用户名: 密码: 验证码:
船舶零航速减摇鳍建模与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶在风浪中不可避免地会产生各种摇荡,其中以横摇最为显著,影响也最大。减摇鳍是目前最常用且应用最成功的船舶主动式减横摇装置,减摇效果可达90%以上。但是只有船舶的航速较高时,减摇鳍才可以有效地减摇,在低航速或零航速情况下,减摇鳍几乎不能进行减摇。在现有的减摇设备中,只有减摇水舱的减摇效果不受航速影响,但是减摇水舱体积较大,而且只是在谐摇频率的附近才能取得最好的减摇效果,在某些情况下甚至会出现增摇的现象。为了解决这些问题,人们提出了零航速减摇鳍的概念。
     论文来源于国家自然科学基金项目“零速下船舶仿生减摇鳍升力机理的研究(50575048)”,主要研究内容是零航速减摇鳍升力模型的建立及其控制方法的研究。
     论文首先总结了零航速减摇装置的发展现状,明确了研制零航速减摇鳍需要解决的关键技术。分析了减摇鳍在零航速下的工作原理,并且对单翼与双翼零航速减摇鳍的结构与工作方式进行对比。
     升力模型的建立是研究零航速减摇鳍的基础,论文应用流体力学理论对零航速减摇鳍的升力模型问题进行了初步研究,采用解析的方法对单翼零航速减摇鳍上各种流体作用力的产生机理和影响因素进行分析,建立了单翼零航速减摇鳍的升力模型,并根据升力模型对单翼零航速减摇鳍的升力特性进行分析。仿真结果表明,单翼零航速减摇鳍属于大惯性负载,对伺服系统有较高的要求。在分析Weis-Fogh机构势流理论的基础上建立了双翼零航速减摇鳍的升力和力矩模型,由于现有的理论只能对Weis-Fogh机构张开阶段进行分析,为了解决这个问题,结合数值计算的结果建立了具有较高实用性的Weis-Fogh机构闭合阶段升力模型,并对双翼零航速减摇鳍以不同的速度张开和闭合时的升力和力矩特性进行了研究。针对现有单翼零航速减摇鳍存在的某些缺点,提出了回转运动型单翼零航速减摇鳍的设计方案,仿真结果表明采用该方案可以提高现有零航速减摇鳍的性能。零航速减摇鳍处于非定常流中,只能在理论分析的基础上建立一些初步的升力模型,因此必须根据实验数据对这些模型进行修正。由于零航速减摇鳍周围的流场与传统减摇鳍有很大差别,所以需要对其水动力实验方法进行深入研究。为此对零航速减摇鳍的流场特性进行分析,提出了零航速减摇鳍的水动力实验方案,利用相似理论确定了部分实验参数,为保证实验数据的准确性提供了理论依据。
     现有的减摇鳍全部采用电液伺服系统,缺点是维护比较困难。为了提高系统的可靠性和可维护性,讨论了电动伺服系统在零航速减摇鳍上的应用,建立了永磁同步电机传动系统的CARIMA模型,在此基础上采用广义预测控制算法对传统电动伺服系统进行改进。为了改善零航速减摇鳍在满负荷状态时的动态性能,在基本广义预测控制中引入了对输入和输出的约束。仿真结果表明,广义预测控制器能够改善伺服系统的动态性能,提高零航速减摇鳍的减摇效果。
     在有航速减摇时,减摇鳍随船体一起运动,伺服系统只是把鳍转到某一特定角度,鳍上的升力是由船舶航行时鳍和水流的相互作用产生的,它间接利用了船舶主机的能量。在零航速减摇时,对抗横摇所消耗的能量完全由减摇鳍的伺服系统提供,但是伺服系统的功率一般比主机小得多,导致在浪级较高的情况下减摇效果不理想。为了在保证减摇效果的前提下,尽可能减少系统能量消耗,对内环的减摇鳍伺服系统和外环的船舶横摇控制器两个方面进行优化。在伺服系统方面,应用极小值理论对基于能量指标的最优运动规律进行研究,以确定采用何种驱动方式才能提高升力与能量消耗的比值。理论分析的结果表明,采用合适的驱动方式能够以较小的能量产生最大的升力,并且可以避免反向升力带来的不利影响。在船舶横摇控制器方面,根据海浪的频谱特性对系统进行扩展,在此基础上采用随机最优控制理论得到了基于二次型性能指标的最优控制规律。为了找到能量消耗和减摇效果的最佳匹配点,提出了性能指标加权阵的参数自调整准则,并采用遗传算法对不同情况下加权阵的对角线参数进行了优化。结果表明,正确选择加权矩阵参数可以使性能指标取得极小值,实现能量指标最优。
Ship swaying motions are inevitable for a storm-tossed ship.Among these motions,roll motion is the most prominent and affecting.Fin stabilizers are the most successful and most widely used active equipments for roll reduction.90 percent of roll motion can be eliminated by using fin stabilizers.Traditional fin stabilizer can reduce roll motion remarkably when the ship is sailing at high speed. If the ship is sailing at low or zero speed,traditional fin stabilizer cannot work. Among existing equipments,only the effectiveness of U-type tanks is not affected by the speed of ship.But the volume of tanks is usually too large.U-type tanks can work well when its resonance frequency is close to that of ship.If the resonance frequency doesn't match,the roll motion of ship might be strengthened. In order to solve these problems,the concept of zero speed fin stabilizer is brought forward.
     The dissertation is based on project supported by national science foundation of China:research on lift theory of ship bionic roll stabilization at zero speed(50 575048).
     The development of fin stabilizer at zero speed is summarized at first,then the key technology to develop fin stabilizer at zero speed is confirmed.The principle of fin stabilizer at zero speed is analyzed,and the structure and work mode of fin stabilizer with single wing and double wings are compared.
     Lift model is the foundation to study fin stabilizer at zero speed.A primary lift model is set up based on hydrodynamics.The principle to produce and change the forces on fin stabilizer is studied analytically,and the lift characteristic of fin stabilizer with single wing is analyzed based on this model.The simulation results indicate that fin stabilizer at zero speed is a load with large inertia,so its servo system must have excellent performance.The lift and torque model of Weis-Fogh mechanism are acquired based on potential theory,but only the open process of Weis-Fogh mechanism is analyzed in this model.In order to solve this problem,a practical lift model of close process is set up based on numerical analysis.The open and close character of lift and torque at different speed is simulated in Matlab.The concept of rotary fin stabilizer at zero speed is brought forward to overcome the disadvantage of existing single wing fin stabilizer at zero speed.The simulation results indicate that the performance of fin stabilizer at zero speed can be enhanced remarkably by this design.Fin stabilizer at zero speed works in non-steady flow.Only some primary lift models can be gained based on academic analysis.So these lift models must be corrected by the data of experiments. Because the flow field of fin stabilizer at zero speed is much different from that of traditional fin stabilizer,the scheme of hydrodynamic experiment must be studied deeply.A scheme is brought forward based on the analysis of flow field around fin stabilizer at zero speed.Some parameters of experiment is confirmed by similarity theory.The accuracy of data is guaranteed by these analysis.
     Traditional fin stabilizer is driven by electro-hydraulic servo system which is hard to maintain.Application of electro-servo system on fin stabilizer at zero speed is discussed to enhance the reliability of control system.Driving motor is selected based on load characteristic of fin stabilizer at zero speed.Due to the complicated working environment and load characteristic of fin stabilizer at zero speed,the CARIMA(Controlled Auto Regressive Integrated Moving Average) model of permanent magnet synchronous motor is established to realize generalized predictive control.The input and output constrains of electro-servo system are analyzed to improve the full load performance.The simulation results indicate that generalized predictive controller can improve the dynamic performance of servo system and enhance roll reduction ability of fin stabilizer at zero speed.
     When the ship is sailing,fin stabilizers move at the same speed.The task of servo system is to turn fin stabilizers to a certain angle.The lift is produced by interaction between fin stabilizer and water,and the energy comes from the engine of ship.When the ship is anchored,the energy for roll reduction is completely provided by servo system.The power of servo system is usually much lower than that of engine,so existing fin stabilizer at zero speed cannot work well when the intensity of ocean wave is very high.In order to reduce the power consumption when the effectiveness of roll reduction is ensured,both servo system and roll controller are optimized.For servo system,the optimal movement rule based on energy performance index is discussed with minimum principle.The method to drive is ensured to increase the value between lift and energy consumption.The theoretic analysis indicate that maximum lift can be gained by proper drive method with minimum energy.The disadvantage of opposite lift for roll reduction can also eliminated.For roll controller,frequency spectrum of random ocean wave is analyzed and random optimal controller with quadratic performance index is designed based on the extended state equations.Performance index weight matrices are optimized with genetic algorithm to find the best matching point between energy consumption and effect of roll reduction.To enhance the robustness of controller,random optimal control in different sea levels is realized by introducing parameter online adjusting rules for weight matrices.The simulation results indicate that expected effect of roll reduction can be acquired with least energy when weight matrices are fixed with external disturbance.
引文
[1]金鸿章,姚绪梁.船舶控制原理.哈尔滨:哈尔滨工程大学出版社,2001
    [2]金鸿章,李国斌.船舶特种装置控制系统.北京:国防工业出版社,1995
    [3]许叙遥.船舶减摇技术的若干研究.哈尔滨工程大学硕士学位论文.2004
    [4]Bass D W.Roll Stabilization for Small Fishing Vessels Using Paravanes and Anti-rolling Tanks.Marine Technology.Vol.35,Uo.2,1998(4):74-84P
    [5]樊社军.可控被动式减摇水舱的理论与设计.上海交通大学硕士论文.1990
    [6]寺尾裕等.新型被动可控式减摇水舱的系统模拟和海上试验.关西造船协会志.1993(219):75-88页
    [7]陶尧森等.减摇水舱的研究与进展.中国造船增刊-船舶耐波性专辑,1991:313-323页
    [8]赖志昌.U型减摇水舱及试验摇摆台实验研究.哈尔滨工程大学博士学位论文,2002
    [9]J.Ooms.The use of roll stabilizer fins at zero speed.Quantum Controls BV,Nuth,Holland.2002
    [10]R.P.Dallinga.Roll stabilization at anchor:Hydrodynamic aspects of the comparison of anti-roll tanks and fins.Project 2002,Amsterdam.2002.
    [11]H.M.van Wieringen.Design considerations on at anchor stabilizing system.Project 2002,Amsterdam.2002.
    [12]R.P.Dallinga.Roll stabilization of motor yachts:use of fin stabilizers in anchored conditions.Project 1999,Amsterdam.1999.
    [13]陈放.鳍水动力应用及鳍和水舱综合减摇系统研究.哈尔滨工程大学硕士学位论文.2005
    [14]http://www.naiad.com.2006.
    [15]Qi Zhigang,Jin Hongzhang,Wang Yu.Research on ship roll stabilization at zero speed.SICE-ICASE International Joint Conference.2006(10):3920-3923P
    [16]綦志刚.减摇鳍在零航速下升力的研究及仿真.哈尔滨工程大学硕士学位论文,2005
    [17]綦志刚.船舶零航速减摇鳍升力机理及系统模型研究.哈尔滨工程大学博士学位论文,2008
    [18]王宇.船舶零航速仿生减摇鳍控制控制机理研究.哈尔滨工程大学博士学位论文,2008
    [19]金鸿章,罗延明,綦志刚,杨洲城.基于Weis-Fogh机构的零航速减摇鳍升力特性研究.哈尔滨工程大学学报.2007(7):762-767页
    [20]金鸿章,王宇,綦志刚,李冬松.船舶零航速减摇鳍升力仿真研究.兵工学报.2008(4):415-419页
    [21]Jin Hongzhang,Qi Zhigang,He Jie.Research on a method to reduce ship roll at zero speed.Singapore:2006 9th International conference on Control,Automation,Robotics and Vision.2006:1812-1815P
    [22]Jin Hongzhang,Wang Yu,Qi Zhigang.Study on lift generation of Weis-Fogh flapped fin stabilizer at zero speed.Korea,Busan:SICE-ICASE International Joint Conference.2006(10):1521-1524P
    [23]王宇,金鸿章,綦志刚.船舶零航速Weis-Fogh减摇鳍升力仿真研究.海军工程大学学报.2007(3):21-25页
    [24]王宇,金鸿章,綦志刚.船舶零航速减摇鳍升力测量研究.传感器与微系统.2007(1):11-14页
    [25]金鸿章,綦志刚,罗延明,巩晋.基于Weis-Fogh机构的零航速减摇鳍升力模型的研究.系统仿真学报.2007(19):4079-4081页
    [26]罗延明.零航速减摇鳍及其电动伺服系统研究.哈尔滨工程大学博士学位论文.2007
    [27]王华羽.NJ系列减摇鳍技术手册.哈尔滨:哈尔滨工程大学出版社,1997
    [28]Mark Armstrong,Maria Sotoj.Quantum marine engineering introduces extendable fin stabilizers -XT~(?)fin for superyachts.Project 2006,Florida.2006.
    [29]Weis-Fogh,T.Quik estimates of flight f ibness in hovering animals including novel mechanism for lift production.Exp Biol.1973(59):169-230P
    [30]章社生,王献孚,吴秀恒.Weis-Fogh机构流体力学.北京:国防工业出版社,2002
    [31]王献孚.船用翼理论.北京:国防工业出版社,1998
    [32]Lightill,M J.The Weis-Fogh Mechanism of Lift Generation.Fluid Mech.1973(60):1-17P
    [33]Bandyopadhyay P R.Low speed maneuvering hydrodynamics of fish and small underwater vehicls.Jour of Fluids Engineering.1997(1):136-144P
    [34]Ellington C P,Van der Berg,Willmott C,A P,Thomas A L R.Leading-edge vorticses in insect flight,Nature.1996(3):626-630P
    [35]Maxworthy T.Experiments on the Weis-Fogh Mechanism of Lift Generation by Insects in hovering Flight.Dynamics of the Fling,J Fluid Mech.1979(93):47-63P
    [36]Zhang Shesheng,Wang Xianfu.A numerical model of the Weis-Fogh mechanism with aseparation vortex.Jour of Hydro.1994(4):97-102P
    [37]章社生,吴秀恒,王献孚.叶栅型Weis-Fogh翼振动推进装置研究.武汉交通科技大学学报.1996(4)
    [38]章社生,吴秀恒,王献孚.叶栅复合Weis-Fogh翼推进装置及应用研究.中国造船.1998:42-54页
    [39]Tsutahara M,Kimura T,Ro k.Ship's propulsion mechanism of Two-Stage Weis-Fogh type.ASME Jour of Fluid Engi.1994(2):278-286P
    [40]Tsutahara M,Kimura T.An application of the Weis-Fogh Mchaninsm to Ship Propulsion.Journal of Fluid Engineering.1987(2):107-113P
    [41]苏玉民,黄胜,庞永杰,徐玉如,吴强.仿鱼尾潜器推进系统的水动力分析.海洋工程,2002(2):54-59页
    [42]俞经虎,竺长安,朱家祥,钟小强,程刚,陈宏,张屹.仿生机器鱼尾鳍的动力学研究.系统仿真学报,2005(4):947-953页
    [43]张晓庆,王志东,张振山.二维摆动水翼仿生推进水动力性能研究.水动力学研究与进展,2006(5):632-639页
    [44]刘贵春.多仿生机器鱼协调控制的研究和设计.北方工业大学硕士学位论文.2007
    [45]刘贵春.仿生机器鱼巡游和机动的运动机理研究.中国科学技术大学博士学位论文.2006
    [46]蒋小勤,杜德锋,周骏.行波推进仿生机器鱼.海军工程大学学报,2007(10):1-5页
    [47]王田苗,张丽,黄毓瑜,梁建宏.仿生机器鱼艏向摆动动力学仿真及分析.计算机仿真,2006(2):133-136页
    [48]J.W.戴莱,D.R.F.哈里曼.流体动力学.北京:人民教育出版社,1981
    [49]张玉华,邱之振.单叶片推进器及其运动特性.机械工程学报,2006(3):193-196页
    [50]王基盛,杨庆山.流体环境中结构附加质量的计算.北方交通大学学报,2003(1):40-43页
    [51]王献孚,熊鳌魁.高等流体力学.武汉:华中科技大学出版社,2003
    [52]王树新,李晓平,王延辉,朱光文.水下滑翔器的运动建模与分析.海洋技术,2005(1):5-9页
    [53]吴介之,马晖扬,周明德.涡动力学引论.北京:高等教育出版社,1993
    [54]赵攀峰,刘春阳,祝隆伟,陈小燕,杨基明.二维平板翼拍翼运动的涡流场显示.中国科学技术大学学报,2005(4):441-446页
    [55]倪汉根,陈霞.平面旋涡(中心型奇点)水利特性的探讨.水利学报,1998(11):50-56页
    [56]夏国泽.船舶流体力学.武汉:华中科技大学出版社,2003
    [57]景思睿,张鸣远.流体力学.西安:西安交通大学出版社,2001
    [58]章社生,吴秀恒,王献孚.复合Weis-Fogh翼振动机构流体动力.第十届全国水动力学会议论文.1996
    [59]朱仁庆,杨松林,杨大明.实验流体力学.北京:国防工业出版社,2005
    [60]韩春玲,王修贵,时述风.水工模型试验中的相似定律.中国水运,2006(10):67-70页
    [61]江守一郎等.模型实验的理论和应用.北京:科学出版社,1984
    [62]沈赤兵,陆政林.相似理论在层板式喷注器试验研究中的应用.推进技术,1995(2):58-62页
    [63]高永卫.实验流体力学基础.西安:西北工业大学出版社,2002
    [64]彭跃林.微小扑翼飞行器机翼及机构模型的设计与实验研究.西北工业大学硕士学位论文.2003
    [65]周希章,周全.如何正确选用电动机.北京:机械工业出版社,2004
    [66]杨兴瑶.电动机调速的原理及系统.北京:水利电力出版社,1995
    [67]何希才,姜余祥.电动机控制电路应用实例.北京:中国电力出版社,2005
    [68]黄立培.电动机控制.北京:清华大学出版社,2003
    [69]王宏,于泳,徐殿国.永磁同步电动机位置伺服系统.中国电机工程学报,2004(7):151-155页
    [70]王晓远,宋鹏,田亮,等.基于DSP的盘式无铁心永磁同步电动机调速系统.中国电机工程学报,2006(9):138-142页
    [71]陈荣.永磁同步电机伺服系统研究.南京:南京航空航天大学博士学位论文,2004
    [72]金鸿章,谷云彪,汪滨琦.减摇鳍变参数PID控制器的设计.船舶工程.1994(4):55-59页
    [73]金鸿章.减摇鳍PID调节器参数优化及其仿真.船工科技.1984(3):24-27页
    [74]金鸿章.减摇鳍参数最优控制器及其设计.中国造船.1992(4):30-33页
    [75]叶瑰昀,罗耀华,金鸿章.减摇鳍模糊参数自整定PID控制器设计及仿真研究.船舶工程.2002(3):39-42页
    [76]金鸿章,王科俊等编著.智能技术在船舶减摇鳍系统中的应用.第一版. 北京:国防工业出版社,2003
    [77]孙凯,许镇琳,盖廓,等.基于自抗扰控制器的永磁同步电动机位置伺服系统.中国电机工程学报,2007(8):43-46页
    [78]张昌凡,王耀南,何静.永磁同步伺服电机的变结构智能控制.中国电机工程学报,2007(4):13-17页
    [79]周扬忠,胡育文,田蕉.永磁同步电机控制系统中变比例系数转矩调节器设计研究.中国电机工程学报,2004(5):204-208页
    [80]王江,王静,费向阳.永磁同步电机非线性PI速度控制.中国电机工程学报,2005(4):125-130页
    [81]Skoczowski S,Domek S,Pietrusewicz K,et al.A method for improving the robustness of PID control.IEEE Transactions on Industrial Electronics,2005(3):1669-1676
    [82]王伟.广义预测控制理论及其应用.北京:科学出版社,1998
    [83]Pedro Rodriguez,Didier Dumur.Generalized predictive control robustification under frequency and time-domain constraints.IEEE Transactions on Control System Technology.2005(4):577-587
    [84]Sorin Olaru,Pedro Rodriguez Ayerbe.Robustification of explicit predictive control laws.IEEE Conference on Control and Design,USA,2006,12:4556-4561
    [85]Liu Fang,Liu Xiaohua.Predictive control of non-minimum phase motor with backlash in an earth station antenna.2006 Chinese Control Conference,Harbin,2006
    [86]张建民,王科俊.永磁同步电机的模糊混沌神经网络建模.中国电机工程学报,2007(2):7-10页
    [87]林雷,任华彬,工洪瑞.基于径向基函数神经网络的机器人滑模控制.控制工程,2007(3):224-226页
    [88]郭绪猛,刘景林,徐建德.无刷直流电机神经网络自校正控制研究.测控技术,2007(3):55-57页
    [89]唐建平,廖勇,姚骏.变参数PI与神经网络控制的风电系统仿真.计算机仿真,2008(3):251-254页
    [90]薛金林,张为公,龚宗洋.基于强化学习神经网络的车速跟踪控制.测控技术,2007(7):36-38页
    [91]巫庆辉,邵诚.基于递归型小波神经网络的感应电动机伺服驱动系统自适应控制.机械工程学报,2005(2):71-76页
    [92]郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流伺服系统.北京:中国电力出版社,2006.
    [93]陈书锦,李华德,马保柱,等.电动汽车驱动系统广义预测控制.电机与控制学报,2005(10):110-114页
    [94]Du Huajiang.Multivariable predictive control of a TMP plant.Columbia:University of British Columbia,1998
    [95]李国勇.智能控制及其Matlab实现.北京:电子工业出版社,2005
    [96]胡寿松,王执铨,胡维礼.最优控制理论与系统.北京:科学出版社,2005
    [97]唐慧妍.船舶横向运动受扰估计、建模及LQG控制研究.哈尔滨工程大学博士学位论文.2006
    [98]李强,赵伟.MATLAB数据处理与应用.北京:国防工业出版社,2001
    [99]陈炳和.随机信号处理.北京:国防工业出版社,1996
    [100][美]J.S.贝达特,A.G.皮尔索.相关分析和谱分析的工程应用.北京:国防工业出版社,1983
    [101]陈无畏,王妍,王启瑞等.汽车电动助力转向系统的自适应LQG控制.机械工程学报,2005(12):167-172页
    [102]陈虹丽,赵希人,叶葵,彭秀艳.船舶减纵摇控制的LQG方法研究.哈尔滨工程大学学报,2004(4):407-411页
    [103]尹中凤.基于参数摄动的船舶横向LQG控制性能的统计研究.哈尔滨工程大学硕士学位论文.2006
    [104]方明霞,冯奇,马星.磁悬浮列车系统的随机最优控制.力学季刊,2003(2):174-178页
    [105]王琛,王仕成.基于遗传算法的PID参数整定及仿真.计算机仿真,2005(10):110-114页
    [106]谢勤岚,陈红.基于遗传算法的PID控制器优化设计.光学与光电技术,2003(3):37-40页
    [107]陈向阳,苗广祥.基于自适应遗传算法的PID参数优化仿真研究.自动化与仪表,2005(1):30-32页
    [108]王顺晃,舒迪前.智能控制系统及其应用.北京:机械工业出版社,2005
    [109]黎钧琪,石国桢.遗传算法交叉率与变异率的研究.武汉理工大学学报(交通科学与工程版),2003(1):97-99页
    [110]李培志,樊丁.基于实数编码的改进遗传算法研究.宇航计测技术,2008(2):54-57页
    [111]张文修,梁怡.遗传算法的数学基础.西安:西安交通大学出版社,2000
    [112]郭书杰,梁旭,赵敏来.基于改进遗传算法的旅行商问题的求解.大连交通大学学报,2008(4):64-66页
    [113]张海鹏,姚绪梁,金鸿章.升力反馈减摇鳍及其鲁棒控制器的仿真研究.自动化技术与应用,2003(9):15-18页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700