Basen.1864, (3):118-119.
    [2] Jones R.D., BudgeJ.R., Jrp.E., Linard J.E, The infare spectra of some dioxygen and carbon monoxide metalloporphyvin complexes.Chem.Rev,1979, 79:139-145.
    [3] Bailey N.A., Barbario C.O.R, Fenton D.E., HellierP.C. Attempted function of a mononuclear barium complex 24-membered bibraeehial terraimine Schiff-base macroecyle dericed from tris (2-aminoethyt) amine using salicylaldehyde. J.Chem.Soe., Dalton Trans.,1995, 86(5):765-770.
    [4] Samale E G, Srinivasan K., KoehiJ. K., Mechanism of the chromium-catalyzed epoxidation of olefins role of oxochromium(V) cations. J.Am.Chem.Soc., 1985, 107(25):7606-7617.
    [5] Lareroix P.G., DaranJ.C., Synthesis, crystal structure, conduetivity and magnetic properties of trifluoromethylated dinuclear copper(Ⅱ) complexes with tetrac- yaboquinodimethane. J.Chem.Soc, Dalton Trans,1997, 88(7):1369-1374.
    [6]钟超凡,邓建成,桶钰.双安息缩三四胺双核过渡金属配合物的合成、表征与载氧性质.高等学校化学学报,1998,19(2):174-178.
    [7] Desai S B, Desai P B, Desia K. R. Synthesis of some Schiff bases thiazolinones and azetidinones from 2,6-di-aminobonzol[1,2-d;4,5-d']bisthiazole and their anticancer activities. Hetercycl Commun., 2001, 7(1):83-90.
    [8]江银枝,陈德余,陈伟国.邻香草醛谷氨酸铜、锌配合物的合成、波谱及其抗O2-·性能.化学研究与应用,1999,11(4):402-405.
    [9]叶勇.2-氯代苯甲醛丙氨酸希夫碱及其3d-过渡金属配合物的合成与表征.湖北大学学报,2001,23(1):57-61.
    [10] Isse A A, Gennaro A,Vianelloee .E1ectrochemical reduction of Schiff bases ligands H2 salen and H2 salophen. E1echtrochimical Acta.,1997, 42 (13-14 ): 2065-2071.
    [11] Bastos M B R, Moreir J C, Farias P A M.Adsorptive stripping voltammetric behaviour of U02(II) complexed with the Schiff base N,N-prime- ethylenebis salicylidenimine) in aqueous 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid medium. Analytica Chimica Acta.,2000,408: 83-88.
    [12]赵建章,赵冰,徐蔚青.Schiff碱N,N’-双水杨醛缩-1,6-己二胺的光致变色光谱的研究.高等学校化学学报,2001,22(6):971-975.
    [13]杜宝石,樊耀亭.镨、钕、钇甘氨酸三元配合物的晶体结构.结构化学,1996,15(2):141- 146.
    [14]樊耀亭,朱伯仲,李娅.含稀土的混合氨基酸配合态多元微肥的研制及应用.稀土,1997,18(4):57-59.
    [15]黎植昌.混合氨基酸稀土配合物及其应用研究.化学通报,1994, 1: 21-25.
    [16]邵建华,韩永圣,高芝祥.复合氨基酸稀土元素螯合物的生产和应用研究进展.稀土,2001,22(5):59-62.
    [17]游效曾,孟庆金,韩万书主编.配位化学进展.北京:高等教育出版社,2000,17-27.
    [18] Johnson J M ,Walford R,Harman D,et al. Modern aging research, Vol 8: Free Radicals Aging and Degenerative Diseases[M]. New York: Alan R Liss Inc, 1986: 561-568.
    [19]杜鸣,粱劳珍,唐波等.流动注射-光度法测定超氧阴离子自由基(O2-.)与超氧化物歧化酶(SOD)活性的研究.高等学校化学学报,1999, 20(3):369-373.
    [20]李金,刘京萍,范琪.超氧化物歧化酶模拟物-铜(Ⅱ)氨基酸配合物的初步研究.北京联合大学学报(自然科学版),2001,8(3):62-64.
    [21]李建章,秦圣英,李仲辉等.冠醚化单和双Schiff碱的合成及其钴(Ⅱ)配合物的氧加合性能.化学学报,1999,57(3):298-301.
    [22]贤景春,哈日巴拉,曹高娃等.5-氯水杨醛缩硫脲Schiff碱与锰配合物的合成及其对超氧离子的抑制作用.化学研究与应用,2000,12(4):437-439.
    [23]贤景春,哈日巴拉,李春等.新型Schiff碱配合物的合成及其对超氧离子的抑制作用.合成化学,2000, 8(1):12-15.
    [24]易国斌,崔英德,陈德余.天冬酰胺Schiff碱稀土配合物的合成、表征与抗O2-.性能.化学通报,2002,65(2):119-122.
    [25]史卫良,陈德余,陈士明,严小敏.水杨醛天冬氨酸过渡金属配合物的ESR波谱及抗O2-.性能.无机化学学报,2001,17(2):239-243.
    [26]王建华,雷文,王远亮.噻二唑类Schiff碱配合物的合成及其对超氧阴离子自由基的抑制活性.化学研究与应用,2003,15(3):335-337.
    [27]何秀英,吴纪梅,严振寰,吴自慎.邻甲氧基苯甲醛丙氨酸席夫碱及其金属配合物的合成、表征和对O2-.自由基的抑制作用.无机化学学报,1995,11(3):302-307.
    [28]张邦乐,何炜,王多宁.3, 5-二硝基水杨醛缩甘氨酸铜(Ⅱ)配合物的合成、表征及其抗O.2活性.西北药学杂志,2000,15(4):175-177.
    [29]陈德余,张义建,张平.甲硫氨酸席夫碱铜、锌、钴配合物的合成及抗O2-·性能.应用化学,2000,17(6):607-610.
    [30]黄永华,龙姝,陈怀侠,叶勇.3-氯苯甲醛丙氨酸席夫碱及其3d-过渡金属配合物的研究.湖北大学学报(自然科学版),2002,24(2):159-163.
    [31]王金胜,郭春绒,程玉香.铈离子清除超氧自由基的机理.中国稀土学报,1997,15(2): 151-154.
    [32]杨光,吴建中,王雷等.钌多吡啶配合物的合成及与DNA作用研究.中山大学学报(自然科学版),1997,36(1):45-49.
    [33]刘小琴,乐芝凤,张香才.希夫碱配合物对O2-.和DNA的作用.三峡大学学报(自然科学版),2001,23(5):477-480.
    [34]杨频,宋宇飞.金属配合物健合DNA的研究进展.化学进展,2000,12(1):32-40.
    [35]朱风霞,陈育宏,曹爱年.金属配合物和DNA相互作用研究进展.化工时刊,2002,11:15-18.
    [36]叶勇,胡继明,曾云鹗.2-氯代苯甲醛丙氨酸席夫碱类抗癌药物对DNA作用的谱学研究.无机化学学报,1998,14(1):84-91.
    [37]廖见培,刘国东,黄杉生.水溶性金属希夫碱与DNA相互作用的荧光光谱.分析测试学报,2001,20(3):5-8.
    [38] Rosenberg, B.; Vancamp, L. & Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature,1965,205:698-699.
    [39] Evans, B. D.; Raju, K. S.; Calvert, A. H.; Harland, S. J. & Wiltshaw, E. Phase II study of JM8, a new platinum analog, in advanced ovarian carcinoma. Cancer Treat. Rep. 1983,67(11): 997-1000.
    [40] Vinita Ambike, Shreelekha Adsule, Fakhara Ahmed, et al. Copper conjugates of nimesulide Schiff bases targeting VEGF, COX and Bcl-2 in pancreatic cancer cells. Journal of Inorganic Biochemistry , 2007,101(10): 1517-1524.
    [41] Giuseppe Filomeni, Giselle Cerchiaro,et al. Pro-apoptotic activity of novel isatin-Schiff Base copper(II) complexes dependson oxidative stress induction and organelle-selective damage. The Journal of Biological Chemistry ,2007,282(16): 12010-12021.
    [42] Lumme, Paavo; Elo, Hannu; Janne, Juhani. Antitumor activity and metal complexes of the firsttransition series. trans-Bis(salicylaldoximato)copper(II) and related copper(II) complexes, a novel group of potential antitumor agents. Inorganica Chimica Acta (1984), 92(4):241-251.
    [43] Hodnett E M, Dunn WJ. Structure-antitumor activity correlation of some Schiff bases. J Med Chem, 1970,13(4):768-770.
    [44] Shreelekha Adsule,Vivek Barve, Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J.Med..Chem. 2006, 49(24): 7242-7246.
    [45]吴自慎,严振寰等.希夫碱-金属络合物抗癌剂的研究.(l)、双-N(2-轻基乙基)水杨醛亚胺合钻(II)、镍(II)的合成.华中师范学院学报,1983,8(l):55-60.
    [46]严振寰,吴自慎等.4-羟基水杨醛丙氨酸合锌(Ⅱ)的合成、表征及其抗癌活性的初步研究.华中师范大学学报自然科学版,1989,23(3):351-353.
    [47]鄢远,许金钩.溴化乙锭的三维荧光光谱用于研究DNA构像.科学通报,1995,40(18): 1664-1666.
    [48] Kuntebommanahalli N. Thimmaiah, Winston D. Lloyd and Gujjarahalli T. Chandrappa. Structural features of biologically active coordination compounds of vanillinsemicarbazone. Transition Metal Chemistry ,1985,10(3): 94-96.
    [49]吴自慎,严振寰等.4-氯苯甲醛甘氨酸席夫碱及其Cu(II)、Zn(II)、Co(II)、Ni(II)配合物的合成、表征及抗菌活性研究.华中师范大学学报(自然科学版),1989,23(3):351-353.
    [50]林秋月,冯旭文,胡瑞定等.水杨醛缩赖氨酸Schiff碱金属配合物的合成和表征.化学研究与应用,2004,16(4):547-548.
    [51]李锦州,蒋礼,安郁美.呋喃甲酰基吡唑啉酮缩β-丙氨酸配合物的合成、表征及生物活性.应用化学,2004,21(2):150-153.
    [52]李锦州,安郁美,于文锦等.噻吩甲酰基吡唑啉酮缩乙二胺铀(Ⅵ)钍(Ⅳ)配合物的合成及光谱表征.光谱学与光谱分析,2002,22(6):938-940.
    [53]李锦州,张光林,沙靖全,安郁美.呋喃甲酰基吡唑啉酮缩氨基硫脲配合物的合成、光谱表征及生物活性.光谱学与光谱分析.2005,25(2): 216-218.
    [54]李锦州,沙靖全,安郁美,于文锦.酰基吡唑啉酮缩氨基硫脲Ni(Ⅱ) ,Co(Ⅲ)和Cr(Ⅲ)配合物的合成、表征及生物活性.分子科学学报,2004,20(01):336-338.
    [55]唐婷,龚钰秋.几个新的席夫碱合铜配合物的合成及性质研究.无机化学学报,2001,17(5):745-747.
    [56]孔德源,谢毓元.氨基酸类Schiff碱稀土配合物的合成及抗肿瘤活性.中国药物化学杂志,1999,9(3):163-166.
    [57]李锦州,李刚,于文锦.呋喃甲酰基吡唑啉酮双席夫碱稀土配合物的合成,表征及生物活性.中国稀土学报,2000,18(1) :71-73.
    [58]李锦州,李刚,于文锦.呋喃甲酰基吡唑啉酮双席夫碱与铀(Ⅵ)、钍(Ⅳ)配合物的合成、表征及生物活性.核化学与放射化学,2000,22(l):19-22.
    [59]高书燕,张秀英,雷雪峰,张洪杰.水杨醛缩5-氨基水杨酸Schiff碱及其稀土配合物合成、表征和抑菌活性.应用化学,2006,23(l):74-78.
    [60]孟歌.磺胺取代2-氨基-1,3,4-噻二唑及其过渡金属配合物的合成及抑菌.中国药物化学杂志,1996,6(4):257-261.
    [61] Nyarku S K, Mavuso E. Preparation,characterization and biological evaluation of a chromium(Ⅲ) Schiff bases complex derived from o - nitrobenzaldehyde and p-aminophenol [J ]. South African J of Chem , 1998,51 (4):168-172.
    [62] Yuki Fujii, Katsuhiro Kikuchi, et al. Template synthesis of polymer schiff base cobalt(III) complex and formation of specific cavity for chiral amino acid. Chem Lett.1984,13(9): 1487-1490.
    [63] Belokon, Yu. N.; Popkov, A. N.; Chernoglazova, N. I.; Saporovskaya, M. B.; Bakhmutov, V. I.; Belikov, V. M. Synthesis of a chiral nickel(II) complex of an electrophilic glycinate, and its use for asymmetric preparation of amino acids. Journal of the Chemical Society, Chemical Communications .1988, 19: 1336-1338.
    [64] Colonna, Stefano; Manfredi, Amedea; Spadoni, Massimo; Casella, Luigi; Gullotti, Michele. Asymmetric oxidation of sulfides to sulfoxides catalyzed by titanium complexes of N-salicylidene-L-amino acids.Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry.1987, 1: 71-73.
    [65] Nakajima, K.; Kojima, M.; Toriumi, K.; et al., Crystal structures of [VO(sal-L-ala) (OCH3)(CH3OH)] (sal-L-ala=N-salicylidene-L-alaninate) and {[VO(sal-L-ala)]2O}2·2CH2Cl2, and the catalytic activity of these and related complexes on asymmetric oxidation of methyl phenyl sulfide with t-butyl hydroperoxide, Bull Chem. Soc. Jpn., 1989, 62(3): 760-767.
    [66] Casella, Luigi; Gullotti, Michele. Coordination modes of histidine. Circular dichroism study of copper(II) complexes of the Schiff bases derived from (1R)-3-(hydroxymethylene) camphor andhistidine derivatives. Inorganic Chemistry,1981, 20(4): 1306-1308.
    [67]仇敏,刘国生,姚小泉.手性铜(Ⅱ)席夫碱配合物催化苯乙烯不对称环丙烷化反应.催化学报,2001,22(1):77-80.
    [68] Susanne Striegler, Moses G., Gichinga and Michael Dittel. Macromolecular salen catalyst with largely enhanced catalytic activity. Organic Letters 2008,10(2): 241-244.
    [69]李琛,张维萍,姚小泉等.一种新型手性席夫碱的合成及其在不对称环丙烷化反应中的催化性能.催化学报,2000,21(3):289-291.
    [70]王积涛,陈蓉,冯霄等.手性过渡金属(Mn,Co,Ni)—Salen配合物催化NoOCl不对称环氧化苯乙烯的反应.有机化学,1998,18(3):228-234.
    [71] H .Brunner ,R Becher,G Ripel. Asymmetric syntheses 20. enantioselective hydro- silylation of ketones with [Rh(cod)Cl 2/thiazolidine catalysts Organometallics, 1984,3(9): 1354-1359.
    [72]自国甫,尹承烈.手性Cu(II)配合物催化的不对称环丙烷化反应的研究.化学学报,1998,34(2):216-218.
    [73]袁淑军,蔡春,吕春绪.双水杨醛缩乙二胺合铜[Cu(Salen)]/O2催化氧化安息香.化学世界,2004,45(5):233-234,250.
    [74]刘峥,金黎霞,雍舒.3,5-二溴水杨醛缩乙醇胺席夫碱铜(Ⅱ)配合物的制备及其仿酶催化活性研究.化学与生物工程,2008,25(5):31-34,42.
    [75] Casellato, U.; Fregona, D.; Sitran. S.; Tamburini, S.; Vigato, P.A. Preparation and properties of mono. homo- and heterobinuclear complexes with a new heptadentate Schiff base ligand. Inorg. Chim. Acta 1984, 95(6): 306-316.
    [76]梁芳珍,杜鸣,任建成.水杨醛缩2-氨基-4-苯基噻唑及其配合物的合成与仿酶催化活性研究.无机化学学报,1999,15(3):393-396.
    [77]袁淑军,蔡春,吕春续.双亲性席夫碱铜(Ⅱ)配合物的合成及苯甲醇的催化氧化.应用化学,2003,20(3):278-280.
    [78] Huijin Liu, Xue zhong Du and Yan Li. Novel metal coordinations in the monolayers of an amino-acid-derived Schiff Base at the air?water interface and langmuir?blodgett films. J,Phys. Chem..C 2007,111(45):17025-17031.
    [79]李崇嘉,张文涛等.Co(Ⅱ)Schiff碱载氧载氮性能研究.物理化学学报,1994,10(3): 230-234.
    [80]李建章,秦圣英,李仲辉等.冠醚化单和双Sihiff碱的合成及其钴(Ⅱ)配合物的氧加合性能.化学学报,1999,57(3):289-304.
    [81]倪春林,裴玉涛,肖红星.甘氨酸席夫碱钴配合物的合成和吸氧性质.扬州师范学院,1996,16(6):34-36.
    [82]任红霞,雷自强,张海涛等.π共轭希夫碱聚合物的合成及其荧光性能.西北师范大学学报,2000,36(3):36-38.
    [83]吕绪良,葛强林等.席夫碱的合成及其在热红外伪装涂料中的应用.解放军理工大学学报:自然科学版,2000,1(6):54-57.
    [84]毕思玮.席夫碱型钯(Ⅱ)配合物液晶的合成与表征.曲阜师范大学学报,2002,26(2):62- 64,71.
    [85]朱传方,徐汉江.可逆热色性化合物的研究进展.化学进展,2001,13(4):261-267.
    [86]刘浪,贾殿赠,郁开北.1-苯基-3-甲基-4-(6-氢-4-氨基-5-硫杂-2,3-吡嗪)吡唑啉酮光致变色超分子化合物的合成、结构与性能.化学学报,2002,60(3):493-498.
    [87] Grabowska A, Kownacki J etal. Photochromism and proton transfer reaction cycle of new internally H-bonded Schiff bases.Chemical Physics Letters, 1997,267(1-2):132-140.
    [88] Ma H, Chen S H, Niu L etal. Studies on electrochemical behavior of copper in aerated NaBr solutions with Schiff bases. Journal of Electrochemical Society, 2001, 148(5):208-216.
    [89] H Yamini, Shrivastava, Balachadran, Unni , Nair. Insight into structural transition, aggregation and folding of glycoprotein in the presence of chromium(III) complexes by spectroscopic, microscopic and kinetic studies. Chem. Phy. Lett. 2003, 369(5): 234-240.
    [90] Girousi S T, Golia E E, Voulgaropoulos A N. Fluorometric determination of formaldehyde. Sringer-Verlag, 1997,358(5): 667-668.
    [91] Khuhawar M Y, Lanjwani S N. High-performance liquid chromatographic determination of uranium using solvent extraction and bis(salicyladehyde) tetramethylenediimine as complexing reagent. Journal of Chromatography A. 1996, 740(2): 296-301.
    [92]海洪,李建平.茴香醛席夫碱衍生物的极谱波行为及分析应用.广西化学,2002,9(4):270-272.
    [93]席晓岚,黎植昌.氨基酸Schiff碱及其金属配合物的抑菌抗癌活性的研究进展.氨基酸与生物资源,1998,20(4):40-43.
    [94]王成刚,张超灿等.N-水杨醛甘氨酸合铜(II)的加合物的合成和表征.华中师范大学学报(自然科学版),1995,29(3):336-340.
    [95] Orlowski R Z, Stinchcombe T E, Mitchell B S, et al. PhaseⅠtrial of the proteasome inhibitorPS-341 in patients with refractory hematlogic malignancies. J Clin Oncol, 2002,20(2): 4420-4427.
    [96] Zavrski I, Jakob C, Schimid P, et al. Proteasome: an emerging target for cancer therapy. Anticancer Drugs, 2005, 16(5):475-481.
    [97]李丽琴,郑晓军,陈乐贵.蛋白酶体抑制剂药理活性的研究进展.国外医学药学分册,2001,28(3):133-136.
    [98]陈茂营,徐文方.蛋白酶体与蛋白酶体抑制剂.中国药物化学杂志,2007,17(4): 249-253.
    [99] Groll, M.; Ditzel, L.; Lowe, J.; Stock, D.; Bochtler, M.; Bartunik, H.D. and Huber, R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature, 1997, 386: 463-471.
    [100] Pickart, C.M. and Cohen, R.E. Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol, 2004, 5(3):177-187.
    [101] Knowlton, I. R.; Johnston, S. C.; Whitby, F. G.; Rechsteiner, M.; Hill, C. P. Structure of the proteasome activator REGalpha (PA28alpha). Nature, 1997, 390: 639-643.
    [102] Whitby, F. G.; Master, E. I.; Kramer, L.; Knowlton, I. R.; Yao, Y.; Wang, C. C.; Hill, C. P.Structural basis for the activation of 20S proteasomes by 11S regulators. Nature, 2000, 408: 115-120.
    [103] Kisselev, A. F.; Apoin, T. N.; Woo, K. M. The size of peptides generated from protein by mammalian 26S and 20S proteasome. J Biol. Chem., 1999, 274(6): 3363-3371.
    [104] Groll, M.; Clausen, T. Molecular shredders: how proteasome fulfill their role. Curr. Opin.Struc.Biol., 2003, 13(6): 665-673.
    [105] Hochstrasser, M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol., 1995, 7(2): 215–223.
    [106] King, R. W.; Deshaies, R. J.; Peters, J. M.; Kirschner, M. W. How proteolysis drives the cell cycle. Science, 1996, 274(5293): 1652-1659.
    [107] Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell, 1994,79(1): 13-21.
    [108] Seemuller, E.; Lupas, A.; Stock, D.; Lowe, J.; Huber, R.; Baumeister, W. Proteasome from thermoplasma acidophilum: a threonine protease. Science,1995, 268(5210): 579-582.
    [109] Goldberg. A. L. Functions of the proteasome: the lysis at the end of the tunnel. Science, 1995, 268(5210): 522-523.
    [110] Hershko, A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol.,1997, 9(6): 788-799.
    [111]吴焱秋,柴家科.泛素-蛋白酶体途径的组成及其生物学作用.生理科学进展,2001,32(4): 331-333.
    [112]孙启鑫.蛋白酶体抑制剂的抗肿瘤机制及其在白血病中治疗中的应用.国际输血及血液学杂志,2006,29(4): 314-316.
    [113] Gataiger, M.; Jordan, R.; Lim, M.SkP2 is oncogenic and overexpressed in human cancers.Proc. Natl. Acad. Sci. USA, 2001, 98(9): 5043-5048.
    [114]李中海,端木德强,王敬泽.NF-кB活化的信号通路及其生理意义.生物学杂志,2002,19(4):4-6.
    [115] Goldberg, A.L.; Cascio, P.; Saric, T. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol., 2002, 39(3-4): 147-164.
    [116] Yang, H.J.; Landis-Piwowar, K.R.; Milacic, V.; Dou, Q. P. Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr. Protein Pept. Sci, 2008, 9(3): 227-239.
    [117] Landis-Piwowar, K.R.; Milacic, V.;Chen, D.; Yang, H.; Zhao, Y.;Chan, T.H.; Yan, B.; Dou, Q.P.. The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Updat, 2006, 9(6): 263-273.
    [118] Landis-Piwowar, K.R.; Huo, C.; Chen, D.; Milacic, V.;Shi, G.; Chan, T.H. and Dou,Q.P. A Novel Prodrug of the Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate as a Potential Anticancer Agent. Cancer Res, 2007, 67: 4303-4310.
    [119] Chen, D.; Milacic, V.; Chen, M. S.; Wan, S. B.; Lam, W. H.; Huo, C.; Landis-Piwowar, K. R.; Cui, Q. C.; Wali, A.; Chan, T. H.; Dou, Q. P. Tea polyphenols, their biological effects and potential molecular targets. Histol. Histopathol. 2008, 23(4): 487-496.
    [120] Chen, D.; Daniel, K. G.; Chen, M. S.; Kuhn, D. J.; Landis-Piwowar, K. R.; Dou, Q. P. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol, 2005, 69(10): 1421–1432.
    [121] Yang, H. J.; Chen, D.; Cui, Q. C.; Yuan, X.; Dou, Q. P. Celastrol, a Triterpene Extracted from the Chinese“Thunder God Vine”is a Potent Proteasome Inhibitor and Suppress Human Prostate Cancer Growth in Nude Mice. Cancer Res., 2006, 66(9): 4758-4765.
    [120] Chen, D.; Daniel, K. G.; Chen, M. S.; Kuhn, D. J.; Landis-Piwowar, K. R.; Dou, Q. P. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol, 2005, 69(10): 1421-1432.
    [122] Yang, H.; Landis-Piwowar, K.R.; Lu, D.;Yuan, P.; Li, L.; Reddy, G.P.; Yuan, X.; Dou, Q.P. Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. J Cell Biochem, 2007,103(1): 234-244.
    [123] Yang, H.; Shi, G. and Dou, Q.P. The Tumor Proteasome Is a Primary Target for the Natural Anticancer Compound Withaferin A Isolated from“India Winter Cherry”. Mol Pharmacol, 2007,71: 426-437.
    [124] Julian, A. The proteasome: a suitable antineoplastic target. Cancer, 2004, 4(5): 349-360.
    [125]沈子珒,许啸声,李稻.泛素-蛋白酶体及其抑制剂.现代肿瘤医学,2006,14(2):1454-1457.
    [126] Papandreou, C. N.; Logothetis, C. J. Bortezomib as a potential treatment for prostate cancer. Cancer Res., 2004, 64: 5036-5043.
    [127] Voorhees, P. M.; Dees, E. C.; Nell, B. The proteasome as a target for cancer therapy. Clin. Cancer Res., 2003, 9: 6316-6325.
    [128] Chen, D.; Dou, Q. P. New uses for old copper-binding drugs: converting the pro-angiogenic copper to a specific cancer cell death inducer. Expert Opin. Ther. Targets., 2008, 12(6): 739-748.
    [129]刘桐宇,叶建新.蛋白酶体抑制剂治疗多药耐药肿瘤机制的研究进展.中华肿瘤防治杂志,2007,14(15):1187-1190.
    [130]易文渊,徐波,李敏.蛋白酶体抑制剂逆转多药耐药的研究进展.国外医学药学分册,2007,34(2):87-98.
    [131] Achar B N. Studies of thermal decomposition kinetics. Proceeding international clay conference. Jerusalem, 1966, 1:67-69.
    [132]刘振海.热分析导论.北京:化学工业出版社,1991,7.
    [133]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001,8. 100.
    [134]李余增.热分析.北京:清华大学出版社,1987,39.
    [135] Straszko J., Olstak-Humienik M., Mozejko J.. Kinetics of Thermal Decomposition of ZnSO4·7H2O. Thermochim.Acta., 1997, 292(1-2): 145-150.
    [136] Eftimic, E.; Segal, E.. Basic language programs for automatic processing non-isothermal kineticdata . Thermochim Acta, 1987, 111: 359-367(5 ref.).
    [137] Coats A W, Redfern J P. Kinetic Parameters from thermo gravimetric data. Nature., 1964, 201: 68-69.
    [138]宁斌科,杨正权,刘蓉等.高氮量硝化棉的脱硝反应动力学研究.火炸药学报,2000,23(1):65-67.
    [139]夏锦尧,实用荧光分析法.北京:中国人民公安大学出版社,1992,3.
    [140]杨根元,金瑞祥,应武林.实用仪器分析.北京:北京大学出版社,1997,93-97.
    [141]陈国珍,黄贤智,许金钩等.荧光分析法,北京:科学出版社出版,1990,8-15.
    [142]张慧茹,黄素萍.荧光防伪纤维.合成纤维工业,2002 ,25(4) :39-41.
    [143] Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiplemyeloma cells. Cancer Res., 2001,61:3071-3076.
    [144] Mitsiades N, Mitsiades C S, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA, 2002,99(22):14374-14379.
    [145] Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res, 1999,59:2615-2622.
    [146] Teicher BA, Abrams MJ, Rosbe KW, et al. Cytotoxicity, radio sensitization, antitumor activity, and interaction with hyperthermia of a Co(III) mustard complex. Cancer Research,1990, 50(1): 6971-6975.
    [147] He SY, Chen JL, Zhang WP, etal. Interactions and Biological Activity of Rare Earth Perchlorate Complexes with Alanine and Imidazole. Journal of Rare Earths, 2001, 19(1):66.
    [148] Mital SP, Sharma SK, SinghRV, etal. Antifungal activity of some novel lanthanum thiosemicarbazone complexes. Cancer Science,1981, 50:483.
    [149] Li QG, Ye LJ, Qu JN, etal. Thermochemical study on coordination complex of neodymium trichloroacetate with 8-hydroxyquinoline chin. Journal of Rare Earths, 2002, 20(4): 293.
    [150] Daniel KG, Gupta P, Harbach RH, Guida WC, Dou QP. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem Pharmacol , 2004, 67(6): 1139–1151.
    [151] Daniel KG, Harbach RH, Guida WC, Dou QP. Copper storage diseases: Menkes, Wilsons, and cancer. Front Biosci., 2004,9: 2652–2662.
    [152] Daniel KG, Chen D, Orlu S, Cui QC, Miller FR, Dou QP. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res , 2005, 7(6): 897–908.
    [153] Chen D, Cui QC, Yang HJ and Dou QP. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition the proteasome activity. Cancer Res , 2006,66 (21):10425-10433.
    [154] Chen D, Cui QC, Yang HJ, et al. Clioquinol, a therapeutic agent for Alzhemer’s disease, has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts. Cancer Res 67 (4):1-9, 2007.
    [155] Zhang X, Bi CF , Fan YH, Dou DP, et al. Induction of Tumor Cell Apoptosis by Taurine Schiff Base Copper Complex is Associated with Inhibition of the Proteasomal Activity. Int J Mol Med., 2008,22(5):677-682.
    [156] Xiao Y, Bi CF, Dou QP, etal. L-glutamine Schiff base copper complex as a proteasome inhibitor and an apoptos. International Journal of Oncology, 2008,33(5): 1073-1079.
    [157]杨立荣.牛磺酸希夫碱配合物的合成、表征及生物活性研究.中国海洋大学博士学位论文,2006.
    [158] Asuero A G. Schiff bases derived from biacetyl as analytical reagents. Review. Micro chem. J., 1981, 26(4): 527-545.
    [159]杨昌晖,杨志斌,张纯名.新希夫碱3,5-二溴水杨醛缩氨基硫脉的合成及其分析应用研究.I.荧光熄灭法测定微量银.分析化学,1993,21(11):1272-1274.
    [160]沈含熙,汤圆平.双-[4-(a-蔡偶氮)-水杨醛]缩邻苯二胺的合成及其与铜的荧光熄灭反应.分析化学,1995,23(8): 894-896.
    [161]洪朝辉,俞英等.新试剂糠醛缩-7-氨基-8-羟基喹啉-5-磺酸催化荧光发测定痕量银.冶金分析,1997,17(6): 9-11.
    [162]康信煌,杨志斌.新Schiff碱SAAQ的合成及其分析应用研究(Ⅰ)*-荧光光度法测定镓.高等学校化学学报,1992,13(5): 602-604.
    [163]赵昌后,毛翼萍.新荧光试剂HNHND荧光碎灭法测定痕量锰(UQ)的研究.上海环境科学,1996,15(11):28-30.
    [164]尤进茂,孙学军,郑庚修.新席夫碱3,5-二溴水杨醛缩邻氨基酚的合成及荧光熄灭法测定痕量铝的研究.化学试剂,1996,18(3) :162-167.
    [165] Cejas M A, Comez Hens A, Valcarcel M. Flurimetric determination of magnesium by ternary complex formation with pyridoxal nicotinylhydra-zone and amines. Anal. Chem. Acta, 1981,130(1): 73-79.
    [166]崔完苍,唐波,史会明.吡哆醛异烟酞腙与铝荧光反应的研究.分析化学,1993,21(11): 1340-1345.
    [167]杨志斌,范洪.新席夫碱的分析应用研究:BPDIB荧光熄灭法测定水中微量铬(VI).分析测试学报,1995,14(1):29-31.
    [168]廖见培,刘国东,黄杉生.水溶性金属希夫碱与DNA相互作用的荧光光谱.分析测试学报,2001,20(3): 5-8.
    [169]艾小康.新型希夫碱金属配合物的合成、表征及荧光特性研究.中国海洋大学博士学位论文,2007.
    [170] K. Ito and H.J. Bernstein, The vibrational spectra of the formate, acetate, and oxalate ions. Canadian Journal of Chemistry , 1956, 34:170-178.
    [171]张文昭,周彦同,余宝源.Co(II)、Ni(II)、Cu(II)、Ag(I)和Pb(II)的2,5-噻吩二甲醛双缩邻氨基苯酚席夫碱配合物的合成及性质的研究.无机化学学报,1993,9(2):216-220.
    [172]陆晓红,林秋月等.稀土-香兰素缩赖氨酸希夫碱配合物的合成、表征及其与DNA作用的研究.中国稀土学报,2006,24(8):403-407.
    [173] Wu Zishan, Lu Zhiping, Yan Zhenhuan. Synthesis, Characterization Scavenger Effect on O2- of Copper (II) and Zinc (II) Complexes Derived from Thiosemi-carbazide. Trans. Met.Chem, 1993,18(4):291.
    [174]中本一雄著,黄德如等译.无机和配位化合物的红外和拉曼光谱.北京:化学工业出版社,1986:10-31.
    [175]藏焰,王德粉,王国雄.大环Schiff碱希土配合物的合成及表征.无机化学学报,1987,3(1):66-69.
    [176] Yu Z.L. Thermal Analysis, 1st Ed.; Beijing: Qinghua University Press,1987:94-96.
    [177] Fan Yu-hua, Bi Cai-feng, Li Jin-ying. Thermodecomposition Kinetics of Dy(III) Complex with Schiff Base Derived from Furfural and DL–α–Alanine. Synthesis and Reactivity in Inorganic and Metal-organic Chemistry, 2003, 33(1): 137-145.
    [178] Rongzu H., Qizhen S. Thermal Analysis Kinitics. Beijing: Science Press, 2001:206.
    [179] A.E. Martell, L.G. Sillen, Stability Constants of metal ion complexes. In SpecialPublications .The Chemical Society, London, 1964, 17(25): 465.
    [180]张栋梅,范玉华,毕彩丰等.一种异双希夫碱Cu(II)配合物的合成、表征与荧光性质.光谱学与光谱分析,2007,27(2):335-338.
    [181] Spano J P, Bay JO, Blay J Y, et al. Proteasome inhibition: a new approach for the treatment of malignancies. Bull Cancer, 2005, 92(11): E61-E66, 945-952.
    [182] Thati B, Noble A, Creaven BS, Walsh M, Kavanagh K, Egan DA , et al.. Apoptotic cell death: A possible key event in mediating the invitro anti-proliferative effect of an ovel copper(II) complex,[Cu(4-Mecdoa)(phen)] (phen=phenanthroline, 4-Mecdoa=4-methylcoumarin-6, 27- dio-xactetate), in human malignant cancer cells. European Journal of Pharmacology, 2007, 569 (1-2): 16-28.
    [183] Lian-Zhi Li, Chao Zhao, Tao Xu .Synthesis, crystal structure and nuclease activity of a Schiff base copper(II) complex. Journal of Inorganic Biochemistry, 2005, 99(5): 1076-1082.
    [184] Akbar Ali, M., Guan, T. S., Bhattacharjee, P., Butcher, R. J., Jasinski, J. P., Li Yu, Magnetic, spectroscopic and biological properties of copper(II) complexes of the tridentate ligand, -N-methyl-S-methyl- -N-(2-pyridyl) methylenedithiocarbazate (NNS) and the X-ray crystal structure of the [Cu(NNS)I2] complex. 2002,27(3): 262-267.
    [185] Abu-Raqabah, A.; Davies, G.; El-Sayed, M.A.; El-Toukhy, A.; Shaikh, S.N. and Zubeita. Transmetalation of tetranuclear copper complexes with tin transmetalators. Molecular structure of cis-dichloro-bis(trans-S-methyl isopropylidene hydrazine carbodithioato)tin(IV) and consideration of transmetalation mechanisms, Inorg. Chim. Acta., 1992, 193(1): 43-56.
    [186] Akbar Ali, M.; Nazimuddin M.;Shaha R.; Ray J.; Butcher and Jeffrey C. Bryan. Synthesis and characterization of bis-chelated nickel(II) complexes of the methylpylruvate Schiff bases of S-alkyldithiocarbazates and the X-ray crystal structure of the [Ni(ONSMe)2] complex. Polyhedron,1998, 17(22): 3955-3961.
    [187] Hossain, M. E.; Alam, M. N.; Akbar Ali, M.; Nazimuddin, M.; Begum, J.; Smith, F. E. and Hynes, R. C..The preparation, characterization, crystal structure and biological activities of some copper(II) complexes of the 2-benzoylpyridine Schiff bases of S-methyl- and S-benzyl- dithiocarbazate. Inorg Chim. Acta, 1996, 249(2): 207-213(7).
    [188]陈德余,张平,史卫良.邻香草醛缩天冬氨酸铜、锌、钴、镍配合物的合成.应用化学,1999,16(2):76-77.
    [189]范玉华,毕彩丰.邻香草醛缩邻苯二胺与Y(Ⅲ)、Pr(Ⅲ)、Er(Ⅲ)配合物的合成与表征.合成化学,1997,5(1):79-82.
    [190]乔艳红,孙命.邻香兰素-氨基酸席夫碱及其配合物对O2-的抑制作用.化学研究与应用,2003,15(4): 583-587.
    [191]孔德源,谢毓元.氨基酸类Schiff base稀土配合物的合成及抗肿瘤活性(I,II,III) .中国药物化学,1998,l18(14):245-253;1999,119(13):162-166;2000,110(11):13-17.
    [192]席晓岚,黎植昌.氨基酸Schiff碱及其金属配合物的抑菌抗癌活性的研究进展.氨基酸和生物资源,1998,20(4):40-43.
    [193] Sylvain R, Bernier JL, Waring M J, et al. Synthesis of a functionalized Salen-copper complex and its interaction with DNA. Org Chem ,1996, 61(7): 2326-2331.
    [194] Santanu B, Subhrangsu SM. Ambient oxygen activating water soluble cobalt-salen complex for DNA cleavage. J Chem Soc. Chem Commun, 1995, (24): 2489-2490.
    [195] Rosenberg, B.; Vancamp, L. & Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature,1965, 205: 698-699.
    [196] Evans, B. D.; Raju, K. S.; Calvert, A. H.; Harland, S. J. & Wiltshaw, E. Phase II study of JM8, a new platinum analog, in advanced ovarian carcinoma. Cancer Treat. Rep., 1983, 67: 997-1000.
    [197] Scott E. Harpstrite, JulieL.Prior, Nigam P. Rath , Vijay Sharma. Metalloprobes: Synthesis, characterization, and potency of a novel gallium(III) complex in human epidermal carcinoma cells. Journal of Inorganic Biochemistry, 2007, 101: 1347-1353.
    [198] Kim, I.; Kim, C.H.; Kim, J. H.;et al. Pyrrolidine dithiocarbamate and zinc inhibit proteasome dependent proteolysis. Exp.Cell Res., 2004, 298(1): 229-238.
    [199] Milacic, V.; Chen, D.; Dou, Q.P.; et al. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis In tumor cells by inhibiting the proteasomal activity. Toxicology and Applied Pharmacology, 2008, 231(1): 24-33.
    [200]毕彩丰.铀、钍、稀土希夫碱混合液的合成与表征.中国原子能科学研究院博士研究生学位论文,2001,46-53.
    [201] Pink, J.J.; Wuerzberger-Davis, S.; Tagliarino, C.; Planchon, S.M.; Yang, X.; Froelich, C.J.; Boothman, D.A.. Activation of a cysteine protease in MCF-7 and T47D breast cancer cells during lapachone mediated apoptosis. Exp.Cell Res., 2000, 255(2): 144-155.
    [202] Gao,G.; Dou,Q.P..N-terminal cleavage of Bax by calpain generates a potent proapoptotic 18-kDafragment that promotes Bcl-2-independent cytochrome C release and apoptotic cell death. J.Cell.Bio.chem., 2000, 80(1): 53-72.
    [203] Wood, D.E.; Newcomb, E.W.. Cleavage of Bax enhances its cell death function. Exp.Cell Res., 2000, 256(2): 375-382.
    [204] Groll M., Heinemeyer W., Jager S., Ullrich T., Bochtler M., Wolf D.H., Huber R..The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci USA., 1999, 96(20): 10976–10983.
    [205] Yang, Y.; Fruh K.; Ahn K.; Peterson P.A.. In vivo assembly of the proteasomal complexes, implications for antigen processing. J Biol Chem. 1995, 270(46): 27687-27694.
    [206] An B, Goldfarb RH, Siman R and Dou Q P. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ, 1998, 5(12): 1062-1075.
    [207] Lopes U G, Erhardt P, Yao R and Cooper GM. p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem, 1997, 272(20): 12893-12896.
    [208] Brem S. Angiogenesis and cancer control: from concept to therapeutic trial. Cancer Control , 1999, 6(5): 436-458.
    [209] Brewer G J. Copper control as an antiangiogenic anticancer therapy: lessons from treating Wilson’s disease. Exp Biol Med (Maywood) , 2001, 226: 665–673.
    [210] Theophanides T and Anastassopoulou J. Copper and carcinogenesis. Crit Rev Oncol Hematol, 2002, 42(1): 57–64.
    [211] Morton KO. Role of trace elements in cancer. Cancer Res, 1975, 35: 3481-3487.
    [212] Halliwell, B.and Gutteridge, J. M. C. Free Radicals in Biology and Medicine. Oxford University Press, New York.1985.
    [213] Shahabuddin A.R., M.HadiS., Parish J.H., Ainley K.. Strand scission in DNA induced by quercetin in the presence of Cu(II): role of Cu(I) and oxygen free radicals. Carcinogenesis, 1989, 10(10): 1833-1839.
    [214] Daniela Saggioro, Maria Pia Rigobello, Lucia Paloschi. Gold(III)-Dithiocarbamate Complexes Induce Cancer Cell Death Triggered by Thioredoxin Redox System Inhibition and Activation of ERK Pathway. Chemistry & Biology, 2007,14(10):1128-1139.
    [215] Gerd Multhaup, Andrea Schlicksupp, Lars,Hesse, Dirk BeherL.etal. The Amyloid Precursor Protein of Alzheimer's disease in the Reduction of Copper(II) to Copper(l). Science, 1996, 271 (8): 1406-1409.
    [216] Anne Jorn, Markus Tiedge, Sigurd Lenzen, and Rex Munday. Effect of supperoxide dismutase, catalase, chelatin gagents, and free adical scanvengers on the toxicity of all oxanto isolated pancreatic islets in vitro. Free Radical Biology & Medicine. 1999, 26(9): 1300-1304.
    [217] Chen.H, Rhodes.J. Schiff base forming drugs: mechanisms of immune potentiation and therapeutic potential. J.Mole.Medi, 1996,74(9): 497-504.
    [218] Bubnovskaya, L. N.; Vol'pik, M. E.; Ganusevich, I. I.; Levitin, I. Ya.; Oganezov, V. V.; Osinskii, S. P.; Pankratov, A. A.; Sigan, A. L.; Surgai, V. V.; Tsikalova, M. V.; Yakubovskaya, R. I. Complexes of cobalt with Schiff bases as potential antitumor agents and modifiers of cancer therapy. Rossiiskii Khimicheskii Zhurnal ,1998, 42(5): 128-140.
    [219] Syamal.A, Maurya.M.R, Coordination chemistry of Schiff base complexes of molybdenum. Chem.Rev., 1989,95(2): 183-238(99 ref.).
    [220] Grasa.G, Tuna. F, Gheorghe. R. Leznoff. D.B, Rettig. S, Supramolecular heteropolymetallic assemblies constructed from binuclear complexes and hexacyanometallate anions. Synthesis, crystal structure and magnetic properties of [Cu2(fsal-33)(H2O)2]3[Fe(CN)6]2. 8 H2O. New Journal of Chemistry, 2000, 24(8): 615-618.
    [221] Haase.W, Griesar.K, Iskander. M.F. Galyametdinov.Y, Metallomesogens and metallopolymers recent results on magnetic properties. Molecular Crystals and Liquid Crystals Science and Technology, Section C: Molecular Materials, 1993, 3(2): 115-30.
    [222] Smith,G., Copper,C.J., Chauhan,V., Lynch,D.E.,et al. Conformational Comparisons Between Phenoxyacetic Acid Derivatives in Adducts and in the Free Form. Aust. J. Chem. 1999, 52(7): 695-704.
    [223] El’tsov, O.S.& Mokrushin, V.S. Synthesis of 2-(imidazolylamino) benzothiazoles Russ. Chem. Bull., 2002, 51(3): 547-549.
    [224] Shi, D.F.; Bradshaw, T.D.; Wrigley, S.; et al. Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl) benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J.Med.Chem., 1996, 39(17): 3375-3384.
    [225] A. Usman, H.-K. Fun, S. Chantrapromma, M. Zhang, Z.-F. Chen, Y.-Z. Tang, S.-M. Shi and H.Liang. Diacetatobis (2-aminobenzothiazole) zinc(II). Acta. Cryst., 2003 , E59: m41-m43.
    [226] M. J. Frisch G.W. Trucks, H.B. Schlegel, et al., Gaussian 03 .Gaussian, Inc., Pittsburgh PA, 2003.
    [227] Kohn W. Density functional theory in 1997. Strongly Coupled Coulomb Systems, Chestnut Hill, Mass. 1997 : 9-13.
    [228] Sheldrick G. M. SHELXTL 97, Program for Crystal Structure Refinement, University of Gottingen, Germany, 1997.
    [229] Sheldrick G. M. SHELXTL,5 Reference Manual, Siemens Analytical X-ray Systems, Inc., Wisconsin, USA ,1996.
    [230]马海霞,宋纪蓉,徐抗震等.3-硝基-1,2,4-三唑-5-酮二甲胺盐(CH3)2NH2C2N4O3H的合成、晶体结构和量子化学研究.化学学报,2003,61(11):1819-1823.
    [231] Ma H X, Song J R, Hu R Z, et al. Non-isothermal Kinetics of the Thermal Decomposition of 3-Nitro-1,2,4-triazol-5-one Magnesium Complex. J. Chin.J. Chem., 2003, 21(12): 1558-1561.
    [232] Alan E. Reed, Larry A. Curtiss, Frank Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev., 1988, 88 (6): 899-926.
    [233] E. D. Glendening, J. K. Badenhoop, F. Weinhold, Natural resonance theory: III. Chemical applications. J. Comput.Chem.1998, 19(6): 628-646.
    [234]徐丽娜,肖鹤鸣,方国勇等.NTO二聚体分子间相互作用的理论研究.化学学报,2005,63(12):1062-1068.
    [235]肖鹤鸣,居学海,高能体系中的分子间相互作用.北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700