用户名: 密码: 验证码:
柔性叶片潮流能水轮机水动力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋潮流能作为一种可再生能源成为国内外研究的热点,我国海洋潮流能储量丰富,其开发利用潜力巨大。潮流水轮机作为获取海洋潮流能的能量转换装置,是潮流能开发利用的关键,其结构原理、动力机制以及性能优化是研究的重点和难点。
     本文作者借鉴帆船推进机理、柔性风帆耦合作用以及帆翼的气动力特性,创新性地研制了一种新型潮流能能量转换装置——柔性叶片水轮机。采用能充分利用流体运动作用力的柔性材料制作水轮机叶片,能很好地适应水流作用发生形变,自动调节攻角,并能充分利用与水流间相互耦合作用产生的升力效应和阻力效应做功,获能效率较高,具有许多刚性叶片所不具备的优点和良好的水动力学性能。
     提出了柔性叶片的几何形态以及柔性叶片水轮机转子的结构形式;分析了柔性叶片在水轮机运动过程中的形变规律及受力特性,初步探讨了柔性叶片水轮机的工作原理和性能特点,建立了柔性叶片水轮机主要水动力性能参数的数学模型,并通过量纲分析确定了影响柔性叶片水轮机性能的主要因素。
     鉴于柔性叶片水轮机因涉及柔性叶片与水流间相互耦合作用和动力机制的复杂性,提出了运用风浪流水槽模型实验与计算流体力学数值模拟相结合的方法来研究其动力学性能的思路和方法。
     建立了柔性叶片水轮机风浪流水槽模型实验系统和水动力学性能测试平台,确定了柔性叶片水轮机实验模型水动力学性能的测试方法,设计了十几种不同叶片形状、布置方式、结构形式和安装方式的柔性叶片水轮机实验模型,并利用风浪流水槽进行了大量实验,对柔性叶片水轮机的水动力学性能及其影响因素有了较全面的认知,对柔性叶片及水轮机转子的结构形式进行了初步筛选和优化。
     计算流体力学的快速发展为解决柔性叶片与水流间的耦合作用和水轮机的动力学性能预测以及数值模拟提供了可能。本文在借鉴有关柔性翼、降落伞充气过程和心脏瓣膜流固耦合等研究方法的基础上,提出了柔性叶片流固耦合的求解思路和运用计算流体力学(CFD)方法进行柔性叶片水轮机水动力性能数值模拟的方案,即首先建立了柔性叶片在流体中的流固耦合控制方程,通过双向流固耦合求解柔性叶片的变形;其次利用求解的各柔性叶片形状,建立柔性叶片不同转角位置的瞬时物理模型;然后采用动网格技术,编译用户自定义函数,实现了柔性叶片水轮机的数值模拟和水动力学性能的预测。
     本文综合运用风浪流水槽模型实验和计算流体力学数值模拟的方法,研究和验证了柔性叶片水轮机的水动力学性能,分析了影响柔性叶片水轮机水动力学性能的主要因素,对其结构、参数和性能进行了优化配置,并在此基础上,对潮流能发电海试水轮机进行了设计优化,研制了5kW潮流能发电海试样机,通过海试证明其水动力学性能良好,并与风浪流水槽模型实验及数值模拟的研究结果基本吻合。
As renewable energy, the tidal current is becoming one of the research focuses at home and aboard. The resource of tidal current energy in china is rich, so its development potentiality is promising. As the conversion device, turbine is the key component of tidal current energy technologies. Ongoing research is focused on its structure, power mechanisms, and performance optimization.
     The author developed an innovative type of fluid energy extracting device—flexible blade turbine, borrowing ideas from impelling mechanism of sailing, the coupling effect of the flexible sail and the aerodynamic characteristics of wing. Using flexible materials as blade which can take good advantage of fluid dynamic, it can adjust attack angle automatically, taking full use of the lift and drag effect generated by the coupling with fluid. Thereby, it has an excellent hydrodynamic performance that the rigid blades do not have.
     This paper puts forward the geometric configuration of the flexible blade and the structural of flexible blade turbine; analyzes the shapes of flexible blade and forces acting on it in rotation; studies the principle and performance characteristics of the flexible blade turbine preliminarily; sets up the mathematical models of the main performance parameter of the flexible blade turbine; finds the main factors effecting the performance of the flexible blade turbine via dimensional analysis.
     The study on flexible blade turbine involves in the complex hydrodynamic mechanism of the coupling between fluid and flexible blade, which is a difficult problem unsolved at present. So the research method of combining water tank model test with numerical simulation is proposed.
     The author designed a water tank model test system and the testing means of hydrodynamic performances of flexible blade turbine. Several models with different blade shapes, blade fixed methods, rotor structures and installation are designed. Then water tank testing was carried out. Based on the analysis of results, the hydrodynamic performances of flexible blade turbine and their influence factors are researched plenty. Then the structures of flexible blade turbine are selected and optimized preliminarily.
     With the development of CFD, it’s becoming possible to solve the problem of the coupling between the flexible blade and fluid so as to predict its hydrodynamic performances using numerical simulation. By considering knowledge from related research field such as flexible wings, parachute inflation process and fluid-solid coupling of heart valves, the author proposed the way to solve the problem of the coupling between flexible blade and fluid using numerical simulation in CFD. First of all, the fluid-solid coupling equations are founded. The shape of flexible blade will be acquired using fluid-solid coupling analysis. Then the physical models of flexible blade at different positions are created. In the process of simulation, dynamic mesh technology is adopted. And the rotational speed of rotor is defined via user-defined functions. The numerical simulation and performances prediction of flexible blade turbine are implemented finally.
     Under the research method of combination of water tank model test and CFD numerical simulation, the hydrodynamic performances of flexible blade turbine are studied and certificated. The main factors that affect its hydrodynamic performances are analyzed. Then its structures, performance parameters are optimized. Based on this, the 5kW flexible blade turbine is developed for the sea trial. The results of two times sea trials prove its predominant hydrodynamic performances, and an excellent agreement was found between sea trials and water tank model test & numerical simulation results.
引文
[1]中国科学技术协会,中国能源研究会.能源科学技术学科发展报告.北京:中国科学技术出版社,2008
    [2]崔民选.中国能源发展报告.北京:社会科学文献出版社,2007
    [3]张亮,汪鲁兵,李凤来,张桂湘.竖轴变攻角潮流发电水轮机性能预报流管模型研究.哈尔滨工程大学学报,2004,25(3): 261-266
    [4]汪鲁兵,张亮,李凤来.潮流发电水轮机基于动量定理的性能计算方法研究.海洋工程, 2005, 23(1): 97-102
    [5]李伟,林勇刚,刘宏伟等.水平螺旋桨式海流发电技术研究.中国可再生能源学会海洋能专委会成立大会暨第一届学术讨论会.杭州, 2008. 81~90
    [6] A.S. Bahaj, W.M.J. Batten, G. McCann.Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renewable Energy, 2007, 32( ): 2479~2490
    [7] A.S.Bhaj, A.F.Molland, J.R.Chaplin, W.M.J.Batten. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renewable Energy, 2007, 32(3): 407-426
    [8]中国电力企业联合会.资源节约:电力工业的可持续发展之路.中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集.中国湖南,2004.852~855
    [9] Technology Innovation Office. Renewable Energy Technology Roadmap[R]. Bonneville Power Administration, P.O. Box 3621 Portland, September 2006.
    [10] DTI. Novel Moored Tidal Stream Generating Equipment[R]. Project Profile Number PP228, 1 Victoria Street, London SW1H 0ET, August 2005.
    [11] Simon C Meade. Ducted turbine[R]. Lunar Energy Harnessing Tidal Power, Ferriby Road Hessle East Yorkshire HU13 0QF UK, October 2005.
    [12] Roger Bedard. EPRI North American Tidal In Stream Energy Conversion Feasibility Demonstration Project[R]. EPRI Survey and Characterization, Hillview Avenue, Palo Alto, California, November 2005.
    [13] DTI. Variable Pitch Foil Vertical Axis Turbine[R]. Report Number T/06/00234/00/00, March 2006.
    [14] Alessandro Sch?nborn, Matthew Chantzidakis. Development of a hydraulic control mechanism for cyclic pitch marine current turbines[J]. Renewable Energy, 2007, (32): 662~679.
    [15] EB. Stingray Tidal Stream Energy Device-Phase 3[R].Reporter number T/06/00230/00, 2005.
    [16] Peter Fraenkel. Marine Current Turbines: feedback on experience so far[R]. Marine Current Turbines Ltd, Stoke Gifford, Bristol BS34 8PD, UK, October 2004.
    [17] A Owen, I G Bryden. Prototype support structure for seabed mounted tidal current turbines[J]. Proc. IMechE Part M: J. Engineering for the Maritime Environment, 2005, 219(4): 173~183.
    [18] F.L. Ponta, P.M. Jacovkisa. Marine-current power generation by diffuser-augmentedfloating hydroturbines. Renewable Energy, 2008, 33: 665~673
    [19] Bartle, A. Smart snail stays firm underwater.The International Journal of Hydropower & Dams, 2003, 10(4):117
    [20]杨少勇.变速恒频发电系统的分析:[硕士学位论文],哈尔滨:哈尔滨工程大学,2004
    [21] W. H. Isay. On the treatment of the flow through a Voith-Schneider Propeller having a small advance coefficient. Burean of Ships Translation.1958
    [22]汪鲁兵.竖轴潮流水轮机水动力性能理论与实验研究:[博士学位论文],哈尔滨:哈尔滨工程大学,2006:4~8
    [23] R. J. Templin. Aerodynamic performance theory for the NRC vertical axis wind turbine, NRC of Canada TR, LTR-LA-160, 1974
    [24] W. N. Sullivan and T. M. Leonard. A computer Subroutine for estimating aerodynamic blade loads on Darrieus vertical axis wind turbines. Sandia Laboratory Rept. SAND 80-2407. Albuquerque, New Mexico: Sandia National Laboratories. Nov. 1980
    [25] J. H. Strickland. The Darrieus Turbine: A Performance Prediction model Using Multiple Stream tubes. Sandia Laboratory RePt. SAND 75-0431. Albuquerque, New Mexieo: Sandia National Laboratories.1975
    [26] I. Paraschiviou, P. Desy. Aerodynamics of small-scale vertical axis wind turbines. Journal of Propulsion, 1986: 2~3
    [27] D. J. Sharpe. Wind Turbine Aerodynamies. London Freris(Ed.),Prentice Hall. Wind energy conversion system, 1990, 54~118
    [28] D. P. Coiro, F. Nicolosi. Numerical and Experimental Analysisof Kobold Turbine. Dipartimento di Progettazione Aeronautica Via Claudio 21 80125 Napoli-Italy. 1996: 4~6
    [29] S. M. Camporeale, V. Magi. Streamtube model for analysis of vertical axis variable pitch turbine for marine currents energy conversion. Energy Conversion & Management, 2000, 41: 1811~1827
    [30]罗庆杰,张亮,孙科. UDF控制滑移网格方法在摆线式直叶片水轮机性能预报中的应用.中国可再生能源学会海洋能专委会成立大会暨第一届学术讨论会.杭州, 2008. 124~133
    [31] Rankine,W.J.,On the mechanical principles of the action of ship propellers. Trans. 1865: 13~39
    [32] W.M.J. Batten, A.S. Bahaj, A.F. Mollandb, et al. The prediction of the hydrodynamic performance of marine current turbines. Renewable Energy, 2008, 33( ): 1085-1096
    [33] R. E. Wilson, S. N. Walker. Fixed wake theory for vertical axis turbines. Jounal of Fluid Engineering, 1983, 105(4): 389~393
    [34] J. H. Strickland, B. T. Webster, T. Nguyen. A vortex model of the Darrieus turbine: an analytical and experimental study. Trans. ASME J. Fluids Engng., 1979, 101: 500~505
    [35]马庆位.可调角直叶水轮机的性能研究:[硕士学位论文],哈尔滨:哈尔滨船舶工程学院,1984:34~36
    [36] F. L. Ponta, P. M. Jacovkis. Constant-curl Laplacian equation: a new approach for the analysis of flows around bodies. Computers and Fluids, 2003, 32: 975~994
    [37] F. L. Ponta, P. M. Jacovkis. A vortex model for Darrieus turbine using finite element techniques. Renewable Energy, 2001, 24: 1~18
    [38]于勇. Fluent入门与进阶教程.北京:北京理工大学出版社,2008.10
    [39]王树杰,赵龙武,李冬等.柔性叶片水轮机流体动力特性数值模拟.中国可再生能源学会海洋能专委会成立大会暨第一届学术讨论会.杭州, 2008. 91~101
    [40]王树杰,鹿兰帅,李冬等.帆翼式柔性叶片水轮机实验研究,海洋工程,2009,30(1):83~89
    [41] Roger Bedard. EPRI North American Tidal In Stream Energy Conversion FeasibilityDemonstration Project. EPRI-TP-004NA, 2005, 9
    [42] M.A. Kamoji, S.B. Kedare, S.V. Prabhu. Performance tests on helical Savonius rotors. Renewable Energy, 2009, 34:521~529
    [43]张桂湘.摆线式和蹼板式水轮机水动力性能计算方法研究:[硕士学位论文],哈尔滨:哈尔滨工程大学,2002
    [44]陈晗.弹簧控角竖轴直叶水轮机水动力性能研究:[硕士学位论文],哈尔滨:哈尔滨工程大学,2006
    [45]黄胜,张维新,李凤来.蹼板式水流发电装置实验研究.哈尔滨工程大学学报, 2005, 26(1): 13~18
    [46] Roger Bedard. EPRI North American Tidal In Stream Energy Conversion Feasibility Demonstration Project. EPRI-TP-004NA, 2005, 9
    [47] A.S.Bhaj, A.F.Molland, J.R.Chaplin, W.M.J.Batten. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renewable Energy, 2007, 32(3): 407-426
    [48]汪鲁兵.竖轴潮流水轮机水动力性能理论与实验研究:[博士学位论文],哈尔滨:哈尔滨工程大学,2006:4~8
    [49]彭勇,张青斌.降落伞主充气阶段数值模拟[J],国防科技大学学报, 2008, 26(2): 13-16.
    [50]潘星,胡利,曹义华.降落伞主充气阶段的动态仿真及流场分析[J].航空动力学报, 2008, 23(1): 87-93.
    [51]张丽荣,葛世荣.心脏主动脉双叶瓣流固耦合模型定常流场数值的分析[J].中国组织工程研究与临床康复, 2007, 11(30): 8107-8100.
    [52] J.Vierendeelsa, K.Dumont, P.R. Verdonck .A partitioned strongly coupled fluid-structure interaction method to model heart valve dynamics[J]. Journal of Computational and Applied Mathematics. 2008, 215: 602-609.
    [53] Esko Jarvinen, Peter Raback, Mikko Lyly, et al. A method for partitioned fluid–structure interaction computation of flow in arteries[J]. Medical Engineering & Physics. 2008, 30: 917–923.
    [54] R. Kamakoti, Wei Shyy. Fluid-structure interaction for aeroelastic applications. Progress in Aerospace Science, 2004, 40: 535~558
    [55] ZUO De-can, PENG Song-lin, ZHANG Wei-ping, CHEN Wen-yua. Numerical simulation and analysis of flapping-wing micro aerial vehicles flight. Acta Aerodynamica Sinica, 2007, 25(1): 125 -136.
    [56]王福军.计算流体动力学分析.北京:清华大学出版社, 2004:113-140
    [57]沈世钊,武岳.膜结构风振相应中的流固耦合效应研究进展.建筑科学与工程学报, 2006, 23
    [58] Alexander N. Gorban, Alexander M. Gorlov, Valentin M. Silantyev. Limits of the Turbine Efficiencyfor Free Fluid Flow, Journal of Energy Resources Technology, 2001, 123: 311~317
    [59] Verdant Power.LLC, GOK Technology.Inc. Integration of the Gorlov Helical Turbine into an Optimized Hardware/Software System Platform, Amesbury tidle energy project final report, 2005
    [60]刘胜柱,水轮机内部流动分析与性能优化研究:[博士学位论文],西安:西安理工大学, 2005. 10: 1~9
    [61] W.M.J. Battena, A.S. Bahaja, A.F.Mollandb. Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Engineering, 2007, 34: 1013~1020
    [62] L. Myers, A.S. Bahaj. Power output performance characteristics of a horizontal axis marine current turbine. Renewable Energy, 2006, 31:197~208
    [63] Ajit Thakker, Fergal Hourigan. Computational fluid dynamics analysis of a 0.6 m, 0.6 hub-to-tip ratio impulse turbine with fixed guide vanes. Renewable Energy, 2005, 30: 1387~1399
    [64] Sylvain Antheaumea, Thierry Maitreb, Jean-Luc Achardb. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions. Renewable Energy, 2008, 33: 2186~2198
    [65] X. Sun, J.P. Chick, I.G. Bryden. Laboratory-scale simulation of energy extraction from tidal currents. Renewable Energy, 2008, 33: 1267~1274
    [66] A. El Marjani a, F. Castro Ruiz b, M.A. Rodriguezb. Numerical modelling in wave energy conversion systems. Energy, 2008, 33: 1246~1253
    [67] D. Agar, M. Rasi. On the use of a laboratory-scale Pelton wheel water turbine in renewable energy education. Renewable Energy, 2008, 33: 1517~1522
    [68]鲍麟,昆虫翼柔性变形的力学效应研究:[博士学位论文],北京:中国科学院研究生院,2007
    [69] S. Sathe a, R. Benney b, R. Charles b, et al. Fluid–structure interaction modeling of complex parachute designs with the space–time finite element techniques. Computers & Fluids, 2007, 36: 127–135
    [70] Keith Stein, Richard Benney, et al. Fluid-structure interactions of a cross parachute: numerical simulation. Computer methods in applied mechanics and engineering,2001,191:673~687
    [71]潘星,曹义华.降落伞开伞过程的多结点模型仿真.北京航空航天大学学报,2008,34(2): 188-192
    [72]彭勇,张青斌,秦子增.降落伞主充气阶段数值模拟[J],国防科技大学学报,2008,26(2):13-16
    [73] J.Vierendeelsa, K.Dumont, P.R. Verdonck .A partitioned strongly coupled fluid-structure interaction method to model heart valve dynamics. Journal of Computational and Applied Mathematics. 2008, 215: 602-609.
    [74] Esko Jarvinen, Peter Raback, Mikko Lyly, et al. A method for partitioned fluid–structure interaction computation of flow in arteries. Medical Engineering & Physics. 2008, 30: 917–923
    [75] R. Kamakoti, Wei Shyy. Fluid-structure interaction for aeroelastic applications. Progress in Aerospace Science, 2004, 40: 535~558
    [76]张丽荣,葛世荣.心脏主动脉双叶瓣流固耦合模型定常流场数值的分析,中国组织工程研究与临床康复, 2007, 11(40): 8107~8110
    [77]王芙,基于计算流体力学技术的个体化颅内动脉瘤的血流动力学模型与实验:[博士学位论文],北京:中国人民解放军军医进修学院,2008
    [78]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社, 2004: 2~306
    [79]沈世钊,武岳.膜结构风振相应中的流固耦合效应研究进展.建筑科学与工程学报,2006, 23
    [80] Cox A, Gracia E, Goldfarb M. Actuator development for a flapping micro-robotic micro-aerial vehicle. Proceedings of SPIE, 1998, 3519: 102~108
    [81] W.M.J. Battena, A.S. Bahaja, A.F. Mollandb. The prediction of the hydrodynamic performance of marine current turbines. Renewable Energy, 2008, 33: 1085~1096
    [82] M. Torresi, S.M. Camporeale, P.D. Strippoli, Accurate numerical simulation of a high solidity Wells turbine. Renewable Energy, 2008, 33: 735~747
    [83] Xiaodong Wang, Instability analysis of some fluid–structure interaction problems. Computers & Fluids, 2003, 32: 121~138
    [84] Ming Tingzhena, Liu Weia, et al. Numerical simulation of the solar chimney power plant systems coupled with turbine. Renewable Energy, 2008, 33: 897~905
    [85]张义华,水平轴风力机空气动力学数值模拟:[硕士学位论文],重庆:重庆大学,2007.4
    [86] T. Stallard a, R. Rothschild b, G.A. Aggidis, A comparative approach to the economic modelling of a large-scale wave power scheme. European Journal of Operational Research, 2008, 185: 884~898
    [87]刘树红,杨魏,吴玉林等,贯流式水轮机三维定常湍流计算及改型设计.水力发电学报,2007, 26(1): 110~113
    [88]沙海飞,周辉,吴时强.用动网格模拟闸门开启过程非恒定水流特性.郑州:中国水利学会青年科技工作委员会,2005: 311~315
    [89]谷正气,姜波,何忆斌,周伟.基于SST湍流模型的超车时汽车外流场变化的仿真分析.汽车工程, 2007, 29(6): 494~496.
    [90]傅德彬,姜毅.用动网格方法模拟导弹发射过程中的燃气射流流场.宇航学报, 2007, 28(2): 423~426.
    [91]乐肯堂,庄国文,宋金宝,侯一筠,朱兰部.海洋底边界层中实测海流的垂直分布:Ⅱ潮流边界层.海洋与湖沼,2003,34(02):187~193
    [92]乐肯堂,庄国文.海洋底边界层中实测海流的垂直分:I余流边界层.海洋与湖沼,2002,33 (6):622~629
    [93] Fang Guohong, Ichiye T. On the vertical structure of tidal currents in a homogeneous sea. Geophys J R Astr Soc, 1983, 73: 65~82
    [94] Jeremy Thake, IT Power. Development, Installation and Testing of a Large-scale Tidal Current Turbine. 2005: 36~37
    [95]中国海湾志编纂委员会.中国海湾志第四分册:山东半岛南部和江苏省海湾.北京:海洋出版社,1993
    [96]张学庆,孙英兰.胶南近岸海域三维潮流数值模拟.中国海洋大学学报,2005,35(04):579~582

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700