用户名: 密码: 验证码:
水稻强化栽培农艺性状及其生态环境效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻强化栽培体系(the System of Rice Intensification,SRI)是一项新的节水栽培技术体系,近年来在国际上引起了强烈的反响,而且争论的焦点主要集中于该项技术体系的增产效应。为了评价该技术体系的产量效应及其对环境生态的影响,从2004到2006年,连续三年进行了田间试验研究。2004年试验设置了水稻强化栽培、覆膜旱作、裸地旱作、常规水作、覆膜强化栽培五个处理,其中,覆膜强化栽培包括三个移栽密度,分别为25cm×30cm、25cm×25cm、25 cm×17 cm;2005年设置了水稻强化栽培与常规水作两个处理;2006年采用裂区设计,设置了水稻强化栽培与常规水作两个主处理,0kghm~(-2)(NO)、80kghm~(-2)(N1)、160kghm~(-2)(N2)、240 kg hm~(-2)(N3)四个施氮量为副处理。各处理重复3次。以常规水作为对照,对三种节水栽培方式(水稻强化栽培、覆膜旱作、裸地旱作)水稻生长发育特性和产量性状,对水稻强化栽培方式下稻田土壤氨挥发、土壤生物学特性、节水效果与水分生产效率、养分吸收利用特性、氮肥利用率进行了研究;并且对强化栽培覆盖地膜的产量效应进行了探讨。主要结果如下:
     1.三种节水栽培方式以裸地旱作对水稻干旱胁迫比较严重,其分蘖数、株高、功能叶叶绿素、干物质积累量、根系干重、有效穗、结实率、千粒重显著降低,比常规水作减产44.8%。覆膜旱作促进分蘖的发生,由于成穗率较低,穗型较小,千粒重降低,产量比常规水作降低23.9%。成熟期,覆膜旱作稻株高显著降低,功能叶叶绿素、干物质积累量、根系干重与常规水作差异不大。与常规水作相比,强化栽培促进分蘖的发生,显著提高了有效穗;生育后期功能叶叶绿素、单株干物质积累量、根系干重显著提高,株高无显著差异。2004到2006年,三年数据表明强化栽培产量均有提高,较常规水作分别增产26.4%、11.5%、6.4%~48.4%,有效穗大幅度提高,千粒重、结实率无显著差异,穗粒数显著降低。
     2.常规水作与强化栽培产量增加幅度随着施氮量增加明显下降。强化栽培在施氮量80 kg hm~(-2)产量最高,但与施氮量160 kg hm~(-2)的产量没有显著性差异。常规水作在施氮量160 kg hm~(-2)产量最高。与常规水作比较,在施氮量0和80 kghm~(-2)下,强化栽培方式显著提高了稻谷产量,而在160和240 kg hm~(-2),两种栽培方式产量差异不显著。
     3.与常规水作相比,强化栽培促进了水稻对养分(N、P、K)的吸收,单株养分吸收总量显著高于常规水作。成熟期,各器官中N、P、K的吸收累积量均高于常规水作,而且N、P、K在籽粒中的分配比例分别比常规水作高5.0%、2.0%、3.0%,在叶片中N、P、K的分配比例比常规水作分别低6.7%、7.3%、12.2%。强化栽培显著提高了N、P、K的产谷效率,分别比常规水作提高21.9%、19.3%、17.0%。
     4.无论是常规水作还是强化栽培,随着施氮量的增加,植株吸氮量增加,氮素在穗中的分配比例却下降,而且氮肥农学利用率和偏生产力降低。强化栽培稻氮肥利用率受氮肥施用量影响显著。在施氮量80 kg hm~(-2)水平,强化栽培氮肥农学利用率比常规水作提高47.9%;在施氮量160 kg hm~(-2)、240 kg hm~(-2)水平却显著低于常规水作,分别低44.7%、70.9%。与常规水作相比,不同氮肥水平下,强化栽培均提高了氮肥偏生产力。栽培方式与氮肥施用量的交互作用对氮肥利用率的影响显著。
     5.水稻强化栽培对氨挥发动态变化趋势没有影响,但促进了氨的挥发损失,氨挥发损失总量比常规水作平均提高了25.2%。在三次施肥时期,氨挥发损失量为:基肥>分蘖肥>孕穗肥,施用基肥是氨挥发损失的主要时期。
     6.与常规水作比较,3种节水栽培方式均有很好的节水效果。2004年,覆膜旱作、裸地旱作总耗水量比常规水作分别节约672.8 mm和631.0 mm,覆膜旱作显著提高了总水分利用效率和灌溉水利用率,但裸地旱作总水分利用率与常规水作差别不大。强化栽培总耗水量在2004、2005、2006年分别比常规水作节约461.5 mm、476.5 mm、830.3 mm,达33.9%、26.9%、36.9%;灌溉水利用率分别提高195.6%、90.1%、130.5%,总水分利用率分别提高91.3%、54.5%、93.5%。在一定范围内施用氮肥可以显著提高水分利用率。
     7.与常规水作比较,强化栽培增加了土壤细菌、真菌、放线菌数量;增加了土壤微生物量碳、微生物量氮含量;增加了生育后期土壤微生物量磷含量;提高了分蘖期土壤脲酶、碱性磷酸酶、转化酶、过氧氢酶活性;增加了土壤碱解氮含量,有效磷含量差异不显著。
     8.覆膜强化栽培可以促进分蘖的发生,增加有效穗数,但穗粒数、千粒重降低;单株干物质量显著高于常规水作,群体干物质量高于常规水作或持平。而且随着密度的增加,覆膜强化栽培有效穗、穗粒数、结实率降低;单株干物质量增加,群体干物质量降低。与常规水作相比,不同的移栽密度产量效应不同。在本试验的三种密度中,25 cm×30 cm、25 cm×25 cm产量比常规水作分别增加10.3%、3.7%,25 cm×17 cm比常规水作减产1.2%。
     综上所述,水稻强化栽培促进水稻的分蘖发生、提高有效穗、根系发达、在生育后期功能叶仍具有较高的叶绿素含量;促进了植株对养分的吸收,提高了养分在籽粒中的分布,增产作用显著;而且在低的施氮量下,增产作用较大。水稻强化栽培有利于土壤生物学特性的提高,节水效果显著,对于水稻生产的可持续发展具有重要意义,但该法采用干湿灌溉的水分管理方式促进了稻田土壤氨的挥发,因此,在水稻强化栽培中合理的氮肥管理至关重要。
To evaluate the effects of the System of Rice Intensification (SRI) on grain yield andeco-environment, 3-year field experiments were conducted at the Agriculture Experimental Farmof Zhejiang University in Hangzhou, Zhejiang province, China, with one rice crop annually. In2004, the treatment was SRI, traditional flooding (TF), non-flooded plastic film mulching (PM),no plastic film mulching and no flooding (NM) and the system of rice intensification with plasticmulching (PMSRI), and there were three transplanting density in PMARI treatment: 25 cm×17 cm,25 cm×25 cm, 25 cm×30 cm. In 2005, the treatments were the System of Rice Intensification(SRI) and traditional flooding (TF). The experimental design in 2004 and 2005 was completerandomized blocks with three replications. In 2006, the experiment was a randomized split blockdesign with three replications. The main plots were two cultivation systems: traditional flooding(TF) and the System of Rice Intensification (SRI). Subplots include four nitrogen application rates:NO (no fertilizer N), N1 (80 kg N ha~(-1)), N2 (160 kg N ha~(-1)) and N3 (240 kg N ha~(-1)) as urea. Bycontrast with TF, the growth characteristics of rice and yield traits under three water-savingcultivation systems (SRI, PM, UM) were studied; the ammonia volatilization from rice field, soilbiological properties, and water-saving effect and water use efficiency, nutrient uptake andutilization and nitrogen use efficiency under SRI was also studied; and primary study on grainyield effect of the system of rice intensification with plastic mulching was conducted. The resultswere as follows:
     1. Compared to TF, tiller number, plant height, chlorophyll contents of functional leaves, drymatter accumulation, dry weight of roots, effective panicles, seed setting rate and 1000-grainweight was significantly decreased due to serious drought stress to rice under UM, and the grainyield was decreased by 44.8%. PM improved the rice tillering capability; however, grain yield wasdecreased by 23.9% compared to TF, which was due to lower rate of tiller and 1000-grain weightand smaller spike. At mature stage, the plant height was significantly decreased under PM,however, chlorophyll contents of functional leaves, dry matter accumulation and dry weight ofroots was not significant difference compared to TF. Compared with TF, SRI improved the ricetillering capability and significantly increased the effective panicles, dry weight of roots, drymatter of one plant and chlorophyll contents of functional leaves during the late growth stage,however, the plant height was not difference. Results showed that grain yield was increased by26.4%, 11.5% and 6.4%~48.4% in 2004, 2005 and 2006, respectively, compared to TF. SRI havesmaller spike than TF, however, the seed setting rate and 1000-grain weight was not significantdifference.
     2. Yield-increasing was decreased with N application rate increased under both of TF and SRItreatments. The maximum grain yield under SRI was in NI level and there was not significantdifference between with N2, however, the maximum grain yield under TF was in N2 level. Compared to TF, SRI significantly increased grain yields in N0 and N1, however, there was nosignificantly in N2 and N3 level.
     3. SRI significantly increased nutrients (N, P, and K) uptake by rice and could promote (N, P,and K) transfer to the panicle. At mature stage, the amount of absorption and accumulation of N, Pand K in different organs (leaves, stem and sheaths and panicle) under SRI was higher than TF.Compared with TF, the ratio of panicle N, P and K to total N, P and K was increased by 5.0%,2.0% and 3.0%, and the ratio of leave N, P and K to total N, P and K was decreased by 6.7%,7.3% and 12.2%, respectively. The internal nutrient efficiency of N, P and K under SRIsignificantly increased by 21.9%, 19.3% and 17.0% compared to TF, respectively.
     4. As N rate increased, the amount of N uptake by rice plant increased, however, N in paniclewas up to the maximum in N2 level then decreased under both SRI and TF, and N use efficiency(ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N) under bothSRI and TF significantly decreased. Results showed that higher agronomic N use efficiency beingachieved at a relatively low N fertilizer rate (80 kg N ha~(-1)) with SRI and it increased by 47.9%compared to TF; however, it was lower 44.7%, 70.9% than TF at 160 and 240 kg N ha~(-1),respectively. Among N treatments, partial factor productivity of applied N was increased underSRI compared to TF. Results also showed that the interaction between cultivation and nitrogenapplication rates on nitrogen use efficiency were significantly difference.
     5. Compared with TF, ammonia volatilization was significantly increased with SRI; however,the dynamic changes in ammonia volatilization rate under different stage were similar in bothtreatments. The greatest ammonia volatilization loss was at basal stage, next was at tillering stageand the smallest was at booting stage. The total amount of ammonia volatilization loss during therice growth stage under SRI was higher 25.2% than TF.
     6. Compared with TF, PM and NM resulted in 672.8 mm and 631.0 mm of total waterconsumtion in 2004, respectively, moreover, water use efficiency significantly increased by PM,but the total water use efficiency under NM was no significantly difference. SRI resulted in anirrigation water saving of 461.5 mm, 476.5 mm and 830.3 mm in 2004, 2005 and 2006,respectively, a reduction of 33.9%, 26.9% and 36.9%, compared to TF. Compared with TF, totalwater use efficiency increased by 91.3%, 54.5% and 93.5% in 2004, 2005 and 2006, respectively,with SRI practices, and irrigation water use efficiency increased by 195.6%, 90.1% and 130.5% in2004, 2005 and 2006. Water use efficiency significantly increased by optimum amount of Nfertilizer application.
     7. Treatment SRI was significantly higher than the control in population of cultureablemicroorganisms (bacteria, fungi, actinomycetes), microbial biomass C and N, and microbialbiomass P in the late growth stage, regardless of sampling date. Compared with TF, the activity ofurease, alkaline phosphatase, invertase and catalase in soil at the tillering stage was increased by12.6%, 30.0%, 15.1% and 13.8%, respectively. The treatment SRI was also higher than the controlin soil available N, and however, showed no significant difference in soil available P.
     8. Compared with TF, the system of rice intensification with plastic mulching (PMSRI)improved the rice tillering capability and significantly increased the effective panicles, however,the grain number per spike and 1000-grain weight was decreased. Dry matter one plant underPMSRI was higher than TF and population dry matter weight was higher or equal. Results showedthat effective panicle, seed setting rate and grain number per spike decreased with the plantingdensity increasing, and dry matter one plant increased and population dry matter weight decreased.Compared with TF, grain yield under PMSRI with transplanting plant of 25 cm×25 cm and 25cm×30 cm. was increased by 10.3%, 3.7%, respectively, and decreased by 1.2% withtransplanting plant of 25 cm×17 cm.
     In a word, SRI improved the rice tillering capability and significantly increased the effectivepanicles compared to TF, and there were well developed root system under SRI. Results alsoshowed that SRI had higher chlorophyll contents of functional leaves during the late growth stagethan TF. Compared with TF, SRI increased the nutrients uptake by rice plant and improvednutrients transfer to the panicle and increased the grain yield. Moreover, yield-increasing wassignificantly at lower level of nitrogen. It is most important to the sustainable development of riceproduction due to significant water-saving effect with SRI and SRI was helpful to improve thebiological characteristics of soil. However, ammonia volatilization loss from rice field wasincreased by SRI and the reasonable nitrogen management was very important under SRI.
引文
Abha M,Salokhe VM.Seedling charactistics and the early growth of transplanted rice under different water regimes.Experimental Agriculture,2008,44:1-19.
    Alef K,Beck TH,Kleine D.A comparison of methods to estimate microbial biomass and N mineralization in agricultural and grassland soils.Soil Biology & Biochemistry,1988,20:561-565.
    Amato M,Ladd JN.Studies of nitrogen immobilization and mineralization in calcareous soils.V.Formation and distribution of isotope labeled biomass during decomposition of ~(14)C and ~(l5)N labeled plant material.Soil Biology & Biochemistry,1980,12:405-411.
    Anderson JPE,Donmash KH.Quantities of plant nutrients in the microbial biomass of selected soils.Soil Science,1980,130:211-216.
    Aneja VP,Chauhan JP,Walker JT.Characterization of atmospheric ammonia volatilizations from swine waste storage and treatment lagoons.Journal of Geophysical Research Atmosphere,2000a,105:11535-11545.
    Aneja VP,Roelle PA,Murray GC,et al.Atmospheric nitrogen compounds.Ⅱ.Volatilizations,transport,transformation,deposition and assessment.Atmospheric Environment,2000b,35:1903-1911.
    Anthofer J.The potential of the system of rice intensification (SRI) for poverty reduction in Cambodia.In:Paper Presented in Conference on International Agricultural Research for Development,Deutscher Tropentag,Berlin,October 5-7,2004.
    Aoyama M,Nozawa T.Microbial biomass nitrogen and mineralization immobilization processes of nitrogen in soils incubated with various organic materials.Soil Science and Plant Nutrition,1993,39:23-32.
    Apsimon HM,Kruse M,Bell JNB.Ammonia emissions and their role in acid deposition.Atmospheric Environment,1987,21:1939-1946.
    Aslam T,Choudhary MA,Sagar S.Tillage impact on soil microbial biomass C,N and P earthworms and agronomy after two years of cropping following permanent pasture in New Zealand.Soil Tillage and Research,1999,51:103-111.
    Bai Q,Gattinger A,Zelles L.Characterization of microbial consortia in paddy rice soil by phospholipid analysis.Microbial Ecology,2000,39:273-281.
    Bhagat RM,Bhuiyan SI,Moody K.Water,tillage and weed interactions in low land tropical rice:a review.Agricultural Water Management,1996,31:165-184.
    Bhattacharyya P,Chakrabarti K,Chakraborty A.Microbial biomass and enzyme activities in submerged rice soil amended with solid waste compost and decomposed cow manure.Chemosphere,2005,60 (3):310-318.
    Bolton JRH,Smith JJ,Link SO.Soil microbial biomass and activity of a disturbed and undisturbed shrub steppe ecosystem.Soil Biology & Biochemistry,1993,25:545-552.
    Bouwman AF.Introduction.In:AF Bouwman (ed.):Soils and the greenhouse effect.John Wiley and Sons,1990,25-32.
    Bouwman AF,Lee DS,Asman WAH,et al.A glob high-resolution emission inventory for ammonia.Global Biogeochemical Cycles,1997,11:567-587.
    Bouwman AF,Van Der Hoek KW.Scenarios of animal waste production and fertilizer use and associated ammonia emission for developing countries.Atmospheric Environment,1997,11:4095-4102.
    Bouwman AF,Van Vuuren DP,Derwent RG,et al.A global analysis of acidification and eutrophication of terrestrial ecosystems.Water,Air and Soil Pollution,2002,141:349-382.
    Brookes PC.The use of microbial parameters in monitoring soil pollution.Biology and Fertility of Soils,1995,19:269-279.
    Brookes PC,Landman A,Pruden G,et al.Chlorolorm fumigation and the release of soil nitrogen:a rapid direct extraction and method to measure microbial biomass nitrogen in soil.Soil Biology & Biochemistry,1985,17:837-842.
    Brookes PC,Powlson DS,Jenkinson DS.Measurement of microbial biomass phosphorus in soil.Soil Biology & Biochemistry,1982,14:319-329.
    Brown L R,Haweil B.China's water shortage could shake world food security.World Water,1998,(7/8):3-4.
    Cai GX,Peng GH,Wang XZ,et al.Ammonia volatilization from urea applied to acid paddy soil in southern China and its control.Pedosphere,1992,(4):345-354.
    Cai ZC,Kang GD,Tsuruta H,et al.Estimate of CFL,emissions from year-round flooded rice fields during rice growing season in China.Pedosphere,2005,15 (1):66-71.
    Cai ZC,Tsuruta H,Gao M,et al.Options for mitigating methane emission from a permanently flooded rice field.Global Change Biology,2003,9:37-45.
    Campbell L.Managing soil fertility decline.In:Rengel Z.Nutrient Use in Crop Production.Haworth Press,1998,29-52.
    Cassman KG,Peng S,Oik DC,et al.Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems.Field Crops Research,1998,56:7-39.
    Ceesay M,Reid WS,Fernandes ECM,et al.The effects of repeated soil wetting and drying on lowland rice yield with System of Rice Intensification (SRI) methods.International Journal of Agricultural Sustainability,2006,4(1):5-14.
    Chan KY,Heenan DP.Microbial-induced soil aggregate stability and different crop rotations.Biology & Fertility of Soils,1999,30:29-32.
    Chen GC,He ZL and Wang YJ.Impact of pH on microbial biomass carbon and micriobial biomass phosphorus in red soils.Pedosphere,2004,14(1):9-15.
    Crutzen PJ.Methane sink sand source.Nature,1991,350,380-381.
    De Datta SK.Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia.Fertilizer Research,1986,(9):171-186.
    De Datta SK.Nitrogen transformation in wetland rice ecosystems.Fertilizer Research,1995,42:193-203.
    Denmead OT,Freney JR,Simpson R.Dynamic of ammonia volatilization during furrow irrigation of maize.Soil Science Society of America Journal,1982,46:149-155.
    Dentener FJ,Crutzen PJ.A three-dimensional model of the global ammonia cycle.Journal of Atmospheric Chemistry,1994,19:331-369.
    Dick RPA.Review:long-term effects of agricultural systems on soil biochemical and microbial parameters.Agriculture,Ecosystems & Environment,1992,40:25-36.
    Dlugokencky EJ,Steeele LP,Lang PM,et al.The growth rate and distribution of atmospheric methane.Journal of Geophysical Research,1994,99:17021-17043.
    Dobermann A.A critical assessment of the system of rice intensification.Agricultural Systems,2004,79 (3):261-281.
    Duan ZH,Xiao HL.Effects of soil properties on ammonia volatilization.Soil Science and Plant Nutrient,2000,46(4):845-852.
    Fagerial N K,Baligar V C.Methodology for evaluation of lowand rice genotypes for nutrient use efficiency.Journal of Plant Nutrition,2003,26:1315-1333.
    Fan MS,Liu XJ,Jiang RF,et al.Crop yield,internal nutrient efficiency and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation.Plant and Soil,2005,277:265-276.
    FAO.Statistical databases,Food and Agriculture Organization (FAO) of the United Nations.2001.http://www.fao.org
    FAO.Statistical databases,Food and Agriculture Organization (FAO) of the United Nations.2004.http://www.fao.org
    Freney JR,Trevitt ACF,Muirhead WA,et al.Effect of water depth on ammonia loss from lowland rice.Fertilizer Research,1988,16:97-107.
    Freney JR,Trevitt ACF,De Datta SK,et al.The interdependence of ammonia volatilization and denitrification as nitrogen loss processes in flooded rice fields in the Philippines.Biology & Fertility of Soils,1990,9:31-36.
    Ghoshal N and Singh KP.Effects of farmyard manure and inorganic fertilizer on the dynamics of soil microbial biomass in a tropical dryland agroecosystem.Biology and Fertility of Soils,1995,19:231-239.
    Giller KE,Witter E,McGraph SR Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:A review.Soil Biology & Biochemistry,1998,30:1389-1414.
    He ZL,Wu J,O'Donnell AG,Syers JK.Seasonal responses in microbial biomass carbon,phosphorus and sulfur in soils under pasture.Biology & Fertility of Soils,1997,24:421-428.
    Hoque MM,Inubushi K,Miura S,et al.Biological dinitrogen fixation and soil microbial biomass carbon as influenced by free-air carbon dioxide enrichment (FACE) at three levels of nitrogen fertilization in a paddy field.Biology and Fertility of Soils,2001,34:453-459.
    Holland EA,Lamarque JF.Modeing bio-atmospheric coupling of the nitrogen cyclethrough NO_x emission and NO_x deposition.Nutrient Cycling in Agroecosy'stems,1997,48:7-24.
    IPCC.Climate Change:IPCC WGI third assessment report.Chapter 6.Assessment and Expect Review Draft.2000.
    Jenkinson DS.Determination of microbial biomass C and N in soil.In Wilson JR (ed.).Advances in Nitrogen in Agricultural Ecosystems.CAB International,Willingford.1988,368-386.
    Jimenez ML,de la Horra AM,Pruzzo L,et al.Soil quality:a new index based on microbiological and bio-chemical parameters.Biology & Fertility of Soils,2002,35 (4):302-306.
    Kennday AC,Microbial characteristics of soil quality.Journal of Soil and Water Conservation,1995,243-348.
    Larsen R,Gunary D.Ammonia loss from amnionic fertilizers applied to calcareous soils.Journal of the Science of Food and Agriculture,1962,13:566-572.
    Latif MA,Islam MR,Ali MY,et al.Validation of the system of rice intensification (SRI) in Bangladesh.Field Crops Research,2005,93 (2-3):281-292.
    Lazaro RC.Water-saving High-yielding TQPM and SRI Trial Runs and Demonstrations in the Magballo-Balicotoc-Canlamay Integrated Irrigation Sub-project.Report to National Irrigation Administration,Quezon City,from the Southern Philippines Irrigation Support Project.2004
    Lee DS,Dollard GJ.Uncertainties in current estimates of emissions of ammonia in the United Kingdom.Environmental Pollution,1994,86:267-277.
    Letia L,De Nobilli M,Mondini C,et al.Influence of inorganic and organic fertilization on soil microbial biomass,metabolic quotient and heavy metal bioavailability.Biology and Fertility of Soils,1999,4:371-376.
    Li H,Liang XQ,Yingxu Chen YX,et al.Ammonia volatilization from urea in rice fields with zero-drainage water management.Agricultural Water Management,2008,95:887-894.
    Lin Xianqing,Zhou Weijun,Zhu Defeng,et al.Efect of SWD irrigation on photosynthesis and grain yield of rice (Oryza sativa L.).Field crops research,2005,94:67-75.
    Lu Jun,Taiichiro Ookawa,Tadashi Hirasawa.The effects of irrigation regimes on the water use,dry matter production and physiological responses of paddy rice.Plant and Soil,2000,223:207-216.
    Mammoto T,Anderson JP,Domsh KH.Mineralization of nutrients from soil microbial biomass.Soil Biology & Biochemistry.1982,14:469-475.
    Marinari S,Masciandaro G,Ceccanti B,et al.Evolution of soil organic matter changes using pyrolysis and metabolic indices:A comparison between organic and mineral fertilization.Bioresource Technology,2006,98 (13):2479-2484.
    Marumoto T,Anderson JPE,Domsch LH.Decomposition of ~(14)C and ~(15)N-labeled microbial cells in soil.Soil Biology & Biochemistry,1982,14:461-467.
    Matson P,Lohse KA,Hall SJ.The globalization of nitrogen deposition:Consequences for terrestrial ecosystems.AMBIO,2002,31(2):113-119.
    McDonald AJ,Hobbs PR,Riha SJ.Does the system of rice intensification outperform conventional best management? A synopsis of the empirical record.Field Crops Research,2006,96:31-36.
    McMarty GW,Meisinger JJ.Effect of N fertilizer treatments on biologically active N pools in soils under plow and no tillage.Biology & Fertility of Soils,1997,24:406-412.
    Mille M,Dick RP.Thermal stability and activities of soil enzymes as influenced by crop rotations.Soil Biology & Biochemistry,1995,27:1161-1166.
    Mizutani M,Kalita PK,Shinde D.Effect of rice varieties and midterm drainage practice on water requirement in dry season paddy-observational studies on water equipment of lowland in Thailand (I).Irrigation Engineering and rural Planning,1989,(17):6-20.
    Moore JM,Klose S,Tabatabai MA.Soil microbial biomass carbon and nitrogen as affected by cropping systems.Biology and Fertility of Soils,2000,31:200-210.
    Mosier AR,Chapman SL,Freney JR.Determination of dinitrogen emission and retention in floodwater and porewater of lowland rice field fertilized with 15N-urea.Fertilizer Research,1989,19:127-136.
    Moser CM,Barrett CB.The disappointing adoption dynamics of a yield-increasing,low external-input technology:the case of SRI in Madagascar.Agricultural Systems,2003,76:1085-1100.
    Namara RE,Weligamage P,Barker R.Prospects for Adopting System of Rice Intensification in Sri Lanka:A Socioeconomic Assessment.Research Report 75.International Water Management Institute,Colombo,Sri Lanka,2003.
    Nsam H.Development in soil microbiology since the Mid 1960s.Geodema,2001,100 (4):389-402.
    Ohnishi M,Horie T,Homma K,et al.Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand.Field Crops Research,1999,64:109-120.
    Pandey N,TRipathi RS,Mittra BN.Yield,nutrient uptake and water use efficiency of rice as influenced by nitrogen and irrigation.Annals of Agricultural Research,1992,13 (4):377-382.
    Peng S,Shen K,Wang X,et al.A new rice cultivation technology:plastic film mulching.International Rice Research Notes,1999,24:9-10.
    Reichardt W,Mascarina GB,Padre B,et al.Microbial communities of continuously cropped,irrigated rice fields.Applied and Environmental Microbiology,1997,63:233-238.
    Rodhe HA comparison of the contribution of various gases to the greenhouse effect.Science,1990,248:1217-1219.
    Rupela OP,Wani SP,Kranthi M,et al.Comparing soil properties of farmers' fields growing rice by SRI and conventional methods.In:Proceedings of 1st National SRI Symposium,November 17-18,2006,Hyderabad.Worldwide Fund for Nature-ICRISAT,Patancheru,Hyderabad.
    Sarathchandra SU,Perrot KW,Upsdell MP.Microbiological and biochemicalcharacteristics of a range of New Zealand soils under established pastures.Soil Biology & Biochemistry,1984,16:177-183.
    Sato S,Uphoff N.A review of on-farm evaluations of system of rice intensification methods in Eastern Indonesia.CAB Reviews:Perspectives in Agriculture,Veterinary Science,Nutrition and Natural Resources,2007,2(54).
    Satyanaryana A,Thiyagarajan TM.Opportunities for water saving with higher yield from the system of rice intensification.Irrigation Science,2007,25:99-115.
    Satyanarayana A,Thiyagarajan TM,Uphoff N.Opportunities for water saving with higher yield from the system of rice intensification.Irrigation Science,2006,25:99-115.
    Sheehy JE,Peng S,Dobermann A,et al.Fantastic yields in the system of rice intensification:fact or fallacy? Field Crops Research,2004,88:1-8.
    Sheehy JE,Sinclair TR,Cassman KG.Curiosities,nonsense,non-science and SRI.Field Crops Research,2005,91:355-356.
    Shi CH,Zhu J,Yu YG.Genotypexenvironment interaction effects effect and genotypic correlation for nutrient quality traits of indica rice (Oryza sativa L.).Indian Journal of Agricultural Sciences,2000,70(2):85-89.
    Shibahara F,Inubushi K.Effects of organic matter application on microbial biomass and available nutrients in various types of paddy soils.Soil Science and Plant Nutrition,1997,43:191-203.
    Simpson JR,Freney JR,Wetselaar R,et al.Transformations and losses of urea nitrogen after application to flooded rice.Australian Journal of Agricultural Research,1984,35:189-200.
    Sinha SK,Talati J.Productivity impacts of the system of rice intensification (SRI):A case study in West Bengal,India.Agricultural Water Management,2007,87:55-60.
    Sinclair T,Cassman KG.Agronomic UFOs? Field Crops Research,2004,88:9-10.
    Singh JS,Raghubanshi AS,Srivastava SC.Microbial biomass act as a source of plant nutrients in dry tropical forest and savanna.Nature,1989,338:499-500.
    Stoop WA,Kassam AH.The SRI controversy:a response.Field Crops Research,2005,91:357-360.
    Stoop WA,Uphoff N,Kassam A.A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar:opportunities for improving farming systems for resource-poor fanners.Agricultural Systems,2002,71:249-274.
    Surridge C.Feast or famine? Nature,2004,428:360-361.
    Tao Hongbin,Breck Holger,Dittert Klaus,et al.Growth and yield formation of rice in the water-saving ground cover rice production system (GCRPS).Field Crops Research,2006,95:1-12.
    Thies JE,Grossman JM.The soil habitat and soil ecology.In:Uphoff,N.et al.,eds.,Biological Approaches to Sustainable Soil Systems,2006,(pp.59-78).CRC Press,Boca Raton,FL
    Turner BL,Haygarth PM.Phosphorus solubilization in rewetted soils.Nature,2001,411:258.
    Uphoff N,Fernandes ECM,Yuan LP,et al.2002.Assessment of the System for Rice Intensification (SRI):Proceedings of an International Conference,Sanya,China,1-4 April 2002.Cornell International Institute for Food,Agriculture and Development(CIIFAD),Ithaca,NY.http://ciifad.cornell.edu/ proccontents.html (verified 21 April 2003).
    Vance ED,Brookes PC,Jenkinson DS.An extraction method for measuring soil microbial biomass C.Soil Biology & Biochemistry,1987,19:703-707.
    Walker TS,Bais HP,Grotewold E,Vivanco JM.Root exudation and rhizosphere biology.Plant Physiology,2003,132:44-51.
    Wang G,Dobermann A,Witt C,et al.Performance of site-specific nutrient management for rice in southeast China.Agronomy Journal,2001,93:869-878.
    Wang Mingxing.Methane in rice agriculture,in:From Atmospheric General Circulation to Global Change,Beijing:China Meteorological Press,1996,647-659.
    Williams JF,Roberts SR,Hill JE,et al.Managing water depth for weed control in rice.California Agriculture,1990,44:7-10.
    Witt C,Biker U,Galicia CC,et al.Dynamics of soil microbial biomass and nitrogen availability in a flooded rice soil amended with different C and N sources.Biology & Fertility of Soils,2000,30:520-527.
    Witter E,Martinsson AM,Garcia FV.Size of the soil microbial biomass in a long-term experiment as affected by different N-fertilizers and organic manures.Soil Biology & Biochemistry,1993,25:659-669.
    Wu J,Jogensen RG,Pommerening B,et al.Measurement of soil microbial biomass C by fumigation:An automated procedure.Soil Biology & Biochemistry,1990,22:1167-1169.
    Xing GX,Zhu ZL.An assessment of N loss from agriculture fields to the environment in China.Nutrient Cycling in Agroecosystems,2000,57:67-73.
    Xu JG,Heeraman DA,Wang Y.Fertilizer and temperature effects on urea hydrolysis in undisturbed soil.Biology and Fertility of Soils,1993,16:63-65.
    Xu YC,Sh QR,Li ML,Dittert K.Effect of soil water status and mulching on N_2O and NH_4 emission from lowland rice field in China.Biology and Fertility of Soils,2004,39:215-217.
    Yang CH,Crowley DE.Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Applied and Environmental Microbiology, 2000, 66: 345-351.
    Yang C, Yang L, Ouyang Z. Organic carbon and fraction in paddy soil as affected by different nutrient and water regimes. Geoderma, 2005, 124: 133-142.
    Zheng X, Fu C, Yan X, et al. The Asian nitrogen cucle case study. AMBIO, 2002, 31: 79-81.
    Zottl HW. Remarks on the effects of nitrogen deposition to forest ecosystems. Plant and Soil, 1990, 128: 83-89.
    昂盛福,王学会,谢世秀,等.超级杂交稻强化栽培体系试验研究初报.安徽农业科学,2002,30(3):377-378,388.
    柏彦超,倪梅娟,王娟娟等.水分胁迫对旱作水稻产量与养分吸收的影响.农业工程学报,2007,23(6):101-104.
    蔡贵兴,朱兆良.稻田化肥氮的气态损失.土壤学报,1995,32(增刊):128-135.
    蔡一霞,朱庆森,王志琴,等.结实期土壤水分对稻米品质的影响.作物学报,2002,28(5):601-608.
    曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1):105-109.
    曹金留,田光明,任力涛,等.江苏南部地区稻麦两熟土壤中尿素的氨挥发损失.南京农业大学学报,2000,23(4):51-54.
    曹启章,单连贵.谈旱作水稻的发展前景.辽宁农业科学,1994,(3):45-47.
    陈敏建,梁瑞驹,刘玉龙.我国二十一世纪的水和粮食问题.水利学报,1999,(1):1-7.
    陈国潮,何振立.红壤不同利用方式下的微生物量研究.土壤通报,1998,29(6):276-278.
    陈惠哲,朱德峰,饶龙兵,等.强化栽培对水稻后期群体质量及产量形成的影响.华中农业大学学报,2006,25(5):483-487.
    陈苇,卢婉芳,段彬伍.稻草还田对晚稻稻田甲烷排放的影响.土壤学报,2002,39(2):170-176.
    陈新红,刘凯,徐国伟,等.氮素与土壤水分对水稻养分吸收和稻米品质的影响.西北农林科技大学学报(自然科学版),2004,32(3):15-19,24.
    陈新红,徐国伟,孙华山,等.结实期土壤水分与氮素营养对水稻产量与米质的影响.扬州大学学报:农业与生命科学版,2003,24(3):37-41.
    陈玉民,孙景生,肖俊夫.节水灌溉的土壤水分控制标准问题研究.灌溉排水,1997,16(1):24-28
    陈宗良,高金和,袁怡,等.不同农业管理方式对北京地区稻田甲烷排放的影响研究.环境科学研究,1992,5(4):1-7.
    程建平,曹凑贵,潘圣刚,等.不同灌溉方式下水稻产量性状相关性及通径分析.灌溉排水学报,2008,27(1):96-98.
    程旺大,赵国平,王岳均,等.浙江省发展水稻节水高效栽培技术的探讨.农业现代化研究,2000,21(3):197-200.
    程旺大,赵国平,张国平,等.水稻节水栽培的生态和环境效应.农业工程学报,2002,18(1):191-194.
    崔玉亭,程序,韩纯儒.苏南太湖流域水稻经济生态适宜施氮量的研究.生态学报,2000, 20(4):659-662.
    崔远来,李远华,吕国安,等.不同水肥条件下水稻氮素运移与转化规律研究.水科学进展,2004,15(3):280-285.
    邓定武,谭正之,龙兴汉,等.灌溉对杂交水稻产量及稻米品质的影响.作物研究,1990,4(2):7-9.
    邓美华,尹斌,张绍林,等.不同施氮量和施氮方式对稻田氨挥发损失的影响.土壤,2006,38(3):263-269.
    邓文胜.我国水资源开发利用的问题及对策.武汉教育学院学报,1999,18(6):50-54.
    丁友苗,黄文江,王纪华,等.水稻旱作对产量和产量构成因素的影响.干旱地区农业研究,2002,20(4):50-54.
    董明辉,唐成.不同栽培环境对稻米品质的影响.耕作与栽培,2005,(3):20-22.
    杜永,刘辉,杨成,等.超高产栽培迟熟中粳稻养分吸收特点的研究.作物学报,2007,33(2):208-215.
    樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究Ⅱ.土壤酶活性与土壤肥力.植物营养与肥料学报,2003a,9(2):146-150.
    樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响.水土保持研究,2003b,10(1):85-87.
    范友胜,卢爱芳,李强,等.水稻强化栽培不同因子对优98主要经济性状及产量的影响.安徽农业科学,2007,35(21):6398-6401.
    冯惟珠,苏祖芳,杜永林,等.水稻灌浆期源质量与产量关系及氮素调控研究.中国水稻科学,2000,14(1):24-30.
    冯跃华,邹应斌,Roland J Buresh.不同耕作方式对杂交水稻根系特性及产量的影响.中国农业科学,2006,39(4):693-701.
    高亮之,金之庆,葛道阔,等.水稻光合2蒸散耦合模型与不同株型的水分利用效率.江苏农业学报,2001,17(3):135-142.
    高如嵩,张蒿午.稻米品质气候生态基础研究.西安:陕西科学技术出版社,1994.
    高真伟,王冬梅,展广军,等.水田覆膜对稻作生长的影响.垦殖与稻作,2001,2:11-13.
    关松荫等.土壤酶及其研究方法.北京:农业出版社,1986.
    郭朝晖,廖柏寒,黄昌勇.模拟酸雨下Cd、Cu、Zn复合污染对土壤微生物量碳和酶活性的影响.应用与环境生物学报,2003,9(4):382-385.
    韩广轩,朱波,江长胜,等.川中丘陵区稻田甲烷排放及其影响因素.农村生态环境,2005,21(1):1-6.
    贺浩华,彭小松,刘宜柏.环境条件对稻米品质的影响.江西农业学报,1997,9(4):66-72.
    贺阳冬,马均,魏万蓉.不同肥料种类对水稻强化栽培产量及稻米品质的影响.中国农学通报,2004,20(6):177-181.
    黄昌勇.土壤学.北京:中国农业出版,2000.
    黄进宝,范晓晖,张绍林.太湖地区铁渗水耕人为土稻季上氮肥的氨挥发.土壤学报,2006,43(5):786-792.
    黄文江,黄义德,王纪华,等.水稻旱作对其生长量和经济产量的影响.干旱地区农业研 究,2003,21(4):15-19.
    黄新宇,徐阳春,沈其荣等.水作与地表覆盖旱作水稻的生长和水分利用效率.南京农
    业大学学报,2004,27(1):32-35.
    黄修桥,高峰,王宪杰.节水灌溉与21世纪水资源的持续利用.灌溉排水,2001,20(3):1-5.
    黄义德,张自立,魏凤珍,等.水稻覆膜旱作的生态生理效应.应用生态学报,1999,10(3):305-308.
    金发会,李世清,卢红玲,等.黄土高原不同土壤微生物量碳、氮与氮素矿化势的差异.生态学报,2008,28(1):227-236.
    金继运,林葆.化肥在农业发展中的作用-历史、现状和展望.在中国化工学会与中国作物营养与肥料学会联合召开“提高肥料利用率”学术研讨会的报告.北京,1996.
    金千瑜,欧阳由男.我国发展节水型稻作的若干问题探讨.中国稻米,1999,(1):9-12.
    金千瑜,欧阳由男,张国平.覆膜旱栽水稻的产量与生育表现研究.浙江大学学报(农业与生命科学版),2002,28(4):362-368.
    康绍忠.新的农业科技革命与21世纪我国节水农业的发展.干旱地区农业研究,1998,16(1):11-17.
    梁尹明,林贤青,孙永飞,等.水稻强化栽培下协优9308的产量及穗粒结构研究.中国农学通报,2004,20(3):84-86.
    梁永超,胡峰,杨茂成,等.水稻覆膜旱作高产节水机理研究.中国农业科学,1999,32(1):26-32.
    廖敏,谢晓梅,吴良欢.水稻覆膜旱作对稻田土壤微生物生态质量的影响.中国水稻科学,2002,16(3):243-246.
    李方敏,樊小林,陈文东.控释肥对水稻产量和氮肥利用率的影响.植物营养与肥料学报,2005,11(4):494-500.
    李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响.植物营养与肥料学报,2005,11(1):51-56.
    李经勇,余官平,唐永群,等.杂交水稻强化栽培不同措施的增产效应研究.西南农业大学学报,2005,27(6):804-808.
    李曼莉.旱作和水作条件下稻田CH_4和N_2O排放的研究.2003,硕士论文.
    李明贤.水稻强化栽培技术体系适栽叶龄简报.牡丹江师范学院学报:自然科学版,2007,(3):33.
    李庆逵.中国农业持续发展中的肥料问题.江西:江西科学技术出版社.1997.
    李荣刚.高产农田氮素肥效与调控途径-以江苏太湖地区稻麦两熟农区为例推及全省.北京:中国农业大学,2000.
    李永和.论水稻节水灌溉途径.灌溉排水,1997,16(3):45-47.
    凌励.高产水稻养分吸收特点分析.见水稻群体质量理论与实践.北京:中国农业出版社,1995.
    凌启鸿,张洪程,丁艳锋,等.水稻高产技术的新发展-精确定量栽培.中国稻米,2005,(1):3-7.
    凌启鸿.作物群体质量.上海科学技术出版社,2000.
    林华,吴树业,吴春赞,等.水稻强化栽培技术(SRI)在单季晚稻上应用效果.作物杂志,2005,(1):36-37.
    林华,吴春赞,陈爱柳.水稻强化栽培增产机理及其关键技术.杂交水稻,2006,21(1):42-44.
    林贤青,朱德峰,张玉屏.水稻强化栽培体系的原理及其应用效果.中国稻米,2003,(3):23-24.
    林贤青,周伟军,朱德峰,等.强化栽培下水稻穗分化期叶片光合速率与水分利用率的研究.中国水稻科学,2005b,19(2):132-136.
    林贤青,朱德峰,李春寿,等.水稻不同灌溉方式下的高产生理特性.中国水稻科学,2005a,19(4):328-332.
    林兴军,林贤青,Norman U.水稻强化栽培(SRI)对农业的增产增效和对环境的改善作用中国稻米,2006,(1):31-32.
    刘国华,陈立云,肖应辉,等.杂交水稻强化栽培与常规栽培的组合间产量性状比较.湖南农业大学学报(自然科学版),2003,29(4):80-91.
    刘广明,杨劲松,姜艳,等.节水灌溉条件下水稻需水规律及水分利用效率研究.灌溉排水学报,2005,24(6):49-52,55.
    刘凯,张耗,张慎凤,等.结实期土壤水和灌溉方式对于水稻产量与品质的影响及其生理原因.作物学报,2008,34(2):268-276.
    刘立军.水稻氮肥利用率及其调控途径.2005.
    刘桃菊,戚昌翰,唐建军.水稻根系建成与产量及其构成关系的研究.中国农业科学,2002,35(11):1416-1419.
    刘云开,罗先富,王学华.超级稻稀植强化栽培技术研究.湖南农业科学,2002,(6):19-22.
    陆秀明,黄庆,刘怀珍.水稻强化栽培条件下植株的某些生理特性研究.华南农业大学学报,2003,27(2):5-7.
    陆秀明,黄庆,刘军,等.水稻强化栽培试验研究.华南农业大学学报,2004,25(1):5-8.
    吕殿青,周延安,孙本华.氮肥使用对环境污染影响的研究.植物营养与肥料学报,1998,4(1):8-15.
    龙旭.水稻强化栽培不同移栽秧龄、密度的研究.四川农业大学硕士学位论文,2003.
    龙旭,马均,许凤英,等.水稻强化栽培的适宜秧龄和栽植密度研究.四川农业大学学报,2005,23(3):368-372.
    卢瑶,李经勇,王季春,等.强化栽培对杂交水稻渝优11号干物质积累及其产量的影响.西南农业学报,2005,18(6):719-723.
    罗德强,周维佳,江学海,等.水稻强化栽培试验研究初报.耕作与栽培,2006,(2):19-20.
    马均,陶诗顺,田彦华,等.水稻强化栽培试验初报.杂交水稻,2002,17(5):42-44.
    马立珊,钱敏仁.太湖流域水环境硝态氮和亚硝态氮污染的研究.环境科学,1987,8(2):60-65.
    毛国娟,张根贤,温怀楠,等.SRI在单季晚稻上的应用效果.中国稻米,2004,(2):26-28.
    茆智.水稻节水灌溉及其对环境的影响.中国工程科学,2002,4(7):8-16.
    潘腊青,吴良欢.水稻覆膜旱作栽培方式对稻田地下水水质的影响.农业环境保护,2000, 19(5):260-262.
    彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略.中国农业科,2002,35(9):1095-1103.
    彭世彰.节水灌溉水稻需水新特点.农田水利与小水电,1992,(11):7-11.
    彭世彰,李道西,徐俊增,等.节水灌溉模式对稻田CH_4排放规律的影响.环境科学,2007,28(1):9-13.
    彭世彰,徐俊增,黄乾,等.水稻控制灌溉模式及其环境多功能性.沈阳农业大学学报,2004,35(5):443-445.
    彭世彰,朱成立.节水灌溉的作物需水量试验研究.灌溉排水学报,2003,22(2):21-25.
    彭绪民,宋秀民.水稻控制灌溉节水高产优质机理分析.山东水利专科学校学报,1998,10(2):69-72.
    钦绳武,范晓晖,汪金舫.五种主要作物的施肥技术.见:徐静安主编.施用技术与农化服务.北京:化学工业出版社,2001.
    Norman U,邱敦莲.水稻强化栽培体系适应21世纪的需要.国外作物育种,2004,(5):1-2.
    邱福林,郑伟平.水分胁迫对水稻生长影响的研究进.垦殖与稻作,2000,(2):7-8,13.
    单玉华,王余龙,黄建晔,等.中后期追施~(15)N对水稻氮素积累与分配的影响.江苏农业研究,2000,21(4):18-21.
    沈康荣,汪晓春,罗显树.水稻地膜覆盖湿润栽培效果初报.湖北农业科学,1997,(1):6-8.
    沈康荣,汪晓春,刘军,等.水稻地膜湿润栽培试验示范.湖北农业科,1997,(5):18-22.
    沈善敏.氮肥在中国农业发展中的贡献和农业中氮的损失.土壤学报,2002,39(增刊):12-25.
    沈元户,廖必长,王加平,等.Ⅱ优明86水稻强化栽培体系新技术试验初报.贵州农业科学,2004,32(3):59-61.
    史吉平.长期施肥对土壤有机质和生物特性的影响.土壤肥料,1998,(3):7-11.
    石庆华,李木英,徐益群,等.水稻根系特征与地上部关系的研究初报.江西农业大学学报,1995,17(2):110-115.
    史衍玺,唐克丽.人为加速侵蚀下土壤质量的生物学特性变化.水土保持学报,1998,4(1):28-34.
    盛海君,沈其荣,周春霖.旱作水稻产量和品质的研究.南京农业大学学报,2003,26(4):13-16.
    司徒淞,张薇.稻田高产节水灌溉方式的研究.中国水稻科学,1991,5(3):127-132.
    宋文质,王少彬,苏维瀚,等,我国农田土壤的主要温室气体CO_2、CH_4和N_2O排放研究.环境科学,1996,17(1):85-92.
    宋勇生,范晓晖.稻田氨挥发研究进展.生态环境,2003,12(2):240-244.
    宋勇生,范晓晖.太湖地区稻田氮素平衡及其环境效应的研究.井冈山学院学报:综合版,2006,27(2):38-40.
    宋勇生,范晓晖,林德薯,等,太湖地区稻田氨挥发及影响因素的研究.土壤学报,2004,41(2):265-269.
    苏祖芳,杜永林,周培南,等.水稻抽穗后源质量与产量的关系.扬州大学学报(自然科 学版),2000,3(2):38-41.
    苏祖芳,张亚洁,张娟,等.基蘖肥与穗粒肥配比对水稻产量形成和群体质量的影响.江苏农学院学报,1995,16(3):1-30.
    孙波,赵其国,张桃林,等.土壤质量与持续环境Ⅲ:土壤质量评价的生物学指标.土壤,1997,(5):225-234.
    孙瑞莲,朱鲁生,赵秉强,等.长期施肥对土壤微生物的影响及其在养分调控中的作用.应用生态学报,2004,15(10):1907-1910.
    隋跃宇,焦晓光,张兴义.不同施肥制度对小麦生育期土壤微生物量的影响.中国土壤与肥料,2006,(3):48-50.
    隋跃字,张兴义,焦晓光.不同施肥制度对玉米生育期土壤微生物量的影响.中国生态农业学报,2007,15(3):52-54.
    谭长乐,张洪熙,夏广宏,等.水稻覆膜旱栽特性的研究与探讨.江苏农业科学,1999,(6):6-8.
    汤广民.水稻旱作的需水规律与土壤水分调控.中国农村水利水电,2001,(9):18-20,23.
    唐启义,冯明光.实用统计分析及DPS数据处理系统.北京:科学出版社,2002.
    唐启源,邹应斌,米湘成,等.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用.杂交水稻,2003,18(1):44-48.
    汤圣祥.马达加斯加的水稻强化栽培.世界农业,2002,(9):44.
    滕应,骆永明,李振高.土壤重金属复合污染对脲酶、磷酸酶及脱氢酶的影响.中国环境科学,2008,28(2):147-152.
    陶诗顺,马均.水稻强化栽培体系在两熟制杂交中稻上的改进应用初探.杂交水稻,2003,18(4):47-48.
    王朝辉,刘学军,巨晓棠,等.田间土壤氨挥发的原位测定-通气法.植物营养与肥料学报,2002,8(2):205-209.
    王东,于振文,于文明,等.施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响.应用生态学报,2006,17(9):1593-1598.
    王甲辰,刘学军,张福锁,等.不同土壤覆盖物对旱作水稻生长和产量的影响.生态学报,2002,22(6):922-29.
    汪仁全,马均,童平,等.三角形强化栽培技术对水稻光合生理特性及产量形成的影响.杂交水稻,2006,21(6):60-65.
    王绍华,曹卫星,姜东,等.水稻强化栽培对植株生理与群体发育的影响.中国水稻科学,2003,17(1):31-36.
    王绍华,曹卫星,丁艳锋,等.水氮互作对水稻氮吸收与利用的影响.中国农业科学,2004,37(4):497-501.
    王守林.水稻高产栽培技术.北京:中国盲文出版社,2000.
    王旭辉,杨祥田,罗三镯,等.水稻强化栽培技术在台州单季水稻上的应用.杂交水稻,2006,21(1):45-47.
    王学会.超级杂交稻强化栽培体系研究.安徽农业科学,2003,31(5):810-811.
    王旭辉,杨祥田,罗三镯,等.水稻强化栽培技术在台州单季水稻上的应用.杂交水稻, 2006,21(1):45-47.
    王一凡,闵忠鹏,侯守贵,等.水稻强化栽培技术体系的探讨(1).垦殖与稻作,2004,(4):14-16.
    王延军,宗良纲,李锐,等.有机栽培和常规栽培水稻体系土壤酶及微生物量的比较研究.中国生态农业学报,2008,16(1):47-51.
    王余龙.高产水稻养分吸收规律及氮素调控机理.见:水稻群体质量理论与实践.北京:中国农业出版社,1995.
    王玉英,朱波,胡春胜,等.水稻强化栽培体系的CH_4排放特征.生态环境,2007,16(4):1271-1276.
    巫伯舜,谢秀先编.水稻的旱种技术.农业出版社,1985.
    吴春赞,叶定池,林华,等.栽插密度对水稻产量及品质的影响.中国农学通报,2005,21(9):190-191,205.
    吴良欢,祝增荣,梁永超等.水稻覆膜旱作节水节肥高产栽培技术.浙江农业大学学报,1999,25(1):41-42.
    吴士前.Ⅱ优1273的特征特性与栽培技术.现代农业科技,2007,(11):110,114.
    吴宪章,张矢.陆稻地膜覆盖栽培的技术效应.黑龙江农业科学,1983,(5):1-5.
    吴文革,徐秀娟,陈周前,等.覆膜旱作水稻生育特点及其适宜栽培技术的研究.安徽农业科学,1998,26(3):227-230.
    肖玉江.水稻旱作技术.长春:吉林科技出版社,1985.
    谢应明.凤冈县水稻强化栽培体系(SRI)技术探讨.耕作与栽培,2004,(5):32,38.
    熊双莲,曾碧舫,曾碧芳,等.水稻覆膜旱作栽培效应初步研究.湖北农业科学,2003,(5):9-12.
    熊正琴.太湖地区湖、河和井水中氮污染状况的研究.农村生态环境,2002,18(2):29-33.
    许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社,1986.
    徐恒力等编著.水资源开发与保护.北京:地质出版社,2001
    徐茂,王鹤平,殷广德,等.穗肥施用时期对水稻产量及群体质量的影响.江苏农业研究,2000,21(2):36-40.
    许凤英,马均,王贺正,等.强化栽培条件下水稻的根系特征及其与产量形成的关系.杂交水稻,200,18(4):61-65.
    许凤英,马均,王贺正,等.水稻强化栽培下的稻米品质.作物学报,2005,31(5):577-582.
    徐芬芬,曾晓春,石庆华,等.不同灌溉方式对水稻根系生长的影响.干旱地区农业研究,2007,25(1):102-104.
    徐福利,梁银丽,张成娥.施肥对日光温室黄瓜生长和土壤生物学特性的影响.应用生态学报,2004,15(7):1227-1230.
    徐国郎,王寿岷,张少康,等.节水型农业灌溉技术.北京:气象出版社,1990.
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-96.
    颜晓元,蔡祖聪.淹水土壤中甲烷产生的影响因素研究进展.环境科学进展,1996,4(2): 4-32.
    严宗卜.水稻强化栽培技术(SRI)两系杂交稻两优363栽培中的应用.中国稻米,2004,5:37-38.
    杨长明,杨林章,颜廷梅.不同养分和水分管理模式对水稻土质量的影响及其综合评价.生态学报,2004,24(1):63-70.
    杨春献,张其茂,彭承界,等.水稻强化栽培(SRI)试验初报,耕作与栽培,2002,4:41-43.
    杨建昌,王志琴,刘立军,等.旱种水稻生育特性与产量形成的研究.作物学报,2002,28(1):11-17.
    杨建昌,王志琴,陈义芳,等.旱种水稻产量与米质的初步研究.江苏农业研究,2000,21(3):1-5.
    杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究.中国农业科学,1996,29(4):58-66.
    杨建昌,王志琴,朱庆森.水稻品种的抗旱及其生理特性的研究.中国水稻科学,1995,28(5):65-72.
    杨守仁.论水稻的半水生性.见:杨守仁水稻文选.沈阳:辽宁科学技术出版社,1998.
    杨祥田,林贤青,曾孝元,等.水稻强化栽培下不同氮肥管理对产量与氮素利用的影响.土壤通报,2007,38(3):463-466.
    杨艳敏,刘小京,孙宏勇,等.旱稻夏季地膜覆盖栽培的生态学效应.干旱地区农业研究,2000,18(3):50-53.
    杨志根,刘金弟.水稻强化栽培分蘖发生特点及成穗规律研究,安徽农业科学,2005,33(9):1573,1608.
    俞爱英,吴增祺,朱贵平,等.仙居县水稻强化栽培技术(SRI)试验示范结果初报.中国稻米,2004b,5:39-40.
    俞爱英,朱贵平,陈冬莲,等.水稻强化栽培体系不同秧龄移栽对产量的影响.杂交水稻,2004a,19(2):53-55.
    余海根,朱芳前,王朝林.单季杂交水稻强化栽培高产技术试验初报.杂交水稻,2003,18(6):33-35.
    俞慎,李勇,王俊华,等.土壤微生物量作为红壤质量生物指标的探讨.土壤学报,1999,36(3):412-422.
    袁隆平.水稻强化栽培体系.杂交水稻,2001,18(4):1-3.
    曾翔,李阳生,谢小立,等.不同灌溉模式对杂交水稻生育后期根系生理特性和剑叶光合特性的影响.中国水稻科学,2003,17(1):355-359.
    曾翔,周立军,屠乃美,等.改良型强化栽培条件下两优培九生育后期群体特性研究.2004,25(6):468-470.
    张夫道.氮素营养研究中几个热点问题.植物营养与肥料学报,1998,4(4):331-338.
    张夫道.化肥污染的趋势与对策.环境科学,1985,6(6):54-58.
    张福锁,崔振岭,王激清,等.中国土壤和植物养分管理现状与改进策略.植物学通报,2007,24(6):687-694.
    张甲,谢必武,晏承兴,等.强化栽培条件下施肥对杂交水稻主要米质性状的影响.杂交 水稻,2008,23(3):57-62.
    张让康,刘本坤.旱种水稻不同品种类型产量及其性状的相关分析.湖南农学院学报,1989,15(2):7-11.
    张荣萍,马均,王贺正,等.不同灌水方式对水稻生育特性及水分利用率的影响中国农学通报,2005,21(9):144-150.
    章秀福,王丹英,方福平,等.中国粮食安全和水稻生产.农业现代化,2005,26(2):85-88.
    张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87.
    张万里,杨再志,廖廷常.凤冈县水稻强化栽培初探,耕作与栽培,2004,(2):39-40.
    张玉兰,陈利军,张丽莉.土壤质量的酶学指标研究.土壤通报,2005,36(4):598-604.
    张玉屏,朱德峰,林贤青,等.强化栽培条件下干湿灌溉对水稻生长的影响.干旱地区农业研究,2007,25(5):109-113.
    张岳.中国水资源与可持续发展.中国农村水利水电,1998,(5):3-6.
    张真,傅智法,陈连民,等.水稻强化栽培体系试验初报.中国稻米,2003,(3):25.
    张竹青,李义纯.水稻覆膜旱作抑制稻田甲烷排放效应的研究.湖北农学院学报,2003,23(5):321-323.
    赵其国.发展与创新现代土壤科学.土壤学报,2003,40(3):321-327.
    赵正宜,迟道才,刘宗琦,等.水分胁迫对水稻生长发育影响的研究.沈阳农业大学学报,2000,31(2):214-217.
    郑家国,陆贤军,姜心禄,等.水稻强化栽培的引进创新与四川盆地超高产的技术实践.西南农业学报,2004,17(2):169-173.
    郑寨生,吴良欢,孔向军,等.水稻覆膜旱作高产栽培技术研究.上海农业学报,2000,16(3):55-60.
    中国农业年鉴编辑委员会.中国农业年鉴.北京:中国农业出版社,2004.
    钟海明,黄爱明,刘建萍,等.杂交水稻强化栽培增产效果及经济效益分析.杂交水稻,2003,18(4):45-46.
    周礼恺.土壤酶活性的总体在评价土壤肥力水平中的作用.土壤学报,1983,20(4):413-417.
    周礼恺.土壤酶学.北京:科学出版社,1987.
    周启星.营养元素的生物化学.见:张福所编.土壤和植物研究新进展.北京:农业出版社,1995.
    周文.水稻地膜覆盖栽培技术.耕作与栽培,1998,(2):31-32.
    朱德峰主编.水稻强化栽培技术.北京:中国农业科学技术出版社,2006.
    朱德峰,林贤青,陶龙兴,等.水稻强化栽培体系的形成与发展.中国稻米,2003,(2):17-18.
    朱德峰,裘凌沧.淹水稻田甲烷产生和排放的研究现状.农业环境保护,1994,13(3):101-103,108.
    朱芳前,汪舍古,张顺忠,等.水稻强化栽培施氮水平、移栽密度与产量相关性初探.现代农业科学,2007,(4):65.
    朱贵平,俞爱英,张培艳,等.水稻强化栽培体系适宜移栽密度探讨.杂交水稻,2004,19(3):45-46.
    朱庭云.水稻灌溉的理论与技术.北京:中国水利水电出版社,1998.
    祝增荣,吴良欢,吴国强,等.水稻覆膜旱作对病虫草害发生程度的影响.植物保护学报,2000,(4):295-301.
    朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6.
    朱兆良,范晓晖,孙永红,等.太湖地区水稻土上稻季氮素循环及其环境效应.作物研究,2004,(4):187-191.
    朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985,17(1):2-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700