用户名: 密码: 验证码:
三种对虾游泳能力及其游泳生理的比较实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以中国明对虾(Fenneropenaeus chinensis)、凡纳滨对虾(Litopenaeus vannamei)和日本囊对虾(Marsupenaeus japonicus)为研究对象,研究了其临界游速、弹跳速度、游泳耐久性、游泳疲劳后的生理反应及水温、盐度、体长对其临界游速的影响。研究结果丰富了对虾行为生态学研究的内涵,为对虾渔具渔法及增殖放流技术的改良提供了参考依据。主要研究结果如下:
     1.凡纳滨对虾(Litopenaeus vannamei)的临界游速和弹跳速度及运动疲劳后的生理反应
     在水温24.8±0.3℃条件下,测定了体长6.87±0.42 cm,体质量3.34±0.59 g凡纳滨对虾(Litopenaeus vannamei)的临界游速和弹跳速度,分析了其运动疲劳后的生理反应。结果表明,凡纳滨对虾游泳足的摆动频率(f,Hz)随流速(v,cm s-1)的增加而加快,二者呈线性函数关系(f = 0.0496v +4.2995,R2 =0.96,P <0.01)。其平均临界游速为35.67±0.62 cm s-1(5.02±0.09 BL s-1),平均弹跳速度为106.51±6.08 cm s-1(15.74±0.96 BL s-1)。运动疲劳后,凡纳滨对虾的血糖和血浆乳酸含量均显著升高。分析认为,血浆乳酸含量显著升高是凡纳滨对虾运动疲劳最主要的原因之一。研究结果为评估凡纳滨对虾的游泳爆发力和运动能量的转换机制提供了基础数据。
     2.日本囊对虾(Marsupenaeus japonicus)的临界游速和弹跳速度及运动疲劳后的生理反应
     在水温25-26℃条件下,测定了体长9.92±0.60 cm,体质量10.18±1.89 g日本囊对虾(Marsupenaeus japonicus)的临界游速和弹跳速度,分析了其运动疲劳后的生理反应。结果表明,日本囊对虾的临界游速为32.87±0.53 cm s-1(3.30±0.08 BL s-1),弹跳速度为151.49±6.92 cm s-1(15.38±0.65 BL s-1)。日本囊对虾游泳足的摆动频率(f,Hz)随游泳速度(v,cm s-1)的增加而加快,二者呈线性函数关系(f = 0.0773v + 2.608,R2 = 0.94,P < 0.01)。运动疲劳后,日本囊对虾肌糖原和肝糖原含量均显著降低,而血浆乳酸含量显著升高。弹跳疲劳后,其血糖和血浆乳酸含量均显著高于游泳疲劳后。分析认为,血浆乳酸含量显著升高是日本囊对虾运动疲劳的最主要原因。研究结果为评估日本囊对虾的游泳爆发力和运动能量的转换机制提供了基础数据。
     3.中国明对虾(Fenneropenaeus Chinensis)的临界游速和弹跳速度及运动疲劳后的生理反应
     在水温24.8±0.4℃条件下,测定了体长13.15±0.88 cm,体质量23.96±5.11 g中国明对虾(Fenneropenaeus Chinensis)的临界游速和弹跳速度,分析了其运动疲劳后的生理反应。结果表明,中国明对虾的游泳足的摆动频率(f, Hz)随流速(v, cm s-1)的增加而加快,二者呈线性函数关系(f = 0.0194v + 3.757,R2 = 0.99,P < 0.01)。其平均临界游速为30.42±0.91cm s-1(2.31±0.08 BL s-1),平均弹跳速度为109.83±4.99 cm s-1(8.46±0.38 BL s-1)。运动疲劳后,中国明对虾的肝糖原浓度显著降低,游泳疲劳后血糖浓度显著降低,弹跳疲劳后,血浆乳酸浓度显著升高。分析认为,血浆乳酸浓度显著升高是中国明对虾弹跳疲劳的最主要原因。研究结果为评估中国明对虾的游泳爆发力和运动能量的转换机制提供了基础数据。
     4.凡纳滨对虾(Litopenaeus vannamei)的可持续游泳时间及游泳疲劳后的生理反应
     在水温24.8±0.3℃条件下,利用垂直循环回流水槽测定了体长6.87±0.42 cm,体质量3.34±0.59 g凡纳滨对虾(Litopenaeus vannamei)在5个流速(26.7,31.0,34.6,38.6和40.8 cm s-1)下的可持续游泳时间,分析了其游泳疲劳后的生理反应。结果表明,凡纳滨对虾的可持续游泳时间(t,s)随流速(v,cm s-1)的增加而减少,二者呈对数函数关系(t = -14112Ln(v)+52460,R2 =0.99,P < 0.01)。凡纳滨对虾的游泳能力指数SAI(Swimming Ability Index)为:SAI =∫72000 vdt = 16.49 cm。游泳疲劳后,凡纳滨对虾的血糖和血浆乳酸含量均显著升高。分析认为,血浆乳酸含量显著升高是凡纳滨对虾游泳疲劳最主要的原因之一。研究结果为评估凡纳滨对虾的游泳耐久力以及运动能量的转换机制提供了基础数据。
     5.日本囊对虾(Marsupenaeus japonicus)的可持续游泳时间及游泳疲劳后的生理反应
     在水温25.7±0.7℃条件下,利用垂直循环回流水槽测定了体长10.25±0.74 cm,体质量11.04±2.43 g日本囊对虾(Marsupenaeus japonicus)在5个流速(23.0,26.7,31.0,34.6和38.6 cm s-1)下的可持续游泳时间,分析了其游泳疲劳后的生理反应。结果表明,日本囊对虾的可持续游泳时间(t,s)随流速(v,cm s-1)的增加而减少,二者呈对数函数关系(t = -6881Ln(v)+26090,R2 = 0.97,P < 0.01)。日本囊对虾的游泳能力指数SAI(Swimming Ability Index)为:SAI =∫72000 vdt = 28.84 cm。日本囊对虾游泳至疲劳期间,其血糖代谢率(Mpg,μmol ml-1 s-1)和游泳足肌糖原代谢率(Mmg,mg g-1 s-1)均随流速(v,cm s-1)的增加而上升,且与流速均呈指数函数关系(Mpg = 3E-06e0.140v,R2 = 0.98,P < 0.01;Mmg = 4E-06e0.137v,R2 = 0.95,P < 0.01)。此外,游泳疲劳导致日本囊对虾血糖和肝糖原含量显著降低(P < 0.05)。分析认为,日本囊对虾在游泳过程中消耗了血糖和游泳足肌糖原作为能量物质。研究结果为了解日本囊对虾的游泳耐久力以及运动能量的转换机制提供了基础数据。
     6.水温、盐度、体长和饥饿对凡纳滨对虾(Litopenaeus vannamei)临界游速的影响
     利用垂直循环水槽测定了凡纳滨对虾(Litopenaeus vannamei)在不同水温(17、20、25和29℃)、盐度(20、25、30、35和40)、体长(5.5、6.6、7.3、9.4和10.0 cm)和饥饿(1、4和8 d)条件下的临界游速(Ucrit)。结果表明,水温、盐度、体长和饥饿对凡纳滨对虾的临界游速影响显著(P < 0.01)。凡纳滨对虾的临界游速(Ucirt,cm s-1)和相对临界游速(Ucrit’,BL s-1)均随水温(t,℃)的升高而增加,其与水温呈线性关系(Ucirt = 1.5916t + 0.8892,R2 = 0.9992,P < 0.01;Ucrit’= 0.1524t + 0.2676,R2 = 0.9998,P < 0.01);随盐度(s)升高均先升高后降低,其与盐度呈多项式关系(Ucirt = -0.0171s2 + 1.2371s +20.497,R2 = 0.7667,P=0.234;Ucrit’= -0.0027s2 + 0.1824s +1.236,R2 = 0.7405,P=0.262);均随饥饿天数(d,d)的增加而降低,其与饥饿天数呈多项式关系(Ucirt = -0.1262d2 - 0.0395d + 40.979,R2 = 1;Ucrit’= -0.0159d2 + 0.0242d + 4.0709,R2 = 1)。凡纳滨对虾的临界游速随体长(l,cm)的增加而增加,其与体长呈多项式关系(Ucirt = -0.6233l2 + 12.302l - 20.264,R2 = 0.9942,P < 0.01);相对临界游速随体长的增加而降低,其与体长呈多项式关系(Ucrit’= -0.0514l2 + 0.5351l + 3.8132,R2 = 0.9862,P < 0.05)。实验证明,水温、盐度、体长和饥饿状态均显著影响凡纳滨对虾的临界游速,在水温29℃、盐度36.17、体长9.87 cm和非饥饿等适宜条件下,凡纳滨对虾的临界游速最大。
     7.水温、盐度和体长对日本囊对虾(Marsupenaeus japonicus)临界游速的影响
     利用垂直循环水槽测定了日本囊对虾(Marsupenaeus japonicus)在不同水温(17、20、25、和28℃)、盐度(20、25、30、35和40)、体长(6.80、7.82、9.51、10.48 cm)条件下的临界游速(Ucrit)。结果表明,水温、盐度、体长对日本囊对虾的临界游速影响显著(P < 0.01)。日本囊对虾的临界游速(Ucirt,cm s-1)和相对临界游速(Ucrit’,BL s-1)随水温(t,℃)升高均先升高后降低,其与水温呈多项式关系(Ucirt = -0.1753t2 + 8.4444t - 66.521,R2 = 0.98和Ucrit’= -0.0275t2 + 1.3073t - 10.737,R2 = 0.97),随盐度(s)升高均先升高后降低,其与盐度呈多项式关系(Ucirt = -0.0632s2 + 3.9363s - 24.963,R2 = 0.83和Ucrit’= -0.0064s2 + 0.403s - 1.4971,R2 = 0.79)。日本囊对虾的临界游速随体长的增加先升高后降低,其与体长呈多项式关系(Ucirt = -1.2089l2 + 20.156l -47.335,R2 = 0.9196),相对临界游速随体长的增加而降低,其与体长呈多项式关系(Ucrit’= -0.0852l2 +0.9218l + 2.6517,R2 = 0.9895)。实验证明,水温、盐度和体长均显著影响日本囊对虾的临界游速,在水温24.09℃、盐度31.14和体长8.34 cm等适宜条件下,日本囊对虾的临界游速最大。
     8.三种对虾游泳能力的比较及其应用
     根据游泳能力的测定结果,论文的最后一章对三种对虾的游泳能力进行了比较分析,同时探讨了对虾游泳能力的相关研究成果在渔具渔法及增殖放流等方面的应用,并提出了今后研究的重点。分析认为,三种对虾游泳能力的差异与其体型、游泳足相对质量、行为生态习性等密切相关。本研究结果可做为选择拖网的拖速,评估拖网的捕获区域及入网率的重要参数。还可为对虾增殖放流体长、地点、标志方法的选择提供参考依据。本论文参照鱼类游泳速度的测定方法测定分析了三种对虾的游泳能力,做为该领域今后的研究重点应聚焦于:(1)对虾在自然环境中游泳能力的评价;(2)对虾游泳的水动力学研究;(3)影响对虾游泳能力的内外部因素;(4)游泳强度、游泳时间等对对虾生理生化指标的影响;(5)对虾游泳能力的测定及计算方法的再评价等。
The critical swimming speed, tail-flip speed, swimming endurance, the physiological response after swimming fatigue and the effects of temperature, salinity and body length on the critical swimming speed of Chinese shrimp, Fenneropenaeus chinensis, whiteleg shrimp, Litopenaeus vannamei, and kuruma shrimp, Marsupenaeus japonicus were studied. Results could be helpful in evaluating the behaviour, ecological processes and improving capture and stock enhancement of penaeid shrimp. The primary results were as follows:
     1. Critical swimming speed, tail-flip speed and physiological response to exercise fatigue in Litopenaeus vannamei
     Critical swimming speed and tail-flip speed of Litopenaeus vannamei (6.87±0.42 cm,body length, 3.34±0.59 g, body mass) were determined at 24.8±0.3℃. The metabolite concentrations in hemolymph were determined before exercise and immediately after exercise fatigue to evaluate physiological effect of exercise in L. vannamei. Pleopods beat frequency of L. vannamei increased as swimming speed increased. The relationship between pleopods beat frequency (f, Hz) and swimming speed (v, cm s-1) could be described by linear model as: f = 0.0496v +4.2995, R2 = 0.96 (P < 0.01). The average critical swimming speed of L. vannamei was found to be 35.67±0.62 cm s-1 (5.02±0.09 BL s-1) and the average tail-flip speed was found to be 106.51±6.08 cm s-1 (15.74±0.96 BL s-1). The plasma glucose and lactate concentrations of L. vannamei increased significantly after exercise fatigue. The exercise fatigue of L. vannamei might be due to the accumulation of lactate in the hemolymph. Results could be helpful in evaluating the burst swimming and the mechanism of energy transform in L. vannamei.
     2. Critical swimming speed, tail-flip speed and physiological response to exercise fatigue in kuruma shrimp, Marsupenaeus japonicus
     Critical swimming speed (Ucrit) and tail-flip speed of kuruma shrimp, Marsupenaeus japonicus (9.92±0.60 cm, body length, 10.18±1.89 g, body mass) were determined at 25-26℃. Metabolite concentrations in hemolymph, pleopods and abdominal muscles, and hepatopancreas were measured before exercise and immediately after exercise fatigue to evaluate physiological effect of exercise in M. japonicus. Ucrit and tail-flip speed of M. japonicus were found to be 32.87±0.53 cm s-1 (3.30±0.08 BL s-1) and 151.49±6.92 cm s-1 (15.38±0.65 BL s-1), respectively. Pleopods beat frequency of M. japonicus increased as swimming speed increased from 23.0 to 38.6 cm s-1. The relationship between pleopods beat frequency (f, Hz) and swimming speed (v, cm s-1) could be described by linear model as: f = 0.0773v + 2.608, R2 = 0.94 (P < 0.01). Exercise to fatigue led to severe loss of glycogen concentrations of hepatopancreas and muscle in M. japonicus, whereas the plasma lactate concentration increased significantly. The plasma glucose and lactate concentrations of M. japonicus after tail-flip fatigue were significantly higher than that after swimming fatigue. The results in the present study indicated that exercise fatigue of M. japonicus might be due to the accumulation of lactate in the hemolymph. Results could be helpful in evaluating the burst swimming and the mechanism of energy transform in M. japonicus.
     3. Critical swimming speed, tail-flip speed and physiological response to exercise fatigue in Fenneropenaeus Chinensis
     Critical swimming speed and tail-flip speed of Fenneropenaeus Chinensis (13.15±0.88 cm,body length, 23.96±5.11 g, body mass) were determined at 24.8±0.4℃. The metabolite concentrations in hemolymph, hepatopancreas and muscle were determined before exercise and immediately after exercise fatigue to evaluate physiological effect of exercise in F. Chinensis. Pleopods beat frequency of F. Chinensis increased as swimming speed increased. The relationship between pleopods beat frequency (f, Hz) and swimming speed (v, cm s-1) could be described by linear model as: f = 0.0194v + 3.757,R2 = 0.99 (P < 0.01). The average critical swimming speed of F. Chinensis was found to be 30.42±0.91cm s-1 (2.31±0.08 BL s-1)and the average tail-flip speed was found to be 109.83±4.99 cm s-1 ( 8.46±0.38 BL s-1). The hepatopancreas glycogen concentration of F. Chinensis decreased significantly after exercise fatigue. The plasma glucose concentration decreased significantly after swimming fatigue and the plasma lactate concentration increased significantly after tail-flip fatigue. The tail-flip fatigue of F. Chinensis might be due to the accumulation of lactate in the hemolymph. Results could be helpful in evaluating the burst swimming and the mechanism of energy transform in F. Chinensis.
     4. Swimming endurance and physiological response to swimming fatigue in Litopenaeus vannamei
     The swimming endurance at five swimming speeds (26.7, 31.0, 34.6, 38.6 and 40.8 cm s-1) of Litopenaeus vannamei (6.87±0.42 cm, body length, 3.34±0.59 g, body mass) were determined at 24.8±0.3℃. The metabolite concentrations in hemolymph, hepatopancreas and pleopods muscle were determined before swimming and immediately after swimming fatigue to evaluate physiological effect of swimming in L. vannamei. Swimming endurance of L. vannamei decreased as swimming speed increased. The relationship between swimming endurance (t, s) and swimming speed (v, cm s-1) could be described by the logarithmic model as: t = -14112Ln (v) + 52460, R2 = 0.99 (P < 0.01). The swimming ability index (SAI), defined as SAI =∫72000 vdt was found to be 16.49 cm. The plasma glucose and lactate concentrations of L. vannamei increased significantly after swimming fatigue. The swimming fatigue of L. vannamei might be due to the accumulation of lactate in the hemolymph. Results could be helpful in evaluating the swimming endurance and the mechanism of energy transform in L. vannamei.
     5. Swimming endurance and physiological response to swimming fatigue in kuruma shrimp, Marsupenaeus japonicus
     The swimming endurance of kuruma shrimp, Marsupenaeus japonicus (10.25±0.74 cm, body length, 11.04±2.43 g, body mass) at five swimming speeds (23.0, 26.7, 31.0, 34.6 and 38.6 cm s-1) was determined in a circulating tank at 25.7±0.7℃. The metabolite concentrations in hemolymph, hepatopancreas and pleopods muscle were determined before exercise and immediately after exercise fatigue to evaluate physiological effect of swimming. Swimming endurance of M. japonicus decreased as swimming speed increased. The relationship between swimming endurance (t, s) and swimming speed (v, cm s-1) could be described by the logarithmic model as: t = -6881Ln (v) + 26090, R2 = 0.97 (P < 0.01). The swimming ability index (SAI), defined as SAI =∫72000 vdt was found to be 28.84 cm. Metabolic rates of plasma glucose (Mpg,μmol ml-1 s-1) and pleopods muscle glycogen (Mmg, mg g-1 s-1) during swimming to fatigue increased as swimming speed increased. The relationship between Mpg or Mmg and swimming speed (v, cm s-1) could be described by the exponential model as: Mpg = 3E-06e0.140v, R2 = 0.98 (P<0.01) or Mmg = 4E-06e0.137v, R2 = 0.95 (P<0.01), respectively. Swimming to fatigue led to severe loss of plasma glucose and hepatopancreas glycogen concentrations (P<0.05). Plasma glucose and pleopods muscle glycogen might be used as energy source during swimming. Results could be helpful in evaluating the swimming endurance and the mechanism of energy transform in M. japonicus.
     6. The effects of temperature, salinity, body length and starvation on the critical swimming speed of whiteleg shrimp Litopenaeus vannamei
     The critical swimming speed of whiteleg shrimp Litopenaeus vannamei was determined in a flume tank under different temperature (17, 20, 25, 29℃), salinity (20, 25, 30, 35, 40), body length (5.5, 6.6, 7.3, 9.4, 10.0 cm) and starvation days (1, 4, 8 d). Temperature, salinity, body length and starvation days had significant effects on the critical swimming speed of L. vannamei. The critical swimming speed (Ucirt, cm s-1) and relative critical swimming speed (Ucrit’, BL s-1) of L. vannamei increased as temperature (t,℃) increased. The relationship between temperature and Ucirt or Ucrit’ could be described by linear model (Ucirt = 1.5916t + 0.8892,R2 = 0.9992,P<0.01; Ucrit’= 0.1524t + 0.2676,R2 = 0.9998,P<0.01). Ucirt and Ucrit’first increased and then decreased as salinity (s) increased. The relationship between salinity and Ucirt; Ucrit’could be described by quadratic model (Ucirt = -0.0171s2 + 1.2371s +20.497,R2 = 0.7667,P=0.234; Ucrit’= -0.0027s2 + 0.1824s +1.236, R2 = 0.7405,P=0.262). Ucirt and Ucrit’decreased as starvation days (d, d) increased. The relationship between starvation days and Ucirt or Ucrit’could be described by quadratic model (Ucirt = -0.1262d2 - 0.0395d + 40.979,R2 = 1;Ucrit’= -0.0159d2 + 0.0242d + 4.0709,R2 = 1). Ucirt increased and Ucrit’decreased as body length (l,cm) increased. The relationship between body length and Ucirt or Ucrit’could be described by quadratic model (Ucirt = -0.6233l2 + 12.302l - 20.264,R2 = 0.9942,P<0.01; Ucrit’= -0.0514l2 + 0.5351l + 3.8132,R2 = 0.9862,P<0.05). The maximum critical swimming speed of L. vannamei was achieved at temperature 29℃, salinity 36.17 and body length 9.87 cm, respectively.
     7. The effects of temperature, salinity and body length on the critical swimming speed of kuruma shrimp, Marsupenaeus japonicus
     The critical swimming speed of kuruma shrimp, Marsupenaeus japonicus was determined in a flume tank under different temperature (17, 20, 25, 28℃), salinity (20, 25, 30, 35, 40) and body length (6.80、7.82、9.51、10.48 cm). Temperature, salinity and body length had significant effects on the critical swimming speed of M. japonicus. The critical swimming speed (Ucirt, cm s-1) and relative critical swimming speed (Ucrit’, BL s-1) of M. japonicus first increased and then decreased as temperature (t,℃) increased. The relationship between temperature and Ucirt or Ucrit’could be described by quadratic model (Ucirt = -0.1753t2 + 8.4444t - 66.521,R2 = 0.98和Ucrit’= -0.0275t2 + 1.3073t - 10.737,R2 = 0.97). Ucirt and Ucrit’first increased and then decreased as salinity (s) increased. The relationship between salinity and Ucirt; Ucrit’could be described by quadratic model (Ucirt = -0.0632s2 + 3.9363s - 24.963,R2 = 0.83和Ucrit’= -0.0064s2 + 0.403s - 1.4971,R2 = 0.79). Ucirt and Ucrit’decreased as starvation days (d, d) increased. The relationship between starvation days and Ucirt or Ucrit’could be described by quadratic model (Ucirt = -0.1262d2 - 0.0395d + 40.979,R2 = 1;Ucrit’= -0.0159d2 + 0.0242d + 4.0709,R2 = 1). Ucirt increased and Ucrit’decreased as body length (l,cm) increased. The relationship between body length and Ucirt or Ucrit’could be described by quadratic model (Ucirt = -1.2089l2 + 20.156l -47.335,R2 = 0.9196; Ucrit’= -0.0852l2 +0.9218l + 2.6517,R2 = 0.9895). The maximum critical swimming speed of M. japonicus was achieved at temperature 24.09℃, salinity 31.14 and body length 8.34 cm, respectively.
     8. The compare of swimming ability of three penaeid shrimp and its application
     According to the results of swimming ability, the compare of swimming ability of three penaeid shrimp was made in this chapter. The application and the research suggestion of shrimp swimming ability were also discussed. The difference of swimming ability of the three penaeid shrimp might be due to the relative pleopods mass, behaviour and habit. Results of shrimp swimming ability could be used in selecting towing speed, evaluating the capture area and rate of trawling. Results could be also used in selecting size, habitat and marking method in shrimp stock enhancement. According to the measurements of fish swimming speed, the swimming ability of three penaeid shrimp was determined. Studies should focus on: (1) the swimming ability of shrimp in natural habitat; (2) the hydrodynamics of swimming shrimp; (3) the internal and external influence factors of shrimp swimming ability; (4) the effects of swimming intensity and endurance on the swimming physiology and biochemistry of shrimp; (5) the measurements and calculation of shrimp swimming ability.
引文
[1]官之梅,刘文郁,陈佩熏. 1981.几种淡水经济鱼类游泳能力的研究.鱼类学论文集(第一辑), 133-140
    [2]何大仁,周仕杰,刘理东,蔡厚才,郑微云. 1985.几种幼鱼视觉运动反应研究.水生生物学集刊, 9 (4): 365-373
    [3]蒋小勤,杜德锋,周骏. 2007.行波推进仿生机器鱼.海军工程大学学报, 19 (5): 1-5
    [4]井爱国,张秀梅,李文涛. 2005.花鲈、许氏平鲉游泳能力的初步实验研究.中国海洋大学学报, 35 (6): 973-976
    [5]李德亮,傅萃长,胡炜,钟山,汪亚平,朱作言. 2007.快速生长导致转“全鱼”生长激素基因鲤鱼临界游泳速度的降低.科学通报, 52 (8): 923-926
    [6]林龙信,沈林成,谢海斌. 2008.单柔性长鳍波动仿生推进器的设计与实现.兵工学报, 29 (3): 364-368
    [7]殷名称, Blaxter J H S. 1989.海洋鱼类仔鱼在早期发育和饥饿期的巡游速度.海洋与湖沼, 20 (1): 2-9
    [8]张怡,曹振东,付世建. 2007.延迟首次投喂对南方鲇(Silurus meridionalis Chen)仔鱼身体含能量、体长及游泳能力的影响.生态学报, 27 (3): 1161-1167
    [9]周仕杰,何大仁,吴清天. 1993.几种幼鱼曲线游泳能力的比较研究.海洋与湖沼, 24 (6): 621-626
    [10] Andraso, G., M., 1997. A comparison of startle response in two morphs of the brook stickleback (Culaea inconstans): Further evidence for a trade-off between defensive morphology and swimming ability. Evol. Ecol. 11, 83–90.
    [11] Arrhenius, F., Benneheij, B. J.A.M., Rudstam L. G., Boisclair D., 2000. Can stationary bottom split-beam hydroacoustics be used to measure fish swimming speed in situ? Fish. Res. 45, 31-41.
    [12] Asaeda, T., Priyadarshana, T., Manatunge, J., 2001. Effects of satiation on feeding and swimming behaviour of planktivores. Hydrobiologia. 443, 147–157.
    [13] Bainbridge, R. 1960. Speed and stamina in three fish. J. Exp. Biol., 37: 129-153
    [14] Bainbridge, R., and Brown, R. H. J. 1958. An apparatus for the study of the locomotion of fish. J. Exp. Biol., 35: 134-137
    [15] Beamish, F. W. H. 1978. Swimming capacity. In: Hoar W S, Randall J D (Eds.). Fish physiology, vol. 7. Academic Press Inc, New York,: 101-187
    [16] Beaumont, M. W., Butler, P. J., Taylor, E. W., 1995. Exposure of brown trout, Salmo trutta, to sub-lethal copper concentrations in soft acidic water and its effect upon sustained swimmingperformance. Aquatic Toxicology. 33, 45-63.
    [17] Beddow, T. A., McKinley, R. S., 1998. Effects of thermal environment on Electromyographical signals obtained from Atlantic salmon (Salmo salar L.) during forced swimming. Hydrobiologia. 371/372, 225–232.
    [18] Behrens, J. W., Pr?bel, K., Steffensen, J. F., 2006. Swimming energetics of the Barents Sea capelin (Mallotus villosus) during the spawning migration period. J. Exp. Mar. Biol. Ecol. 331, 208– 216.
    [19] Behrens, J. W., Steffensen, J. F., 2007. The effect of hypoxia on behavioural and physiological aspects of lesser sandeel, Ammodytes tobianus (Linnaeus, 1785). Mar. Biol. 150, 1365-1377.
    [20] Bell, W. H., and Terhune, L. D. B. 1970. Water tunnel design for fisheries research. Tech. Rep. Fish. Res. Bd. Can., 195: 1-169
    [21] Berg, A. J., Sigholt, T., Seland, A., Danielsberg, A., 1996. Effect of stocking density, oxygen level, light regime and swimming velocity on the incidence of sexual maturation in adult Atlantic salmon (Salmo salar). Aquaculture. 143, 43-59.
    [22] Bernatchez, L., Dodson, J. J. 1985. Influence of temperature and current speed on the swimming capacity of lakewhitefish (Coregonus clupeaformis) and cisco (C. artedii). Can. J. Fish. Aquat. Sci., 42: 1522-1529
    [23] Boeck, G. D., van der Ven K., Hattink, J., Blust, R., 2006. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquatic Toxicology. 80, 92–100.
    [24] Booth, R. K., McKinley, R. S., ?kland, F., Sisak, M. M., 1997. In situ measurement of swimming performance of wild Atlantic salmon (Salmo salar) using radio transmitted electromyogram signals. Aquat. Living Resour. 10, 213-219.
    [25] Boucher, E., Petrell, R. J., 1999. Swimming speed and morphological features of mixed populations of early maturing and non-maturing fish. Aquacult. Eng.. 20, 21–35.
    [26] Breen, M., Dyson, J., O’Neill, F. G., Jones, E., Haigh, M., 2004. Swimming endurance of haddock (Melanogrammus aeglefinus L.) at prolonged and sustained swimming speeds, and its role in their capture by towed fishing gears. ICES J. Mar. Sci. 61, 1071-1079.
    [27] Brett, J. R. 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Bd. Can., 21: 1183-1226
    [28] Brill, R. W., Block, B. A., Boggs, C. H., Bigelow, K. A., Freund, E. V., Marcinek, D. J., 1999. Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands recorded using Ultrasonic telemetry: implications for the physiological ecology of pelagic fishes. Mar. Biol. 133, 395-408.
    [29] Bruce, B. D., Stevens, J. D., Malcolm, H., 2006. Movements and swimming behaviour of white sharks (Carcharodon carcharias) in Australian waters. Mar Biol. 150, 161–172.
    [30] Carlsona, J. K., Parsonsa, G. R., 2001. The Effects of Hypoxia on Three Sympatric Shark Species: Physiological and Behavioral Responses. Env. Biol. Fish. 61, 427–433.
    [31] Cartamil, D. P., Vaudo, J. J., Lowe, C. G., Wetherbee, B. M., Holland, K. N., 2003. Diel movement patterns of the Hawaiian stingray, Dasyatis lata: implications for ecological interactions between sympatric elasmobranch species. Mar. Biol. 142, 841–847.
    [32] Chatelier, A., McKenzie, D. J., Claireaux, G., 2005. Effects of changes in water salinity upon exercise and cardiac performance in the European seabass (Dicentrarchus labrax). Mar. Biol. 147, 855–862.
    [33] Cheong, T. S., Kavvas, M. L., Anderson, E. K., 2006. Evaluation of Adult White Sturgeon Swimming Capabilities and Applications to fishway Design. Environ Biol Fish. 77, 197–208.
    [34] Cote, D., Ollerhead, L. M. N., Gregory, R. S., Scruton, D. A., McKinley, R. S., 2002. Activity patterns of juvenile Atlantic cod (Gadus morhua) in Buckley Cove, Newfoundland. Hydrobiologia. 483, 121–127.
    [35] Coughlin, D. J., Spiecker, A., Schiavi, J. M., 2004. Red muscle recruitment during steady swimming correlates with rostral–caudal patterns of power production in trout. Comp. Biochem. Physiol. A: Physiol. 137, 151–160.
    [36] Dauble, D. D., Moursund, R. A., Bleich, M. D., 2006. Swimming Behaviour of Juvenile Pacific Lamprey, Lampetra tridentata. Env. Biol. Fish. 75, 167–171.
    [37] Davison, W., 1997. The effects of exercise training on teleost fish, a review of recent literature. Comp. Biochem. Physiol. 117A, 67-75.
    [38] De Boeck, G., van der Ven, K., Hattink, J., and Blust, R. 2006. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquatic Toxicology, 80: 92-100
    [39] Drucker, E. G. 1996. The use of gait transition speed in comparative studies of fish locomotion. Am. Zool., 36: 555-566
    [40] Dunmall, K. M., Schreer, J. F., 2003. A comparison of the swimming and cardiac performance of farmed and wild Atlantic salmon, Salmo salar, before and after gamete stripping. Aquaculture. 220, 869–882.
    [41] Fisher, R., Bellwood, D. R., 2001. Effects of feeding on the sustained swimming abilities of late-stage larval Amphiprion melanopus. Coral Reef. 20:151-154.
    [42] Fisher, R., Bellwood, D. R., 2002. The influence of swimming speed on sustained swimming performance of late-stage reef fish larvae. Mar. Biol. 140, 801–807.
    [43] Fisher, R., Leis, J. M., Clark, D. L., Wilson, S. K., 2005. Critical swimming speeds of late-stage coral reef fish larvae: variation within species, among species and between locations. Mar. Biol. 147, 1201–1212.
    [44] Fisher, R., Wilson, S. K., 2004. Maximum sustainable swimming speeds of late-stage larvae of nine species of reef fishes. J. Exp. Mar. Biol. Ecol. 312, 171– 186.
    [45] Fry, E. J., and Hart, S. J. 1948. Cruising speed of goldfish in relation to water temperature. J. Fish. Res. Bd. Can., 7: 169-175
    [46] Fuiman, L. A., Davis, R. W., Williams, T. M., 2002. Behavior of midwater fishes under the Antarctic ice: observations by a predator. Mar. Biol. 140, 815–822.
    [47] Fulton, C. J., Bellwood, D. R., 2004. Wave exposure, swimming performance, and the structure of tropical and temperate reef fish assemblages. Mar. Biol. 144, 429–437.
    [48] Fulton, C. J., Bellwood, D. R., Wainwright, P. C., 2001. The relationship between swimming ability and habitat use in wrasses (Labridae). Mar. Biol. 139, 25-33.
    [49] Green, B. S., Fisher, R., 2004. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J. Exp. Mar. Biol. Ecol. 299, 115– 132.
    [50] Guderley, H., 2004. Review Locomotor performance and muscle metabolic capacities: impact of temperature and energetic status. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 139, 371–382.
    [51] Hammer, C., 1995. Review Fatigue and exercise tests with fish. Comp. Biochem. Physiol. A: Physiol. 112, 1-20.
    [52] Hammill, E., Wilson, R. S., Johnston, I. A., 2004. Sustained swimming performance and muscle structure are altered by thermal acclimation in male mosquitofish. J. Therm. Biol. 29, 251–257.
    [53] He, P., 2003. Swimming behaviour of winter flounder (Pleuronectes americanus) on natural fishing grounds as observed by an underwater video camera. Fish. Res. 60, 507–514.
    [54] He, P. G. 1991. Swimming endurance of the Atlantic cod, Gadus morhua L., at low temperatures. Fish. Res., 12 (1): 65-73
    [55] Herbert ,N. A., Steffensen, J. F., 2005. The response of Atlantic cod, Gadus morhua, to progressive hypoxia: fish swimming speed and physiological stress. Mar. Biol. 147, 1403–1412.
    [56] Herbert, N. A., Steffensen, J. F., 2006. Hypoxia increases the behavioural activity of schooling herring: a response to physiological stress or respiratory distress? Mar. Biol. 149, 1217–1225.
    [57] Herbing, I. H., Gallager, S. M., 2000. Foraging behavior in early Atlantic cod larvae (Gadus morhua) feeding on a protozoan (Balanion sp.) and a copepod nauplius (Pseudodiaptomus sp.). Mar. Biol. 136, 591-602.
    [58] Hinch, S. G., Standen, E. M., Healey, M. C., Farrell, A. P., 2002. Swimming patterns and behaviour of upriver-migrating adult pink (Oncorhynchus gorbuscha) and sockeye (O. nerka) salmon as assessed by EMG telemetry in the Fraser River, British Columbia, Canada. Hydrobiologia. 483, 147–160.
    [59] Hindell, J. S., Jenkins, G. P., Moran, S. M., Keough, M. J., 2003. Swimming ability and behaviour of post-larvae of a temperate marine fish re-entrained in the pelagic environment. Oecologia. 135:158–166.
    [60] Hogan, J. D., Mora, C., 2005. Experimental analysis of the contribution of swimming and drifting to the displacement of reef fish larvae. Mar. Biol. 147, 1213–1220.
    [61] Holland, K. N., Wetherbee, B. M., Lowe, C. G., Meyer, C. G., 1999. Movements of tiger sharks (Galeocerdo cuvier) in coastal Hawaiian waters. Mar. Biol. 134, 665-673.
    [62] Hopkins, W. A., Snodgrass, J. W., Staub, B. P., Jackson, B. P., Congdon, J. D., 2003. Altered swimming performance of a benthic fish (Erimyzon sucetta) exposed to contaminated sediments. Arch. Environ. Contam. Toxicol. 44, 383–389.
    [63] Hsu, H. H., Joung, S. J., Liao, Y. Y., and Liu, K. M. 2007. Satellite tracking of juvenile whale sharks, Rhincodon typus, in the Northwestern Pacific. Fish. Res., 84: 25–31
    [64] Israeli-Weinstein, D., Kimmel, E., 1998. Behavioral response of carp (Cyprinus carpio) to ammonia stress. Aquaculture. 165, 81–93.
    [65] Jain, K. E., Hamilton, J. C., Farrell, A. P., 1997. Use of a Ramp Velocity Test to Measure Critical Swimming Speed in Rainbow Trout (Onchorhynchus mykiss). Comp. Biochem. Physiol. 117A, 441-444.
    [66] Joaquim, N., Wagner, G. N., Gamperl, A. K., 2004. Cardiac function and critical swimming speed of the winter flounder (Pleuronectes americanus) at two temperatures. Comp. Biochem. Physiol. A: Physiol. 138, 277-285.
    [67] Jones, D. R. 1971. The effect of hypoxia and anaemia on the swimming performance of rainbow trout (Sulmo gairdneri). J. Exp. Biol., 55: 541-551
    [68] Kawabe, R., Naito Y., Sato, K., Miyashita, K., Yamashita, N., 2004. Direct measurement of the swimming speed, tailbeat, and body angle of Japanese flounder (Paralichthys olivaceus). ICES J. Mar. Sci. 61, 1080-1087.
    [69] Kelly, J. T., Klimleya, A. P., and Crockerb, C. E. 2007. Movements of green sturgeon, Acipenser medirostris, in the San Francisco Bay estuary. California. Environ. Biol. Fish., 79: 281-295
    [70] Kieffer, J. D. 2000. Limits to exhaustive exercise in fish. Comp. Biochem. Physiol. A: Physiol., 126: 161-179.
    [71] Kiessling, A., Pickova, J., Eales, J. G., Dosanjh, B., Higgs, D., 2005. Age, ration level, and exercise affect the fatty acid profile of chinook salmon (Oncorhynchus tshawytscha) muscle differently. Aquaculture. 243, 345– 356.
    [72] Klimley, A. P., Beavers, S. C., Curtis, T. H., Jorgensena, S. J., 2002. Movements and Swimming Behavior of Three Species of Sharks in La Jolla Canyon, California. Env. Biol. Fish. 63, 117–135.
    [73] Kokita, T., Mizota, T., 2002. Male secondary sexual traits are hydrodynamic devices for enhancing swimming performance in a monogamous filefish Paramonacanthus japonicus. J. Ethol. 20, 35–42.
    [74] Kolok, A. S., Sharkey, D., 1997. Effect of freshwater acclimation on the swimming performance and plasma osmolarity of the euryhaline gulf killifish. Trans. Am. Fish. Soc. 126, 866–870.
    [75] Kolok, A. S., 1991. Photoperiod alters the critical swimming speed of juvenile largemouth bass, Micropterus salmoides, acclimated to cold water. Copeia, 4, 1085–1090.
    [76] Kolok, A. S., 1999. Interindividual variation in the prolonged locomotor performance of ectothermic vertebrates: a comparison of fish and herpetofaunal methodologies and a brief review of the recent fish literature. Can. J. Fish. Aquat. Sci. 56, 700–710.
    [77] Korsmeyer, K. E., Dewar, H., Lai, N. C., Graham, J. B., 1996. Tuna aerobic swimming performance: Physiological and environmental limits based on oxygen supply and demand. Comp. Biochem. Physiol. 113B, 45-56.
    [78] Landmana, M. J., Heuvela, M. R., Finleya, M., Bannonb, H. J., Ling N., 2006. Combined effects of pulp and paper effluent, dehydroabietic acid, and hypoxia on swimming performance, metabolism, and hematology of rainbow trout. Ecotoxicol. Environ. Safety. 65, 314–322.
    [79] Lefrancois, C., Domenici, P., 2006. Locomotor kinematics and behaviour in the escape response of European sea bass, Dicentrarchus labrax L., exposed to hypoxia. Mar. Biol. 149, 969–977.
    [80] Leis, J. M., Carson-Ewart, B. M., 1999. In situ swimming and settlement behaviour of larvae of an Indo-Pacific coral-reef fish, the coral trout Plectropomus leopardus (Pisces: Serranidae). Mar. Biol. 134, 51-64.
    [81] Leis, J. M., Clark, D. L., 2005. Feeding greatly enhances swimming endurance of settlement-stage reef-fish larvae of damselfishes (Pomacentridae). Ichthyol Res. 52, 185–188.
    [82] Leis, J. M., Hay, A. C., Trnski, T., 2006. In situ ontogeny of behaviour in pelagic larvae of three temperate, marine, demersal fishes. Mar. Biol. 148, 655–669.
    [83] Linnik, V. D., Malinin, L. K., Wozniewski,M., Sych, R., Dembowski, P., 1998. Movements of adult sea trout Salmo trutta L. in the tailrace of a low-head dam at Wloclawec hydroelectric station on the Vistula River, Poland. Hydrobiologia. 371/372, 335–337.
    [84] L?kkeborg, S., Fern? A., 1999. Diel activity pattern and food search behaviour in cod, Gadus morhua. Environ. Biol. Fish. 54, 345-353.
    [85] L?kkeborg, S., Fern?, A., J?rgensen, T., 2002. Effect of position-fixing interval on estimated swimming speed and movement pattern of fish tracked with a stationary positioning system. Hydrobiologia, 483, 259–264.
    [86] Lowe, C. G., Goldman, K. J. 2001. Thermal and bioenergetics of elasmobranchs: bridging the gap. Environ. Biol. Fish., 60: 251–266
    [87] Marcinek, D. J., Blackwell, S. B., Dewar, H., Freund, E. V., Farwell, C., Dau, D., Seitz, A. C., Block, B. A., 2001. Depth and muscle temperature of Pacific bluefin tuna examined with acoustic and pop-up satellite archival tags. Mar. Biol. 138, 869-885.
    [88] Marsac, F., Cayré, P., 1998. Telemetry applied to behaviour analysis of yellowfin tuna (Thunnus albacares, Bonnaterre, 1788) movements in a network of fish aggregating devices. Hydrobiologia. 371/372, 155–171.
    [89] Mazura, M. M., Beauchampa, D. A., 2003. A comparison of Visual Prey Detection Among Species of Piscivorous Salmonids: Effects of Light and Low Turbidities. Env. Biol. Fish. 67, 397–405.
    [90] McKenzie, D. J., Cataldi,, E., Taylor E. W., Cataudella, S., Bronzi, P., 2001. Effects of acclimation to brackish water on tolerance of salinity challenge by young-of-the-year Adriatic sturgeon (Acipenser naccarii). Can. J. Fish. Aquat. Sci. 58, 1113–1120.
    [91] McKenzie, D. J., Higgs, D. A., Dosanjh, B. S., Deacon, G., Randall, D. J., 1998. Dietary fatty acid composition influences swimming performance in Atlantic salmon (Salmo salar) in seawater. Fish. Physiol. Biochem. 19, 111–122.
    [92] McKenzie D. J., Shingles A., Taylor E. W., 2003. Review Sub-lethal plasma ammonia accumulation and the exercise performance of salmonids. Comp. Biochem. Physiol. A: Physiol. 135, 515–526.
    [93] McKenzie, D. J., Pedersen, P. B., and Jokumsen, A. 2007. Aspects of respiratory physiology and energetics in rainbow trout (Oncorhynchus mykiss) families with different size-at-age and condition factor. Aquaculture, 263 (1-4): 280-294
    [94] Milligan, C. L. 1996. Metabolic recovery from exhaustive exercise in rainbow trout. Comp. Biochem. Physiol. A: Physiol., 113: 51-60
    [95] ?zbilgin, H., Wardle, C. S., 2002. Effect of seasonal temperature changes on the escape behaviour of haddock, Melanogrammus aeglefinus, from the codend. Fish. Res. 58, 323–331.
    [96] Parsons, G. R., Carlson, J. K., 1998. Physiological and behavioral responses to hypoxia in the bonnethead shark, Sphyrna tiburo routine swimming and respiratory regulation. Fish. Physiol. Biochem. 19, 189–196.
    [97] Peck, M. A., Buckley, L. J., Bengtson, D. A., 2006. Effects of Temperature and Body Size on the Swimming speed of Larval and Juvenile Atlantic Cod (Gadus Morhua) Implications for Individual-based Modelling. Env. Biol. Fish. 75, 419–429.
    [98] Pepperell, J. G., Davis, T. L. O., 1999. Post-release behaviour of black marlin, Makaira indica, caught off the Great Barrier Reef with sportfishing gear. Mar. Biol. 135, 369-380.
    [99] Peterson, R. H., Harmon, P., 2001. Swimming ability of pre-feeding striped bass larvae. Aquacult. Int. 9, 361–366.
    [100] Petrell, R. J., Jones, R. E., 2000. Power requirement of swimming in chinook salmon and Atlantic salmon and implications for food conversion and growth performance. Aquacult. Eng.. 22, 225–239.
    [101] Petrell, R. J., Shi, X., Ward, R. K., Naiberg, A., Savage, C. R., 1997. Determining fishsize and swimming speed in cages and tanks using simple video techniques. Aquacult. Eng.. 16, 63-84.
    [102] Plaut, I., 2001. Critical swimming speed: its ecological relevance. Comp. Biochem. Physiol. A: Physiol. 131, 41-50.
    [103] Pon, L. B., Hinch, S. G., Wagner, G. N., Lotto, A. G., Cooke, S. J., 2006. Swimming performance and morphology of juvenile sockeye salmon, Oncorhynchus nerka comparison of inlet and outlet fry populations. Environ. Biol. Fish. 78, 257-269.
    [104] Priede, I. G. 1984. A basking shark (Cetorhinus maximus) tracked by satellite together with simultaneous remote sensing. Fish. Res., 2: 201-216
    [105] Priyadarshana, T., Asaeda, T., 2006. Swimming restricted foraging behavior of two zooplanktivorous fishes Pseudorasbora parva and Rasbora daniconius (Cyprinidae) in a simulated structured environment. Environ Biol Fish.
    [106] Priyadarshana, T., Asaeda, T., Manatunge, J., 2001. Foraging behaviour of planktivorous fish in artificial vegetation: the effects on swimming and feeding. Hydrobiologia. 442, 231–239.
    [107] Priyadarshana, T., Asaeda T., Manatunge, J., 2006. Hunger-induced foraging behavior of two cyprinid fish Pseudorasbora parva and Rasbora daniconius. Hydrobiologia. 568, 341–352.
    [108] Regnard, P. 1893. Sur un dispositif qui permet de mesurer la vitesse de translation d'un poisson se mouvant dans I'eau. Cr Seauc Soc Biol, Paris, Ser, 9(5): 81-83
    [109] Rodríguez, T. T., Agudo, J. P., Mosquera, L. P., Gonzalez, E. P., 2006. Evaluating vertical-slot fishway designs in terms of fish swimming capabilitie. Ecol. Eng. 27, 37–48.
    [110] Schaarschmidt, Th., Jürss, K., 2003. Locomotory capacity of Baltic Sea and freshwater populations of the threespine stickleback (Gasterosteus aculeatus). Comp. Biochem. Physiol. A: Physiol. 135, 411–424.
    [111] Schmidt, K., Staaks, G. B. O., Pflugmacher, S., Steinberg, C. E. W., 2005. Impact of PCB mixture (Aroclor 1254) and TBT and a mixture of both on swimming behavior, body growth and enzymatic biotransformation activities (GST) of young carp (Cyprinus carpio). Aquatic Toxicology. 71, 49–59.
    [112] Schrank, A. J., Webb, P. W., 1998. Do body and fin form affect the abilities of fish to stabilize swimming during maneuvers through vertical and horizontal tubes?. Env. Biol. Fish. 53, 365-371.
    [113] Sepulveda, C. A., Kohin, S., Chan, C., Vetter, R., Graham, J. B., 2004. Movement patterns, depth preferences, and stomach temperatures of free-swimming juvenile mako sharks, Isurus oxyrinchus, in the Southern California Bight. Mar. Biol. 145, 191–199.
    [114] Sims, D. W., 2000. Filter-feeding and cruising swimming speeds of basking sharks compared with optimal models: they filter-feed slower than predicted for their size. J. Exp. Mar. Biol. Ecol. 249, 65–76.
    [115] Smith, M. E., Fuiman, L. A., 2004. Behavioral performance of wild-caught and laboratory-reared red drum Sciaenops ocellatus (Linnaeus) larvae. J. Exp. Mar. Biol. Ecol. 302, 17-33.
    [116] Steinhausen, M. F., Steffensen, J. F., Andersen, N. G., 2005. Tail beat frequency as a predictor of swimming speed and oxygen consumption of saithe (Pollachius virens) and whiting (Merlangius merlangus) during forced swimming. Mar. Biol. 148, 197–204.
    [117] Stobutzki, I. C., 1998. Interspecific variation in sustained swimming ability of late pelagic stage reef fish from two families (Pomacentridae and Chaetodontidae). Coral Reef. 17, 111-119.
    [118] Stobutzki, I. C., Bellwood, D. R., 1994. An analysis of the sustained swimming abilities of pre- and post-settlement coral reef fishes. J. Exp. Mar. Biol. Ecol. 175, 275-286.
    [119] Stobutzki, I. C., Bellwood, D. R., 1997. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35-41.
    [120] Sundstr?m, L. F., Gruber, S. H., Clermont, S. M., Correia, J. P. S., Marignac, J. R. C. , Morrissey, J. F., Lowrance, C. R., Thomassen, L., Oliveira, M. T., 2001. Review of elasmobranch behavioral studies using ultrasonic telemetry with special reference to the lemon shark, Negaprion brevirostris, around Bimini Islands, Bahamas. Env. Biol. Fish. 60, 225–250.
    [121] Swadling, K. M., Ritz, D. A., Nicol, S., Osborn, J. E., Gurney, L. J., 2005. Respiration rate and cost of swimming for Antarctic krill, Euphausia superba, in large groups in the laboratory. Mar. Biol. 146, 1169–1175.
    [122] Tanaka, H., Takagi, Y., and Naito, Y. 2001. Swimming speeds and buoyancy compensation of migrating adult chum salmon, Oncorhynchus keta, revealed by speed-depth-acceleration data logger. J. Exp. Biol., 204: 3895-3904
    [123] Thorstad, E. B., Finstad, B., ?kland, F., McKinley, R. S., Booth, R K, 1997. Endurance of farmed and sea-ranched Atlantic salmon Salmo salar L. at spawning. Aquac. Res. 28, 635–640.
    [124] Todghama, A. E., Anderson, P. M., Wright, P. A., 2001. Effects of exercise on nitrogen excretion, carbamoyl phosphate synthetase III activity and related urea cycle enzymes in muscle and liver tissues of juvenile rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. A: Physiol. 129, 527-539.
    [125] Tolleya, S. G., Torresb, J. J., 2002. Energetics of Swimming in Juvenile Common Snook, Centropomus undecimalis. Env. Biol. Fish. 63, 427–433.
    [126] Tsukamoto, K., Kajihara, T., and Nishiwaki, M. 1975. Swimming ability of fish. Bull. Jpn. Soc. Sci. Fish., 41: 167-174
    [127] Uibleina, F., Loranceb, P., Latrouiteb, D., 2002. Variation in locomotion behaviour in northern cutthroat eel (Synaphobranchus kaupi) on the Bay of Biscay continental slope. Deep-Sea Res. Pt I-Ocean Res. 49, 1689–1703.
    [128] Utne-Palm, A. C., Stiansen, J. E., 2002. Effect of larval ontogeny, turbulence and light on prey attack rate and swimming activity in herring larvae. J. Exp. Mar. Biol. Ecol. 268, 147– 170.
    [129] Wagner, G. N., Balfry, S. K., Higgs, D. A., Lall, S. P., Farrell, A. P., 2004. Dietary fatty acid composition affects the repeat swimming performance of Atlantic salmon in seawater. Comp. Biochem. Physiol. A: Physiol. 137, 567–576.
    [130] Wainwright, P. C., D. R. Bellwood, M. W. Westneat, 2002. Ecomorphology of Locomotion in Labrid fishes. Env. Biol. Fish. 65, 47–62.
    [131] Warda, D. L., Schultzb, A. A., Matsonb, P. G., 2003. Differences in Swimming Ability and Behavior in Response to High Water Velocities among Native and Nonnative fishes. Env. Biol. Fish. 68, 87–92.
    [132] Wilson, R. S., 2005. Temperature influences the coercive mating and swimmingperformance of male eastern mosquitofish. Anim. Behav. . 70, 1387–1394.
    [133] Wilson, R. S., Franklin, C. E., Davison, W., Kraft, P., 2001. Stenotherms at sub-zero temperatures: thermal dependence of swimming performance in Antarctic fish. J. Comp. Physiol. B 171, 263-269.
    [134] Wilson, R. S., Kuchel, L. J., Franklin, C. E., Davison, W., 2002. Turning up the heat on subzero fish: thermal dependence of sustained swimming in an Antarctic notothenioid. J. Therm. Biol. 27, 381-386.
    [135] Winger, P. D., He, P., Walsh, S. J., 1999. Swimming endurance of American plaice (Hippoglossoides platessoides) and its role in fish capture. ICES J. Mar. Sci. 56, 252–265.
    [136] Winger, P. D., Walsh, S. J., He P., Brown J. A., 2004. Simulating trawl herding in flatfish the role of fish length in behaviour and swimming characteristics. ICES J. Mar. Sci. 61, 1179-1185.
    [137] Wolter, C., Arlinghaus, R., 2003. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Rev. Fish. Biol. Fisher. 13, 63–89.
    [138] Yanase, K., Eayrs, S., Arimoto, T., 2007. Influence of water temperature and fish length on the maximum swimming speed of sand flathead, Platycephalus bassensis Implications for trawl selectivity. Fish. Res. 84, 180-188.
    [139] Zamora, L., Moreno-Amich, R., 2002. Quantifying the activity and movement of perch in a temperate lake by integrating acoustic telemetry and a geographic information system. Hydrobiologia. 483,209–218.
    [140] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2006. Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol. A: Physiol. 145, 26–32.
    [1]井爱国,张秀梅,李文涛, 2005.花鲈、许氏平鲉游泳能力的初步实验研究.中国海洋大学学报, 35 (6): 973-976.
    [2]潘鲁青,金彩霞, 2008.甲壳动物血蓝蛋白研究进展.水产学报, 32 (3): 484-491.
    [3] Adamczewska, A. M., Morris, S., 1994. Exercise in the terrestrial Christmas Island red crab Gecarcoidea natalis. II. Energetics of locomotion. J. Exp. Biol., 188: 257-274.
    [4] Amornpiyakrit, T., Arimoto, T., 2008. Muscle physiology in escape response of kuruma shrimp. Am. Fish. Soc. Symp., 2: 1321-1334.
    [5] Arnott, S. A., Neil, D. M., Ansell A. D., 1998. Tail-flip mechanism and size-dependent kinematics of escape swimming in the brown shrimp Crangon Crangon. J. Exp. Biol., 201:1771-1784.
    [6] Baldwin, J., Gupta, A., Iglesias, X., 1999. Scaling of anaerobic energy metabolism during tail flipping behaviour in the freshwater crayfish, Cherax destructor. Mar. Freshwater Res., 50: 183-187.
    [7] Bergmann, M., Taylor, A. C., Geoffrey Moore, P., 2001. Physiological stress in decapod crustaceans (Munida rugosa and Liocarcinus depurator) discarded in the Clyde Nephrops fishery. J. Exp. Mar. Biol. Ecol., 259: 215-229.
    [8] Brauner, C. J., Iwama, G. K., Randall, D. J., 1994. The effect of short-duration seawater exposure on the swimming performance of wild and hatchery-reared juvenile coho salmon (Oncorhynchus kisutch) during smoltification. Can. J. Fisheries. Aquat. Sci., 51: 2188-2194.
    [9] Brett, J. R., 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Bd. Can., 21: 1183-1226.
    [10] Cuzon, G., Rosas, C., Gaxiola, G., Taboada, G., Van Wormhoudt, A., 2000. Utilization of carbohydrates by shrimp. In: Cruz-Suarez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Olvera-Novoa, M.A., Civera-Cerecedo, R. (Eds.), Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. Mérida, Yucatán.
    [11] Daniel, T. L., Meyh?fer, E., 1989. Size limits in escape locomotion of carridean shrimp. J. Exp. Biol, 143: 245-265.
    [12] De Boeck, G., van der Ven, K., Hattink, J., et al., 2006. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquat. Toxicol., 80: 92-100.
    [13] England, W. R., Baldwin, J., 1983. Anaerobic energy metabolism in the tail musculature of the Australian yabby Cherax destructor (Crustacea, Decapoda, Parastacidae): role of phosphagens and anaerobic glycolysis during escape behaviour. Physiol. Zool, 56: 614-622.
    [14] Farrell, A. P., Steffensen, J. F., 1987. An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming. Fish Physiol. and Biochem., 4: 73-79.
    [15] Field, R. H., Taylor, A. C., Neil, D. M., 1991. Factors affecting swimming ability and its recovery in the Norway lobster (Nephrops norvegicus). J. Mar. Biol. Assn. UK, 71: 707-742.
    [16] Gade, G., 1983. Effects of oxygen deprivation during anoxia and muscular work on the energy metabolism of the crayfish Orconectes limosus. Comp. Biochem. Physiol., 77 A: 495-502.
    [17] Gruschczyk, B., Kamp, G., 1990. The shift from glycogenolysis to glycogen resynthesis after escape swimming: studies on the abdominal muscle of the shrimp,Crangon crangon. J. Comp. Physiol., 159B: 753-760.
    [18] Guan, L., Snelgrove, P. V. R., Gamperl, A. K., 2008. Ontogenetic changes in the critical swimming speed of Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin) larvae and the role of temperature. J. Exp. Mar. Biol. Ecol., 360 (1): 31-38.
    [19] Harris, R. R., Andrews, M. B., 2005. Physiological changes in the Norway lobster Nephrops norvegicus (L.) escaping and discarded from commercial trawls on the West Coast of Scotland II. Disturbances in haemolymph respiratory gases, tissue metabolites and swimming performance after capture and during recovery. J. Exp. Mar. Biol. Ecol., 320: 195-210.
    [20] Head, G., Baldwin, J., 1986. Energy metabolism and the fate of lactate during recovery from exercise in the Australian freshwater crayfish Cherax destructor. Aust. J. Mar. Freshwater Res., 37: 641-646.
    [21] Landmana, M. J., Heuvela, M. R., Finleya, M., et al., 2006. Combined effects of pulp and paper effluent, dehydroabietic acid, and hypoxia on swimming performance, metabolism, and hematology of rainbow trout. Ecotoxicol. Environ. Safety, 65: 314-322.
    [22] Morris, S., Adamczewska, A. M., 2002. Utilisation of glycogen, ATP and arginine phosphate in exercise and recovery in terrestrial red crabs, Gecarcoidea natalis. Comp. Biochem. Physiol., 133A: 813-825.
    [23] Newland, P. L., Neil, D. M., Chapman, C. J., 1992. Escape swimming in the Norway Lobster. J. Crustacean Biol., 12: 342-353.
    [24] Plaut, I., 2000. Resting metabolic rate, critical swimming speed and routine activity of the euryhaline cyprinodontid, Aphanius Dispar, acclimated to wide range of salinities. Physiol. Biochem. Zool., 73 (5): 590-596.
    [25] Plaut, I., 2001. Critical swimming speed: its ecological relevance. Comp. Biochem. Physiol., 31A: 41-50.
    [26] Racotta, I. S., Palacios, E., 1998. Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in Penaeus vannamei. J. World Aquacult. Soc., 29: 351-356.
    [27] Solis-Ibarra, R., Rendon-Rodriguez, S., 1994. Laboratory observations on displacement speedof the white shrimp Penaeus vannamei (Crustacea: Decapoda). Mar. Ecol. Prog. Ser., 103: 309-310.
    [28] Stentiford, G. D., Neila, D. M., Atkinson, R. J. A., Bailey, N., 2000. An analysis of swimming performance in the Norway lobster, Nephrops norvegicus L. infected by a parasitic dinoflagellate of the genus Hematodinium. J. Exp. Mar. Biol. Ecol., 247: 169-181.
    [29] Thorpe, K. E., Taylor, A. C., Huntingford, F. A., 1995. How costly is fighting? Physiological effects of sustained exercise and fighting in swimming crabs, Necora pubes (L.) (Brachyura, Portunidae). Anim. Behav., 50: 1657-1666.
    [30] Vargas-Albores, F., Guzmán, M. A., Ochoa, J. L., 1993. An anticoagulant solution for haemolymph collection and prophenoloxidase studies of penaeid shrimp (Penaeus californiensis). Comp. Biochem. Physiol., 106A: 299-303.
    [31] Vermeer, G. K., 1987. Effects of air exposure on desiccation rate, haemolymph chemistry, and escape behaviour of the spiny lobster, Palinurus argus. Fish. Bull. US , 85: 45-51.
    [32] Verri, T., Mandal, A., Zilli, L., Bossa, D., Mandal, P.K., Ingrosso, L., et al., 2001. D-Glucose transport in decapod crustacean hepatopancreas. Comp. Biochem. Physiol., 130A: 585-606.
    [33] Yoganandhan, K., Thirupathi, S., Sahul Hameed, A. S., 2003. Biochemical, physiological and hematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus. Aquaculture, 221: 1-11.
    [34] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2006. Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 145A: 26-32.
    [35] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2007. The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 147A:64-69.
    [1]井爱国,张秀梅,李文涛, 2005.花鲈、许氏平鲉游泳能力的初步实验研究.中国海洋大学学报, 35 (6): 973-976.
    [2]潘鲁青,金彩霞, 2008.甲壳动物血蓝蛋白研究进展.水产学报, 32 (3): 484-491.
    [3] Adamczewska, A. M., Morris, S., 1994. Exercise in the terrestrial Christmas Island red crab Gecarcoidea natalis. II. Energetics of locomotion. J. Exp. Biol., 188: 257-274.
    [4] Amornpiyakrit, T., Arimoto, T., 2008. Muscle physiology in escape response of kuruma shrimp. Am. Fish. Soc. Symp., 2: 1321-1334.
    [5] Arnott, S. A., Neil, D. M., Ansell A. D., 1998. Tail-flip mechanism and size-dependent kinematics of escape swimming in the brown shrimp Crangon Crangon. J. Exp. Biol., 201:1771-1784.
    [6] Baldwin, J., Gupta, A., Iglesias, X., 1999. Scaling of anaerobic energy metabolism during tail flipping behaviour in the freshwater crayfish, Cherax destructor. Mar. Freshwater Res., 50: 183-187.
    [7] Bergmann, M., Taylor, A. C., Geoffrey Moore, P., 2001. Physiological stress in decapod crustaceans (Munida rugosa and Liocarcinus depurator) discarded in the Clyde Nephrops fishery. J. Exp. Mar. Biol. Ecol., 259: 215-229.
    [8] Brauner, C. J., Iwama, G. K., Randall, D. J., 1994. The effect of short-duration seawater exposure on the swimming performance of wild and hatchery-reared juvenile coho salmon (Oncorhynchus kisutch) during smoltification. Can. J. Fisheries. Aquat. Sci., 51: 2188-2194.
    [9] Brett, J. R., 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Bd. Can., 21: 1183-1226.
    [10] Cuzon, G., Rosas, C., Gaxiola, G., Taboada, G., Van Wormhoudt, A., 2000. Utilization of carbohydrates by shrimp. In: Cruz-Suarez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Olvera-Novoa, M.A., Civera-Cerecedo, R. (Eds.), Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. Mérida, Yucatán.
    [11] Daniel, T. L., Meyh?fer, E., 1989. Size limits in escape locomotion of carridean shrimp. J. Exp. Biol, 143: 245-265.
    [12] De Boeck, G., van der Ven, K., Hattink, J., et al., 2006. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquat. Toxicol., 80: 92-100.
    [13] England, W. R., Baldwin, J., 1983. Anaerobic energy metabolism in the tail musculature of the Australian yabby Cherax destructor (Crustacea, Decapoda, Parastacidae): role of phosphagens and anaerobic glycolysis during escape behaviour. Physiol. Zool, 56: 614-622.
    [14] Farrell, A. P., Steffensen, J. F., 1987. An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming. Fish Physiol. and Biochem., 4: 73-79.
    [15] Field, R. H., Taylor, A. C., Neil, D. M., 1991. Factors affecting swimming ability and its recovery in the Norway lobster (Nephrops norvegicus). J. Mar. Biol. Assn. UK, 71: 707-742.
    [16] Gade, G., 1983. Effects of oxygen deprivation during anoxia and muscular work on the energy metabolism of the crayfish Orconectes limosus. Comp. Biochem. Physiol., 77 A: 495-502.
    [17] Gruschczyk, B., Kamp, G., 1990. The shift from glycogenolysis to glycogen resynthesis after escape swimming: studies on the abdominal muscle of the shrimp,Crangon crangon. J. Comp. Physiol., 159B: 753-760.
    [18] Guan, L., Snelgrove, P. V. R., Gamperl, A. K., 2008. Ontogenetic changes in the critical swimming speed of Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin) larvae and the role of temperature. J. Exp. Mar. Biol. Ecol., 360 (1): 31-38.
    [19] Harris, R. R., Andrews, M. B., 2005. Physiological changes in the Norway lobster Nephrops norvegicus (L.) escaping and discarded from commercial trawls on the West Coast of Scotland II. Disturbances in haemolymph respiratory gases, tissue metabolites and swimming performance after capture and during recovery. J. Exp. Mar. Biol. Ecol., 320: 195-210.
    [20] Head, G., Baldwin, J., 1986. Energy metabolism and the fate of lactate during recovery from exercise in the Australian freshwater crayfish Cherax destructor. Aust. J. Mar. Freshwater Res., 37: 641-646.
    [21] Landmana, M. J., Heuvela, M. R., Finleya, M., et al., 2006. Combined effects of pulp and paper effluent, dehydroabietic acid, and hypoxia on swimming performance, metabolism, and hematology of rainbow trout. Ecotoxicol. Environ. Safety, 65: 314-322.
    [22] Morris, S., Adamczewska, A. M., 2002. Utilisation of glycogen, ATP and arginine phosphate in exercise and recovery in terrestrial red crabs, Gecarcoidea natalis. Comp. Biochem. Physiol., 133A: 813-825.
    [23] Newland, P. L., Neil, D. M., Chapman, C. J., 1992. Escape swimming in the Norway Lobster. J. Crustacean Biol., 12: 342-353.
    [24] Plaut, I., 2000. Resting metabolic rate, critical swimming speed and routine activity of the euryhaline cyprinodontid, Aphanius Dispar, acclimated to wide range of salinities. Physiol. Biochem. Zool., 73 (5): 590-596.
    [25] Plaut, I., 2001. Critical swimming speed: its ecological relevance. Comp. Biochem. Physiol., 31A: 41-50.
    [26] Racotta, I. S., Palacios, E., 1998. Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in Penaeus vannamei. J. World Aquacult. Soc., 29: 351-356.
    [27] Solis-Ibarra, R., Rendon-Rodriguez, S., 1994. Laboratory observations on displacement speed of the white shrimp Penaeus vannamei (Crustacea: Decapoda). Mar. Ecol. Prog. Ser., 103: 309-310.
    [28] Stentiford, G. D., Neila, D. M., Atkinson, R. J. A., Bailey, N., 2000. An analysis of swimming performance in the Norway lobster, Nephrops norvegicus L. infected by a parasitic dinoflagellate of the genus Hematodinium. J. Exp. Mar. Biol. Ecol., 247: 169-181.
    [29] Thorpe, K. E., Taylor, A. C., Huntingford, F. A., 1995. How costly is fighting? Physiological effects of sustained exercise and fighting in swimming crabs, Necora pubes (L.) (Brachyura, Portunidae). Anim. Behav., 50: 1657-1666.
    [30] Vargas-Albores, F., Guzmán, M. A., Ochoa, J. L., 1993. An anticoagulant solution for haemolymph collection and prophenoloxidase studies of penaeid shrimp (Penaeus californiensis). Comp. Biochem. Physiol., 106A: 299-303.
    [31] Vermeer, G. K., 1987. Effects of air exposure on desiccation rate, haemolymph chemistry, and escape behaviour of the spiny lobster, Palinurus argus. Fish. Bull. US , 85: 45-51.
    [32] Verri, T., Mandal, A., Zilli, L., Bossa, D., Mandal, P.K., Ingrosso, L., et al., 2001. D-Glucose transport in decapod crustacean hepatopancreas. Comp. Biochem. Physiol., 130A: 585-606.
    [33] Yoganandhan, K., Thirupathi, S., Sahul Hameed, A. S., 2003. Biochemical, physiological and hematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus. Aquaculture, 221: 1-11.
    [34] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2006. Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 145A: 26-32.
    [35] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2007. The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 147A:64-69.
    [1]井爱国,张秀梅,李文涛, 2005.花鲈、许氏平鲉游泳能力的初步实验研究.中国海洋大学学报, 35 (6): 973-976.
    [2]潘鲁青,金彩霞, 2008.甲壳动物血蓝蛋白研究进展.水产学报, 32 (3): 484-491.
    [3] Adamczewska, A. M., Morris, S., 1994. Exercise in the terrestrial Christmas Island red crab Gecarcoidea natalis. II. Energetics of locomotion. J. Exp. Biol., 188: 257-274.
    [4] Amornpiyakrit, T., Arimoto, T., 2008. Muscle physiology in escape response of kuruma shrimp. Am. Fish. Soc. Symp., 2: 1321-1334.
    [5] Arnott, S. A., Neil, D. M., Ansell A. D., 1998. Tail-flip mechanism and size-dependent kinematics of escape swimming in the brown shrimp Crangon Crangon. J. Exp. Biol., 201:1771-1784.
    [6] Baldwin, J., Gupta, A., Iglesias, X., 1999. Scaling of anaerobic energy metabolism during tail flipping behaviour in the freshwater crayfish, Cherax destructor. Mar. Freshwater Res., 50: 183-187.
    [7] Bergmann, M., Taylor, A. C., Geoffrey Moore, P., 2001. Physiological stress in decapod crustaceans (Munida rugosa and Liocarcinus depurator) discarded in the Clyde Nephrops fishery. J. Exp. Mar. Biol. Ecol., 259: 215-229.
    [8] Brauner, C. J., Iwama, G. K., Randall, D. J., 1994. The effect of short-duration seawater exposure on the swimming performance of wild and hatchery-reared juvenile coho salmon (Oncorhynchus kisutch) during smoltification. Can. J. Fisheries. Aquat. Sci., 51: 2188-2194.
    [9] Brett, J. R., 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Bd. Can., 21: 1183-1226.
    [10] Cuzon, G., Rosas, C., Gaxiola, G., Taboada, G., Van Wormhoudt, A., 2000. Utilization of carbohydrates by shrimp. In: Cruz-Suarez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Olvera-Novoa, M.A., Civera-Cerecedo, R. (Eds.), Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. Mérida, Yucatán.
    [11] Daniel, T. L., Meyh?fer, E., 1989. Size limits in escape locomotion of carridean shrimp. J. Exp. Biol, 143: 245-265.
    [12] De Boeck, G., van der Ven, K., Hattink, J., et al., 2006. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquat. Toxicol., 80: 92-100.
    [13] England, W. R., Baldwin, J., 1983. Anaerobic energy metabolism in the tail musculature of the Australian yabby Cherax destructor (Crustacea, Decapoda, Parastacidae): role of phosphagens and anaerobic glycolysis during escape behaviour. Physiol. Zool, 56: 614-622.
    [14] Farrell, A. P., Steffensen, J. F., 1987. An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming. Fish Physiol. and Biochem., 4: 73-79.
    [15] Field, R. H., Taylor, A. C., Neil, D. M., 1991. Factors affecting swimming ability and its recovery in the Norway lobster (Nephrops norvegicus). J. Mar. Biol. Assn. UK, 71: 707-742.
    [16] Gade, G., 1983. Effects of oxygen deprivation during anoxia and muscular work on the energy metabolism of the crayfish Orconectes limosus. Comp. Biochem. Physiol., 77 A: 495-502.
    [17] Gruschczyk, B., Kamp, G., 1990. The shift from glycogenolysis to glycogen resynthesis after escape swimming: studies on the abdominal muscle of the shrimp,Crangon crangon. J. Comp. Physiol., 159B: 753-760.
    [18] Guan, L., Snelgrove, P. V. R., Gamperl, A. K., 2008. Ontogenetic changes in the critical swimming speed of Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin) larvae and the role of temperature. J. Exp. Mar. Biol. Ecol., 360 (1): 31-38.
    [19] Harris, R. R., Andrews, M. B., 2005. Physiological changes in the Norway lobster Nephrops norvegicus (L.) escaping and discarded from commercial trawls on the West Coast of Scotland II. Disturbances in haemolymph respiratory gases, tissue metabolites and swimming performance after capture and during recovery. J. Exp. Mar. Biol. Ecol., 320: 195-210.
    [20] Head, G., Baldwin, J., 1986. Energy metabolism and the fate of lactate during recovery from exercise in the Australian freshwater crayfish Cherax destructor. Aust. J. Mar. Freshwater Res., 37: 641-646.
    [21] Landmana, M. J., Heuvela, M. R., Finleya, M., et al., 2006. Combined effects of pulp and paper effluent, dehydroabietic acid, and hypoxia on swimming performance, metabolism, and hematology of rainbow trout. Ecotoxicol. Environ. Safety, 65: 314-322.
    [22] Morris, S., Adamczewska, A. M., 2002. Utilisation of glycogen, ATP and arginine phosphate in exercise and recovery in terrestrial red crabs, Gecarcoidea natalis. Comp. Biochem. Physiol., 133A: 813-825.
    [23] Newland, P. L., Neil, D. M., Chapman, C. J., 1992. Escape swimming in the Norway Lobster. J. Crustacean Biol., 12: 342-353.
    [24] Plaut, I., 2000. Resting metabolic rate, critical swimming speed and routine activity of the euryhaline cyprinodontid, Aphanius Dispar, acclimated to wide range of salinities. Physiol. Biochem. Zool., 73 (5): 590-596.
    [25] Plaut, I., 2001. Critical swimming speed: its ecological relevance. Comp. Biochem. Physiol., 31A: 41-50.
    [26] Racotta, I. S., Palacios, E., 1998. Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in Penaeus vannamei. J. World Aquacult. Soc., 29: 351-356.
    [27] Solis-Ibarra, R., Rendon-Rodriguez, S., 1994. Laboratory observations on displacement speed of the white shrimp Penaeus vannamei (Crustacea: Decapoda). Mar. Ecol. Prog. Ser., 103: 309-310.
    [28] Stentiford, G. D., Neila, D. M., Atkinson, R. J. A., Bailey, N., 2000. An analysis of swimming performance in the Norway lobster, Nephrops norvegicus L. infected by a parasitic dinoflagellate of the genus Hematodinium. J. Exp. Mar. Biol. Ecol., 247: 169-181.
    [29] Thorpe, K. E., Taylor, A. C., Huntingford, F. A., 1995. How costly is fighting? Physiological effects of sustained exercise and fighting in swimming crabs, Necora pubes (L.) (Brachyura, Portunidae). Anim. Behav., 50: 1657-1666.
    [30] Vargas-Albores, F., Guzmán, M. A., Ochoa, J. L., 1993. An anticoagulant solution for haemolymphcollection and prophenoloxidase studies of penaeid shrimp (Penaeus californiensis). Comp. Biochem. Physiol., 106A: 299-303.
    [31] Vermeer, G. K., 1987. Effects of air exposure on desiccation rate, haemolymph chemistry, and escape behaviour of the spiny lobster, Palinurus argus. Fish. Bull. US , 85: 45-51.
    [32] Verri, T., Mandal, A., Zilli, L., Bossa, D., Mandal, P.K., Ingrosso, L., et al., 2001. D-Glucose transport in decapod crustacean hepatopancreas. Comp. Biochem. Physiol., 130A: 585-606.
    [33] Yoganandhan, K., Thirupathi, S., Sahul Hameed, A. S., 2003. Biochemical, physiological and hematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus. Aquaculture, 221: 1-11.
    [34] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2006. Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 145A: 26-32.
    [35] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2007. The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 147A:64-69.
    [1]井爱国,张秀梅,李文涛, 2005.花鲈、许氏平鲉游泳能力的初步实验研究.中国海洋大学学报, 35 (6): 973-976.
    [2]潘鲁青,金彩霞, 2008.甲壳动物血蓝蛋白研究进展.水产学报, 32 (3): 484-491.
    [3]周仕杰,何大仁,吴清天, 1993.几种幼鱼曲线游泳能力的比较研究.海洋与湖沼, 24 (6): 621-626.
    [4] Adamczewska, A. M., Morris, S., 1994. Exercise in the terrestrial Christmas Island red crab Gecarcoidea natalis. II. Energetics of locomotion. J. Exp. Biol., 188: 257-274.
    [5] Amornpiyakrit, T., Arimoto, T., 2008. Muscle physiology in escape response of kuruma shrimp. Am. Fish. Soc. Symp., 2: 1321-1334.
    [6] Arnott, S. A., Neil, D. M., Ansell A. D., 1998. Tail-flip mechanism and size-dependent kinematics of escape swimming in the brown shrimp Crangon Crangon. J. Exp. Biol., 201:1771-1784.
    [7] Baldwin, J., Gupta, A, Iglesias, X., 1999. Scaling of anaerobic energy metabolism during tail flipping behaviour in the freshwater crayfish, Cherax destructor. Mar. Freshwater Res., 50: 183-187.
    [8] Beamish, F. W. H., 1990. Swimming metabolism and temperature in juvenile walleye,Stizostedion vitreum vitreum. Environ. Biol. Fish., 27:309-314.
    [9] Bergmann, M., Taylor, A. C., Geoffrey, Moore. P., 2001. Physiological stress in decapod crustaceans (Munida rugosa and Liocarcinus depurator) discarded in the Clyde Nephrops fishery. J. Exp. Mar. Biol. Ecol., 259: 215-229.
    [10] Chen, J.C., Cheng, S.Y., Chen, C.T., 1994. Changes of hemocyanin, protein and free aminoacid levels in the hemolymph of Penaeus japonicus exposed to ambient ammonia. Comp. Biochem. Physiol., 109A: 339-347.
    [11] Claybrook, D. L., 1983. Nitrogen metabolism. In: Martel, L.H. (Ed.), The Biology of Crustacea, Internal anatomy and physiological regulation. Academic Press, New York, pp. 163-213.
    [12] Cuzon, G., Rosas, C., Gaxiola, G., Taboada, G., Van Wormhoudt, A., 2000. Utilization of carbohydrates by shrimp. In: Cruz-Suarez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Olvera-Novoa, M.A., Civera-Cerecedo, R. (Eds.), Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. Mérida, Yucatán.
    [13] DeFur, P. L., Mangum, C. P., Reese, J. E.,1990. Respiratory responses of the blue crab Callinectes sapidus to long-term hypoxia. Biol. Bull., 178: 46–54.
    [14] Field, R. H., Taylor, A. C., Neil, D. M., 1991. Factors affecting swimming ability and its recovery in the Norway lobster (Nephrops norvegicus). J. Marine. Biol. Assn. UK, 71: 707–742.
    [15] Fisher, R., Bellwood, D.R., 2002. The influence of swimming speed on sustained swimming performance of late-stage reef fish larvae. Mar. Biol., 140: 801-807.
    [16] Fisher, R., Wilson, S. K., 2004. Maximum sustainable swimming speeds of late-stage larvae of nine species of reef fishes. J. Exp. Mar. Biol. Ecol., 312: 171-186.
    [17] Gade, G., 1983. Effects of oxygen deprivation during anoxia and muscular work on the energy metabolism of the crayfish Orconectes limosus. Comp. Biochem. Physiol., 77 A: 495-502.
    [18] Graham, J. B, Dewar, H., Lai, N. C, Korsmeyer, K. E, Fields, P. A., Knower, T., et al., 1994. Swimming physiology of pelagic fishes. In: Maddock L, Bone Q, Rayner JMV (eds) Mechanics and physiology of animal swimming. Cambridge University Press, Cambridge, pp 63-74.
    [19] Hagerman, L., 1986. Haemocyanin concentration in the shrimp, Crangon crangon (L.) after exposure to moderate hypoxia. Comp. Biochem. Physiol., 85A: 721–724.
    [20] Hammer, C., 1995. Review Fatigue and exercise tests with fish. Comp. Biochem. Physiol., 112A, 1-20.
    [21] Harris, R. R., Andrews, M. B., 2005. Physiological changes in the Norway lobster Nephrops norvegicus (L.) escaping and discarded from commercial trawls on the West Coast of Scotland II. Disturbances in haemolymph respiratory gases, tissue metabolites and swimming performance after capture and during recovery. J. Exp. Mar. Biol. Ecol., 320: 195-210.
    [22] He, P., 2003. Swimming behaviour of winter flounder (Pleuronectes americanus) on natural fishing grounds as observed by an underwater video camera. Fish. Res., 60: 507-514.
    [23] Head, G., Baldwin, J., 1986. Energy metabolism and the fate of lactate during recovery from exercise in the Australian freshwater crayfish Cherax destructor. Aust. J. Mar. Freshwater Res., 37: 641-646.
    [24] Jeuniaux, C., Hemolymph-Arthropoda. In: Florkin M, Scheer B J. (Eds.), Chemical Zoology. New York: Academic Press, 1971: 63-118.
    [25] Jing, A. G., Zhang, X. M., Li, W. T., 2005. A preliminary experiment on swimming ability ofLateolabrax maculates and Sebastes schlegeli. J. Ocean Univ. Chin., 35 (6): 973-976.
    [26] Morris, S., Adamczewska, A. M., 2002. Utilisation of glycogen, ATP and arginine phosphate in exercise and recovery in terrestrial red crabs, Gecarcoidea natalis. Comp. Biochem. Physiol., 133A: 813-825.
    [27] Morris, S., Adamczewska, A. M., 2002. Utilisation of glycogen, ATP and arginine phosphate in exercise and recovery in terrestrial red crabs, Gecarcoidea natalis. Comp. Biochem. Physiol., 133A: 813–825.
    [28] Newland, P. L., Neil, D. M., Chapman, C. J., 1992. Escape swimming in the Norway Lobster. J. Crustacean Biol., 12: 342–353.
    [29] Racotta, I. S., Palacios, E., 1998. Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in Penaeus vannamei. J. World Aquacult. Soc., 29: 351-356.
    [30] Racotta, I. S., Palacios, E., 1998. Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in Penaeus vannamei. J. World. Aquacult. Soc., 29: 351-356.
    [31] Rodríguez, T. T., Agudo, J. P., Mosquera, L. P., González, E. P., 2006. Evaluating vertical-slot fishway designs in terms of fish swimming capabilities. Ecol. Eng., 27: 37-48.
    [32] Sánchez, A., Pascual, C., Sánchez, A., Vargas-Albores, F., Le Moullac, G., Rosas, C., 2001. Hemolymph metabolic variables and immune response in Litopenaeus setiferus adult males: the effect of acclimation. Aquaculture, 198: 13-28.
    [33] Schmidt-Neilsen, K., 1984. Scaling: why is animal size so important? Cambridge University Press, Cambridge.
    [34] Solis-Ibarra, R., Rendon-Rodriguez, S., 1994. Laboratory observations on displacement speed of the white shrimp Penaeus vannamei (Crustacea: Decapoda). Mar. Ecol. Prog. Ser., 103: 309-310.
    [35] Stentiford, G. D., Neila, D. M., Atkinson, R. J. A. et al., 2000. An analysis of swimming performance in the Norway lobster, Nephrops norvegicus L. infected by a parasitic dinoflagellate of the genus Hematodinium. J. Exp. Mar. Biol. Ecol., 247: 169–181.
    [36] Thorpe, K. E., Taylor, A. C., Huntingford, F. A., 1995. How costly is fighting? Physiological effects of sustained exercise and fighting in swimming crabs, Necora pubes (L.) (Brachyura, Portunidae). Anim. Behav., 50: 1657-1666.
    [37] Tsukamoto, K., Kajihara, T., Nishiwaki, M., 1975. Swimming ability of fish. Bull. Jpn. Soc. Sci. Fish., 41: 167-174.
    [38] Vargas-Albores, F., Guzmán, M. A., Ochoa, J. L., 1993. An anticoagulant solution for haemolymph collection and prophenoloxidase studies of penaeid shrimp (Penaeus californiensis). Comp. Biochem. Physiol., 106A: 299-303.
    [39] Vermeer, G. K., 1987. Effects of air exposure on desiccation rate, haemolymph chemistry, and escape behaviour of the spiny lobster, Palinurus argus. Fish. Bull. US, 85: 45–51.
    [40] Verri, T., Mandal, A., Zilli, L., Bossa, D., Mandal, P.K., Ingrosso, L., et al., 2001. D-Glucose transport in decapod crustacean hepatopancreas. Comp. Biochem. Physiol., 130A: 585-606.
    [41] Vogel, S., 1994. Life in moving fluids: the physical biology of flow, 2nd edn. Princeton University Press, Princeton, N.J.
    [42] Wilson, R. S., 2005. Temperature influences the coercive mating and swimming performance of male eastern mosquitofish. Anim. Behav., 70: 1387-1394.
    [43] Yanase, K., Eayrs, S., Arimoto, T., 2007. Influence of water temperature and fish length on themaximum swimming speed of sand flathead, Platycephalus bassensis Implications for trawl selectivity. Fish. Res., 84: 180-188.
    [44] Yoganandhan, K., Thirupathi, S., Sahul Hameed, A. S., 2003. Biochemical, physiological and hematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus. Aquaculture, 221: 1-11.
    [45] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2006. Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 145A: 26-32.
    [46] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2007. The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 147A:64-69.
    [1]井爱国,张秀梅,李文涛, 2005.花鲈、许氏平鲉游泳能力的初步实验研究.中国海洋大学学报, 35 (6): 973-976.
    [2]周仕杰,何大仁,吴清天, 1993.几种幼鱼曲线游泳能力的比较研究.海洋与湖沼, 24 (6): 621-626.
    [3] Adamczewska, A. M., Morris, S., 1994. Exercise in the terrestrial Christmas Island red crab Gecarcoidea natalis. II. Energetics of locomotion. J. Exp. Biol., 188: 257-274.
    [4] Amornpiyakrit, T., Arimoto, T., 2008. Muscle physiology in escape response of kuruma shrimp. Am. Fish. Soc. Symp., 2: 1321-1334.
    [5] Arnott, S. A., Neil, D. M., Ansell A. D., 1998. Tail-flip mechanism and size-dependent kinematics of escape swimming in the brown shrimp Crangon Crangon. J. Exp. Biol., 201:1771-1784.
    [6] Beamish, F. W. H., 1990. Swimming metabolism and temperature in juvenile walleye, Stizostedion vitreum vitreum. Environ. Biol. Fish., 27:309-314.
    [7] Chen, J.C., Cheng, S.Y., Chen, C.T., 1994. Changes of hemocyanin, protein and free aminoacid levels in the hemolymph of Penaeus japonicus exposed to ambient ammonia. Comp. Biochem. Physiol., 109A: 339-347.
    [8] Claybrook, D. L., 1983. Nitrogen metabolism. In: Martel, L.H. (Ed.), The Biology of Crustacea, Internal anatomy and physiological regulation. Academic Press, New York, pp. 163-213.
    [9] Cuzon, G., Rosas, C., Gaxiola, G., Taboada, G., Van Wormhoudt, A., 2000. Utilization of carbohydrates by shrimp. In: Cruz-Suarez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Olvera-Novoa, M.A., Civera-Cerecedo, R. (Eds.), Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. Mérida, Yucatán.
    [10] Fisher, R., Bellwood, D.R., 2002. The influence of swimming speed on sustained swimming performance of late-stage reef fish larvae. Mar. Biol., 140: 801-807.
    [11] Fisher, R., Wilson, S. K., 2004. Maximum sustainable swimming speeds of late-stage larvae of nine species of reef fishes. J. Exp. Mar. Biol. Ecol., 312: 171-186.
    [12] Gade, G., 1983. Effects of oxygen deprivation during anoxia and muscular work on the energy metabolism of the crayfish Orconectes limosus. Comp. Biochem. Physiol., 77 A: 495-502.
    [13] Graham, J. B, Dewar, H., Lai, N. C, Korsmeyer, K. E, Fields, P. A., Knower, T., et al., 1994. Swimming physiology of pelagic fishes. In: Maddock L, Bone Q, Rayner JMV (eds) Mechanics and physiology of animal swimming. Cambridge University Press, Cambridge, pp 63-74.
    [14] He, P., 2003. Swimming behaviour of winter flounder (Pleuronectes americanus) on natural fishing grounds as observed by an underwater video camera. Fish. Res., 60: 507-514.
    [15] Jing, A. G., Zhang, X. M., Li, W. T., 2005. A preliminary experiment on swimming ability of Lateolabrax maculates and Sebastes schlegeli. J. Ocean Univ. Chin., 35 (6): 973-976.
    [16] Morris, S., Adamczewska, A. M., 2002. Utilisation of glycogen, ATP and arginine phosphate in exercise and recovery in terrestrial red crabs, Gecarcoidea natalis. Comp. Biochem. Physiol., 133A: 813-825.
    [17] Racotta, I. S., Palacios, E., 1998. Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in Penaeus vannamei. J. World Aquacult. Soc., 29: 351-356.
    [18] Rodríguez, T. T., Agudo, J. P., Mosquera, L. P., González, E. P., 2006. Evaluating vertical-slot fishway designs in terms of fish swimming capabilities. Ecol. Eng., 27: 37-48.
    [19] Sánchez, A., Pascual, C., Sánchez, A., Vargas-Albores, F., Le Moullac, G., Rosas, C., 2001. Hemolymph metabolic variables and immune response in Litopenaeus setiferus adult males: the effect of acclimation. Aquaculture, 198: 13-28.
    [20] Schmidt-Neilsen, K., 1984. Scaling: why is animal size so important? Cambridge University Press, Cambridge.
    [21] Solis-Ibarra, R., Rendon-Rodriguez, S., 1994. Laboratory observations on displacement speed of the white shrimp Penaeus vannamei (Crustacea: Decapoda). Mar. Ecol. Prog. Ser., 103: 309-310.
    [22] Thorpe, K. E., Taylor, A. C., Huntingford, F. A., 1995. How costly is fighting? Physiological effects of sustained exercise and fighting in swimming crabs, Necora pubes (L.) (Brachyura, Portunidae). Anim. Behav., 50: 1657-1666.
    [23] Tsukamoto, K., Kajihara, T., Nishiwaki, M., 1975. Swimming ability of fish. Bull. Jpn. Soc. Sci. Fish., 41: 167-174.
    [24] Vargas-Albores, F., Guzmán, M. A., Ochoa, J. L., 1993. An anticoagulant solution for haemolymph collection and prophenoloxidase studies of penaeid shrimp (Penaeus californiensis). Comp. Biochem. Physiol., 106A: 299-303.
    [25] Verri, T., Mandal, A., Zilli, L., Bossa, D., Mandal, P.K., Ingrosso, L., et al., 2001. D-Glucose transport in decapod crustacean hepatopancreas. Comp. Biochem. Physiol., 130A: 585-606.
    [26] Vogel, S., 1994. Life in moving fluids: the physical biology of flow, 2nd edn. Princeton University Press, Princeton, N.J.
    [27] Wilson, R. S., 2005. Temperature influences the coercive mating and swimming performance of male eastern mosquitofish. Anim. Behav., 70: 1387-1394.
    [28] Yanase, K., Eayrs, S., Arimoto, T., 2007. Influence of water temperature and fish length on the maximum swimming speed of sand flathead, Platycephalus bassensis Implications for trawlselectivity. Fish. Res., 84: 180-188.
    [29] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2006. Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 145A: 26-32.
    [30] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2007. The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 147A:64-69.
    [1] Beamish, F. W. H., 1978. Swimming capacity. In: Hoar W S, Randall J D (Eds.). Fish physiology, vol. 7. Academic Press Inc, New York, 101-187.
    [2] Brauner, C. J., Iwama, G. K., Randall, D. J., 1994. The effect of short-duration seawater exposure on the swimming performance of wild and hatchery-reared juvenile coho salmon (Oncorhynchus kisutch) during smoltification. Can. J. Fisheries. Aquat. Sci., 51: 2188-2194.
    [3] Breen M., Dyson J., O’Neill F. G., Jones E., Haigh M., 2004. Swimming endurance of haddock (Melanogrammus aeglefinus L.) at prolonged and sustained swimming speeds, and its role in their capture by towed fishing gears. ICES J. Mar. Sci. 61: 1071-1079.
    [4] Brett, J. R., 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Bd. Can., 21: 1183-1226
    [5] Chatelier, A., McKenzie D. J., Claireaux G., 2005. Effects of changes in water salinity upon exercise and cardiac performance in the European seabass (Dicentrarchus labrax). Mar. Biol. 147: 855–862.
    [6] Claireaux, G., Couturier, C., Groison, A., 2006. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax). J. Exp. Biol., 209: 3420-3428.
    [7] Cowles, D. L., 1994. Swimming dynamics of the mesopelagic vertically migrating penaeid shrimp Sergestes similis: modes and speeds of swimming. J. Crustac. Biol., 14: 247-257.
    [8] Cowles, D. L., 2001. Swimming speed and metabolic rate during routine swimming and simulated did vertical migration of Sergestes similis in the laboratory. Pac. Sci., 55 (3): 215-226.
    [9] Cronin, T. W., Forward Jr, R. B., 1980. The effects of starvation on phototaxis and swimming of larvae of the crab Rhjthropanopeus harrisii. Biol. Bull., 158: 283-294.
    [10] Day, N., Butler, P. J., 2005. The effects of acclimation to reversed seasonal temperatures on the swimming performance of adult brown trout Salmo trutta. J. Exp. Biol. 208: 2683-2692.
    [11] De Boeck, G., van der Ven, K., Hattink, J., Blust, R., 2006. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquatic Toxicol., 80: 92–100.
    [12] Dickson, K. A., Donley, J. M., Sepulveda, C., Bhoopat, L., 2002. Effects of temperature on sustained swimming performance and swimming kinematics of the chub mackerel Scomber japonicus. J. Exp. Biol., 205: 969–980.
    [13] Duthie, G.G., 1982. The respiratory metabolism of temperature-adapted flatfish at rest and during swimming activity, and the use of anaerobic metabolism at moderate swimming speeds. J. Exp. Biol., 97: 359– 373.
    [14] Farrell, A. P., Steffensen, J. F., 1987. An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming. Fish Physiol. Biochem., 4: 73-79.
    [15] Fisher, R., Bellwood, D. R., 2001. Effects of feeding on the sustained swimming abilities of late-stage larval Amphiprion melanopus. Coral Reef, 20:151-154.
    [16] Fuiman, L. A., Batty, R. S., 1997. What a drag it is getting cold: partitioning the physical and physiological effects of temperature on fish swimming. J. Exp. Biol., 200: 1745–1755.
    [17] Green, B. S., Fisher, R., 2004. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J. Exp. Mar. Biol. Ecol., 299: 115–132.
    [18] Guan, L., Snelgrove, P. V. R., Gamperl, A. K., 2008. Ontogenetic changes in the critical swimming speed of Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin) larvae and the role of temperature. J. Exp. Mar. Biol. Ecol., 360 (1): 31-38.
    [19] Guderley, H., 2004. Review Locomotor performance and muscle metabolic capacities: impact of temperature and energetic status. Comp. Biochem. Physiol., 139B: 371–382.
    [20] Hamasaki, K., Kitada, S., 2006. A review of kuruma prawn Penaeus japonicus stock enhancement in Japan. Fish. Res., 80: 80-90.
    [21] Hammill, E., Wilson, R. S., Johnston, I. A., 2004. Sustained swimming performance and muscle structure are altered by thermal acclimation in male mosquitofish. J. Therm. Biol., 29: 251–257.
    [22] Hunt von Herbing, I., 2002. Effects of temperature on larval fish swimming performance: the importance of physics to physiology. J. Fish Biol., 61: 865– 876.
    [23] Jain, K. E., Farrell, A. P., 2003. Influence of seasonal temperature on the repeat swimming performance of rainbow trout Oncorhynchus mykiss. J. Exp. Biol., 206: 3569-3579.
    [24] Joaquim, N., Wagner, G. N., Gamperl, A. K., 2004. Cardiac function and critical swimmingspeed of the winter flounder (Pleuronectes americanus) at two temperatures. Comp. Biochem. Physiol., 138B: 277-285.
    [25] Kolok, A. S., Sharkey, D., 1997. Effect of freshwater acclimation on the swimming performance and plasma osmolarity of the euryhaline gulf killifish. Trans. Am. Fish. Soc., 126: 866–870.
    [26] Koumoundouros, G., Sfakianakis, D. G., Divanach, P., Kentouri, M., 2002. Effect of temperature on swimming performance of sea bass juveniles. J. Fish Biol., 60 (4): 923-932.
    [27] Landmana, M. J., Heuvela, M. R., Finleya, M., Bannonb, H. J., Ling, N., 2006. Combined effects of pulp and paper effluent, dehydroabietic acid, and hypoxia on swimming performance, metabolism, and hematology of rainbow trout. Ecotoxicol. Environ. Safety., 65: 314–322.
    [28] Laurence, G. C., 1972. Comparative swimming abilities of fed and starved larval largemouth bass (Micropterus salmoides). J Fish Biol., 4 (1): 73-78.
    [29] Lee, C. G., Farrell, A. P., Lotto, A., et al., 2003. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks. J. Exp. Biol., 206: 3239-3251.
    [30] Leis J. M., Clark D. L., 2005. Feeding greatly enhances swimming endurance of settlement-stage reef-fish larvae of damselfishes (Pomacentridae). Ichthyol Res., 52: 185–188.
    [31] Nelson, J.A., Tang, Y., Boutilier, R.G., 1996. The effects of salinity change on the exercise performance of two Atlantic cod,Gadus morhua populations inhabiting different environments. J. Exp. Biol., 199: 1295-1309.
    [32] Nordlie, F. G., Walsh, S. J., Haney, D. C. Nordlie, T. F., 1991. The influence of ambient salinity on routine metabolism in the teleost Cyprinodon variegatus Lacepède. J. Fish Biol., 38: 115–122.
    [33] Peck, M. A., Buckley, L. J., Bengtson, D. A., 2006. Effects of temperature and body size on the swimming speed of larval and juvenile Atlantic cod (Gadus Morhua) Implications for Individual-based Modelling. Env. Biol. Fish., 75: 419–429.
    [34] Peterson, R. H., Harmon, P., 2001. Swimming ability of pre-feeding striped bass larvae. Aquacult. Int., 9: 361–366.
    [35] Plaut, I., 2001. Critical swimming speed: its ecological relevance. Comp. Biochem. Physiol., 131A: 41-50.
    [36] Plaut, I., 2000. Resting metabolic rate, critical swimming speed and routine activity of the euryhaline cyprinodontid, Aphanius Dispar, acclimated to wide range of salinities. Physiol. Biochem. Zool., 73 (5): 590-596.
    [37] Ponce-Palafox, J., Martinez-Palacios, C. A., Ross, L. G., 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, 157: 107-115.
    [38] Randall, D., Brauner, C., 1991. Effects of environmental factors on exercise in fish. J. Exp. Biol., 160: 113-126.
    [39] Rome, L. C , Loughna, P. T. Goldspink, G., 1984. Muscle fiber recruitment as a function of swim speed and muscle temperature in carp. Am. J. Physiol., 247: R272-R279.
    [40] Rome, L. C , Loughna, P. T. Goldspink, G., 1985. Temperature acclimation improves sustained swimming performance at low temperatures in carp. Science, 228: 194-196.
    [41] Rome, L. C., 1986. The influence of temperature on muscle and locomotory performance. InLiving in the Cold: Physiological and Biochemical Adaptations (ed. H. C. Heller, H. J. Musacchia and L. C. H. Wang), pp. 485-495. New York: Elsevier.
    [42] Rome, L. C., Funke, R. P., Alexander, R. M, 1990. The influence of temperature on muscle velocity and sustained performance in swimming carp. J. exp. Biol., 154: 163-178.
    [43] Sánchez-Paz, A., García-Carre?o, F., Hernández-López, J., Muhlia-Almazán, A., Yepiz-Plascencia, G., 2007. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J. Exp. Mar. Biol. Ecol. 340: 184-193.
    [44] Sepuveda, C., Dickson, K. A., 2000. Maximum sustainable speeds and cost of swimming in juvenile Kawakawa tuna (euthynnus affinis) and chub mackerel (scomber japonicus). J. Exp. Biol., 203: 3089–3101.
    [45] Solis-Ibarra, R., Rendon-Rodriguez, S., 1994. Laboratory observations on displacement speed of the white shrimp Penaeus vannamei (Crustacea: Decapoda). Mar. Ecol. Prog. Ser., 103: 309-310.
    [46] Stobutzki I. C., 1998. Interspecific variation in sustained swimming ability of late pelagic stage reef fish from two families (Pomacentridae and Chaetodontidae). Coral Reef. 17, 111-119.
    [47] Swanson, C., 1998. Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos) J. Exp. Biol., 201: 3355-3366.
    [48] Tolleya, S. G., Torresb, J. J., 2002. Energetics of swimming in juvenile common snook, Centropomus undecimalis. Env. Biol. Fish., 63: 427–433.
    [49] Wang, Q. Y., Zhuang, Z. M., Deng, J. Y., Ye, Y. M., 2006. Stock enhancement and translocation of the shrimp Penaeus chinensis in China. Fish. Res., 80: 67-79.
    [50] Webb, P. W., Kostecki, P. T., 1984. The effect of size and swimming speed on locomotor kinematics of rainbow trout. J. Exp. Biol., 109: 77-95.
    [51] Winger P. D., He P., Walsh S. J., 1999. Swimming endurance of American plaice (Hippoglossoides platessoides) and its role in fish capture. ICES J. Mar. Sci., 56: 252–265.
    [52] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2006. Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 145A: 26-32.
    [53] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2007. The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 147A: 64-69.
    [1] Beamish, F. W. H., 1978. Swimming capacity. In: Hoar W S, Randall J D (Eds.). Fish physiology, vol. 7. Academic Press Inc, New York, 101-187.
    [2] Brauner, C. J., Iwama, G. K., Randall, D. J., 1994. The effect of short-duration seawater exposure on the swimming performance of wild and hatchery-reared juvenile coho salmon (Oncorhynchus kisutch) during smoltification. Can. J. Fisheries. Aquat. Sci., 51: 2188-2194.
    [3] Breen M., Dyson J., O’Neill F. G., Jones E., Haigh M., 2004. Swimming endurance of haddock (Melanogrammus aeglefinus L.) at prolonged and sustained swimming speeds, and its role in their capture by towed fishing gears. ICES J. Mar. Sci. 61: 1071-1079.
    [4] Brett, J. R., 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Bd. Can., 21: 1183-1226
    [5] Chatelier, A., McKenzie D. J., Claireaux G., 2005. Effects of changes in water salinity upon exercise and cardiac performance in the European seabass (Dicentrarchus labrax). Mar. Biol. 147: 855–862.
    [6] Claireaux, G., Couturier, C., Groison, A., 2006. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax). J. Exp. Biol., 209: 3420-3428.
    [7] Cowles, D. L., 1994. Swimming dynamics of the mesopelagic vertically migrating penaeid shrimp Sergestes similis: modes and speeds of swimming. J. Crustac. Biol., 14: 247-257.
    [8] Cowles, D. L., 2001. Swimming speed and metabolic rate during routine swimming and simulated did vertical migration of Sergestes similis in the laboratory. Pac. Sci., 55 (3): 215-226.
    [9] Cronin, T. W., Forward Jr, R. B., 1980. The effects of starvation on phototaxis and swimming of larvae of the crab Rhjthropanopeus harrisii. Biol. Bull., 158: 283-294.
    [10] Day, N., Butler, P. J., 2005. The effects of acclimation to reversed seasonal temperatures on the swimming performance of adult brown trout Salmo trutta. J. Exp. Biol. 208: 2683-2692.
    [11] De Boeck, G., van der Ven, K., Hattink, J., Blust, R., 2006. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquatic Toxicol., 80: 92–100.
    [12] Dickson, K. A., Donley, J. M., Sepulveda, C., Bhoopat, L., 2002. Effects of temperature on sustained swimming performance and swimming kinematics of the chub mackerel Scomber japonicus. J. Exp. Biol., 205: 969–980.
    [13] Duthie, G.G., 1982. The respiratory metabolism of temperature-adapted flatfish at rest and during swimming activity, and the use of anaerobic metabolism at moderate swimming speeds. J. Exp. Biol., 97: 359– 373.
    [14] Farrell, A. P., 2002. Cardiorespiratory performance in salmonids during exercise at high temperature: Insights into cardiovascular design limitations in fishes. Comp. Biochem. Physiol. 132A: 797-810.
    [15] Farrell, A. P., 2007. Cardiorespiratory performance during prolonged swimming tests with salmonids: a perspective on temperature effects and potential analytical pitfalls. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362: 2017-2030.
    [16] Farrell, A. P., Steffensen, J. F., 1987. An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming. Fish Physiol. Biochem., 4: 73-79.
    [17] Fisher, R., Bellwood, D. R., 2001. Effects of feeding on the sustained swimming abilities of late-stage larval Amphiprion melanopus. Coral Reef, 20:151-154.
    [18] Fuiman, L. A., Batty, R. S., 1997. What a drag it is getting cold: partitioning the physical and physiological effects of temperature on fish swimming. J. Exp. Biol., 200: 1745–1755.
    [19] Green, B. S., Fisher, R., 2004. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J. Exp. Mar. Biol. Ecol., 299: 115–132.
    [20] Guan, L., Snelgrove, P. V. R., Gamperl, A. K., 2008. Ontogenetic changes in the critical swimming speed of Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin) larvae and the role of temperature. J. Exp. Mar. Biol. Ecol., 360 (1): 31-38.
    [21] Guderley, H., 2004. Review Locomotor performance and muscle metabolic capacities: impact of temperature and energetic status. Comp. Biochem. Physiol., 139B: 371–382.
    [22] Hamasaki, K., Kitada, S., 2006. A review of kuruma prawn Penaeus japonicus stock enhancement in Japan. Fish. Res., 80: 80-90.
    [23] Hammill, E., Wilson, R. S., Johnston, I. A., 2004. Sustained swimming performance and muscle structure are altered by thermal acclimation in male mosquitofish. J. Therm. Biol., 29: 251–257.
    [24] Hunt von Herbing, I., 2002. Effects of temperature on larval fish swimming performance: the importance of physics to physiology. J. Fish Biol., 61: 865– 876.
    [25] Jain, K. E., Farrell, A. P., 2003. Influence of seasonal temperature on the repeat swimming performance of rainbow trout Oncorhynchus mykiss. J. Exp. Biol., 206: 3569-3579.
    [26] Joaquim, N., Wagner, G. N., Gamperl, A. K., 2004. Cardiac function and critical swimming speed of the winter flounder (Pleuronectes americanus) at two temperatures. Comp. Biochem. Physiol., 138B: 277-285.
    [27] Kolok, A. S., Sharkey, D., 1997. Effect of freshwater acclimation on the swimming performance and plasma osmolarity of the euryhaline gulf killifish. Trans. Am. Fish. Soc., 126: 866–870.
    [28] Koumoundouros, G., Sfakianakis, D. G., Divanach, P., Kentouri, M., 2002. Effect of temperature on swimming performance of sea bass juveniles. J. Fish Biol., 60 (4): 923-932.
    [29] Landmana, M. J., Heuvela, M. R., Finleya, M., Bannonb, H. J., Ling, N., 2006. Combined effects of pulp and paper effluent, dehydroabietic acid, and hypoxia on swimmingperformance, metabolism, and hematology of rainbow trout. Ecotoxicol. Environ. Safety., 65: 314–322.
    [30] Laurence, G. C., 1972. Comparative swimming abilities of fed and starved larval largemouth bass (Micropterus salmoides). J Fish Biol., 4 (1): 73-78.
    [31] Lee, C. G., Farrell, A. P., Lotto, A., et al., 2003. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks. J. Exp. Biol., 206: 3239-3251.
    [32] Leis J. M., Clark D. L., 2005. Feeding greatly enhances swimming endurance of settlement-stage reef-fish larvae of damselfishes (Pomacentridae). Ichthyol Res., 52: 185–188.
    [33] Nelson, J.A., Tang, Y., Boutilier, R.G., 1996. The effects of salinity change on the exercise performance of two Atlantic cod,Gadus morhua populations inhabiting different environments. J. Exp. Biol., 199: 1295-1309.
    [34] Nordlie, F. G., Walsh, S. J., Haney, D. C. Nordlie, T. F., 1991. The influence of ambient salinity on routine metabolism in the teleost Cyprinodon variegatus Lacepède. J. Fish Biol., 38: 115–122.
    [35] Peck, M. A., Buckley, L. J., Bengtson, D. A., 2006. Effects of temperature and body size on the swimming speed of larval and juvenile Atlantic cod (Gadus Morhua) Implications for Individual-based Modelling. Env. Biol. Fish., 75: 419–429.
    [36] Peterson, R. H., Harmon, P., 2001. Swimming ability of pre-feeding striped bass larvae. Aquacult. Int., 9: 361–366.
    [37] Plaut, I., 2000. Resting metabolic rate, critical swimming speed and routine activity of the euryhaline cyprinodontid, Aphanius Dispar, acclimated to wide range of salinities. Physiol. Biochem. Zool., 73 (5): 590-596.
    [38] Plaut, I., 2001. Critical swimming speed: its ecological relevance. Comp. Biochem. Physiol., 131A: 41-50.
    [39] Ponce-Palafox, J., Martinez-Palacios, C. A., Ross, L. G., 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, 157: 107-115.
    [40] Randall, D. J. and Daxboeck, C., 1982. Cardiovascular changes in the rainbow trout (Salmo gairdneri, Richardson) during exercise. Can. J. Zool. 60: 1135-1140.
    [41] Randall, D., Brauner, C., 1991. Effects of environmental factors on exercise in fish. J. Exp. Biol., 160: 113-126.
    [42] Rome, L. C , Loughna, P. T. Goldspink, G., 1984. Muscle fiber recruitment as a function of swim speed and muscle temperature in carp. Am. J. Physiol., 247: R272-R279.
    [43] Rome, L. C , Loughna, P. T. Goldspink, G., 1985. Temperature acclimation improves sustained swimming performance at low temperatures in carp. Science, 228: 194-196.
    [44] Rome, L. C., 1986. The influence of temperature on muscle and locomotory performance. In Living in the Cold: Physiological and Biochemical Adaptations (ed. H. C. Heller, H. J. Musacchia and L. C. H. Wang), pp. 485-495. New York: Elsevier.
    [45] Rome, L. C., Funke, R. P., Alexander, R. M, 1990. The influence of temperature on muscle velocity and sustained performance in swimming carp. J. exp. Biol., 154: 163-178.
    [46] Sánchez-Paz, A., García-Carre?o, F., Hernández-López, J., Muhlia-Almazán, A., Yepiz-Plascencia, G., 2007. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J. Exp. Mar. Biol. Ecol.340: 184-193.
    [47] Sepuveda, C., Dickson, K. A., 2000. Maximum sustainable speeds and cost of swimming in juvenile Kawakawa tuna (euthynnus affinis) and chub mackerel (scomber japonicus). J. Exp. Biol., 203: 3089–3101.
    [48] Solis-Ibarra, R., Rendon-Rodriguez, S., 1994. Laboratory observations on displacement speed of the white shrimp Penaeus vannamei (Crustacea: Decapoda). Mar. Ecol. Prog. Ser., 103: 309-310.
    [49] Stobutzki I. C., 1998. Interspecific variation in sustained swimming ability of late pelagic stage reef fish from two families (Pomacentridae and Chaetodontidae). Coral Reef. 17, 111-119.
    [50] Swanson, C., 1998. Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos) J. Exp. Biol., 201: 3355-3366.
    [51] Tolleya, S. G., Torresb, J. J., 2002. Energetics of swimming in juvenile common snook, Centropomus undecimalis. Env. Biol. Fish., 63: 427–433.
    [52] Wang, Q. Y., Zhuang, Z. M., Deng, J. Y., Ye, Y. M., 2006. Stock enhancement and translocation of the shrimp Penaeus chinensis in China. Fish. Res., 80: 67-79.
    [53] Webb, P. W., Kostecki, P. T., 1984. The effect of size and swimming speed on locomotor kinematics of rainbow trout. J. Exp. Biol., 109: 77-95.
    [54] Winger P. D., He P., Walsh S. J., 1999. Swimming endurance of American plaice (Hippoglossoides platessoides) and its role in fish capture. ICES J. Mar. Sci., 56: 252–265.
    [55] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2006. Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 145A: 26-32.
    [56] Zhang, P. D., Zhang, X. M., Li, J., Huang, G. Q., 2007. The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol., 147A: 64-69.
    [1]邓景耀,1997.对虾放流增殖的研究.海洋渔业, 19 (1): 1-6.
    [2]樊宁臣,俞关良,戴芳钰,刘英林,陈光武,牟作山,1989.渤海对虾放流增殖的研究.海洋水产研究, 10: 27-36.
    [3]何大仁,蔡厚才, 1998.鱼类行为学.厦门大学出版社.
    [4]刘海映,王文波,何继开, 2000.关于发展增殖渔业的讨论.水产科学, 19 (1): 42-45.
    [5]刘洪军,王颖,李绍彬,高翔, 2006.海水虾类健康养殖技术.中国海洋大学出版社.
    [6]刘永昌, 1986.渤海对虾洄游和分布的研究.水产学报, 10 (2): 125-136.
    [7]孙满昌,2005.海洋渔业技术学.中国农业出版社.
    [8]王克行, 1996.虾蟹类增养殖学.中国农业出版社.
    [9] Barkley, R. A., 1964. The theoretical effectiveness of towed-net samplers as related to sampler size and to swimming speed of organisms. J. Cons., 29:146-157.
    [10] Barkley, R. A., 1972. Selectivity of towed-net samplers. Fish. Bull., 70 (3): 799-820.
    [11] Dall, W., Hill, B. J., Rothlisberg, P. C., Staples, D. J., 1990. The Biology of the Penaeidae. Advances in Marine Biology, vol. 27. Academic Press.
    [12] Hamasaki, K., Kitada, S., 2006. A review of kuruma prawn Penaeus japonicus stockenhancement in Japan. Fish. Res., 80: 80-90.
    [13] He, P. G., 2003. Swimming behaviour of winter flounder (Pleuronectes americanus) on natural fishing grounds as observed by an underwater video camera. Fish. Res. 60: 507-514.
    [14] Jeffery, S., Revill, A., 2002. The vertical distribution of southern North Sea Crangon crangon (brown shrimp) in relation to towed fishing gears as influenced by water temperature. Fish. Res., 55: 319-323.
    [15] Newland, P. L., Chapman, C. J., Neil, D. M., 1988. Swimming performance and endurance of Norway lobster Nephrops norvegicus. Mar. Biol., 98: 345-350.
    [16] Wang, Q. Y., Zhuang, Z. M., Deng, J. Y., Ye, Y. M., 2006. Stock enhancement and translocation of the shrimp Penaeus chinensis in China. Fish. Res., 80: 67-79.
    [17] Winger, P. D., He, P. G., Walsh, S. J., 1999. Swimming endurance of American plaice (Hippoglossoides platessoides) and its role in fish capture. J. Mar. Sci., 56:252-265.
    [18] Winger, P. D., Walsh, S. J., He, P. G., Brown, J. A., 2004. Simulating trawl herding in flatfish: the role of fish length in behaviour and swimming characteristics. J. Mar. Sci., 61: 1179-1185.
    [19] Yanase, K., Eayrs, S., Arimoto, T., 2007. Influence of water temperature and fish length on the maximum swimming speed of sand flathead, Platycephalus bassensis Implications for trawl selectivity. Fish. Res. 84: 180-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700