用户名: 密码: 验证码:
溶质在土壤中运动的微观机理及其在滴灌施肥中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱缺水是影响我国农业可持续发展的主要因素,滴灌作为先进的节水灌溉技术在我国已得到了大面积推广应用。与此同时,有关随水施肥也成为现代节水农业研究的一项重要内容,水分与肥料等溶质与土壤的物理化学反应直接影响到作物对水分、肥料的高效安全利用。本文采用理论模拟和室内外试验研究相结合的方法,重点研究了溶质在土壤孔隙运动的微观机理,提出了改进的溶质运移模拟模型,在此基础上模拟了不同溶质在土壤中的运移,并通过室内滴灌条件下水氮分布试验,应用上述模型模拟了滴灌条件下水分及氮素运移。取得主要结论如下:(1)对溶质在土壤孔隙中微观机理研究表明,对土壤孔隙内水盐运动的直接模拟可以提高对宏观尺度下模型的模拟可靠性。本文假定介质为各向均匀、所有孔隙全部连通;水分在土壤孔隙中的运动处于层流,水分与土壤固体颗粒的边界设为不可滑动边界,并用碰撞-弹回法处理,利用lattice Boltzmann方法模拟流体及溶质在土壤孔隙内的运动和扩散,计算了溶质在宏观尺度下的时空分布,确定了宏观尺度下溶质从非正常弥散向正常弥散的转换过程和时间。模拟结果表明,水分在孔隙内的流速分布并不均匀,流体主要是沿几个流体通道运动,这种运动特征导致了溶质运移偏离正常弥散方程所描述的迁移过程,而且溶质浓度的空间分布具有持续的拖尾现象。改进的CTRW模型能更真实地描述溶质的运移规律。(2)研究了溶质非费克弥散现象的空间分数维对流—弥散模型,表明了空间分数维对流—弥散方程是描述溶质在含有大孔隙土壤中运移的一种有效模型。文献中的空间分数维对流弥散方程中的分数维是由Riemann-Liouville方程定义的,只适用于溶质在无限含水层的运动,模型在模拟溶质在土壤内的运移时存在一定的物理缺陷。为克服这一缺陷,本文利用Caputo定义的分数维导数定义了一个分数维弥散通量,基于质量守恒原理建立了一种新的分数维对流弥散方程,并提出了求解该方程的一种有限体数值法。除此之外,本文还研究了不同边界条件对溶质运移的影响。(3)吸附性溶质在土壤中运移的模拟研究表明,吸附性溶质的迁移与描述惰性溶质的迁移类似,也是由迁移距离概率函数和完成每一步迁移所需时间的概率密度函数来描述的。本文假定惰性溶质和吸附性溶质的迁移距离函数分布式相同,而迁移所需的时间概率分布函数不同。考虑到大部分田间土壤具有很强的空间变异性,本文利用带有拖尾的概率幂函数来描述迁移时间的概率密度分布,把CTRW模型简化为时间分数维对流—弥散模型。以质量守恒为基础,本文提出了求解该方程的有限体积法。通过对三种不同的吸附性溶质运移的模拟计算表明,分数维对流—弥散方程比经典的对流—弥散模型能更好地解释溶质穿透曲线中长长的拖尾现象,试验值与模拟值有良好的相关性,表明了时间分数维对流—弥散方程中的参数与土壤孔隙水流速无关。(4)通过滴灌同步施肥(相同流量和灌水量、不同硝态氮浓度)条件下根际土壤水氮室内土槽试验,测定了土壤水分和硝态氮的时空分布。结果表明:土壤水分分布均表现为地表湿润区以滴头为中心向四周扩散,停灌后上下层土壤水势梯度随径向距离的增加而逐渐减小。高浓度处理土壤硝态氮表现为随径向距离的增加逐渐减小,硝态氮的含量与径向距离及土层深度成反比;低浓度处理土壤硝态氮随径向距离及土层深度增加先增大后减小,在深度分布上表现为开口向左的抛物线分布,并随着时间的推移各处理相同径向距离土壤硝态氮含量的差异均逐渐减少。(5)对滴灌条件下水分运动进行了模拟研究。为准确描述土壤含水量在不同土质的界面上是不连续的、提高Richards方程数值解的稳定性,本文以土壤水基质势作为模拟变量,采用混合的Richards’方程,利用一种截距式Newton方法来处理重力项,把Picard法的一阶收敛提高到收敛速度介于一阶与二阶之间,使最终产生的线性方程组的矩阵是对角占优的,从而保证在非线性迭代过程中的解不出现振荡,加快了非线性迭代的收敛,提高模拟土壤水分的效率。(6)模拟研究了滴灌条件下的硝态氮运移。实验采用回填土,土壤中无明显大的孔隙,模型中溶质的迁移距离用正态分布表示。根据质量守恒原理,提出了一种描述滴灌条件下氮素运移的CTRW模型,并提出了求解该CTRW模型的数值解法。结果表明,与常规的两区模型相比,改进后的CTRW模型能更好地模拟溶质在土壤中的运动过程。水和化学物质在土壤中的运动主要是由土壤中孔隙的非均匀性决定的。图像技术的发展和计算物理的提高,为进一步研究土壤中的水盐运动机理和提高模拟可靠性提供了技术手段。CTRW模型可以弥补传统对流—弥散方程的不足,能够更准确的模拟滴灌条件下土壤水肥的运动,本文正是研究孔隙尺度下非饱和土壤中的水盐运动规律模拟方向的的一个尝试,但限于土壤本身的空间变异性及试验时间的有限、滴灌条件取样的困难、计算参数的测试选取等试验条件,对肥分的研究又仅限于硝态氮,模拟结果虽基本反映了实验中水分和硝态氮的运动情况,但仍存在一定的误差,今后尚须继续研究。
The shortage of fresh water is a main factor that hampers sustainable agricultural development in China, and drip-irrigation, as an advanced irrigation technology, has been widely applied in China. At the meantime, drip fertigation has also received increasingly attention in modern agriculture in which the reaction between water, soil and the soil solution affects the use of soil nutrients by plants. The objective of this thesis is to use a combination of numerical modeling and experiments to investigate the fundamentals of solute transport in pore space of soil with a view to improve modeling at macroscopic scales, which can be used to investigate the movement of nutrients under drip fertigation. The main conclusions of this thesis are:
     (1) Assuming that water flow is laminar and that the medium is homogenous and all pores in it are hydraulically connected, water flow and solute transport in the pore scale were simulated using the lattice Boltzmann method by treating the water-solid interface as non-slip boundary. The result reveals that water flow is mainly concentrated along a few channels. As a result, the movement of tracers is anomalous, which cannot be accurately described by the classical advection-dispersion equation. Comparing the results with the continuous time random walk (CTRW) reveals that the solute movement is well described by CTRW with a modified exponentially distributed transition time.
     (2) A spatial fractional advection-dispersion equation model (FADE) is investigated, which is shown to be an effective model to simulate solute movement in natural soils with big pores. The FADE currently available in literature is based on Riemann-Lioville equation, limiting its application to infinite domains. A modified method based on the Caputo derivatives is presented to overcome this problem. A finite volume approach is given to numerically solve the modified FADE and its associated boundaries. The model is then compared with experimental data, and the results show good agreement.
     (3) Study on the movement of adsorptive solute reveals that its movement can be simulated using the similar framework as for non-adsorptive solute, using a probability distribution function to describe the distance between the pore and the time it takes a solute particle to move from one pore to another. The difference between the adsorptive and non-adsorptive solutes is the time for solute particle to move one pore to another. Given the inherent heterogeneity of natural soils, this thesis used a power-law function to describe the time it takes the adsorptive solute to move from one pore to another, making the CTRW model into a time-fractional advection-dispersion equation. Based on the principle of mass balance, a finite volume method is proposed to solve the equation and then compares it with experimental data. The results indicate that the model accurately captures the persistent long tails in the breakthrough curves, and that the transport parameters are independent of water flow rate.
     (4) Experimental study of the movement of nitrate under drip fertigation was carried out in the tank filled with sandy soil. The measurement of water content and nitrate concentration reveals the water content is symmetrical vertically around the emitter and after the termination irrigation, the gradient of the water potential changes. Also, the peak nitrate concentration is affected applied nitration concentration, decreasing with the distance from the emitter as the applied concentration increases.
     (5) A two-dimensional model is proposed to simulate the movement of water in soil under drip irrigation. To accurately describe water movement in heterogeneous soil and variably saturated condition, the mixed-form Richards' equation was used. To improve the convergence of the numerical model, a chord Newton method was used to solve the gravity term so as to make the final matrix diagonally dominant. This stabilizes the solution, thereby increasing the convergence rate.
     (6) Using the above models for both water flow and solute transport, the nitrate movement under the drip irrigation is modeled. Since the experiments were conducted using repacked soil, there are no obvious big pores. I thus used the time-fractional CTRW model to simulate nitrate movement in which the distance between the adjacent pores is assumed to be normally distributed. Comparing with the commonly used the mobile-immobile model, the proposed model improves the description of the solute movement in soils. Comparison of the model with experiment shows fair agreement.
     The movement of water and solute in soil is dictated by the pore geometry. The advent and development of imaging technology and computer power over the last two decades has made it feasible to investigate pore-scale water and solute movement. The CTRW model presented in this paper can overcome some limitations of the commonly used advection-dispersion model, and is used in this work to investigate nutrient transport under drip fertigation. However, due to the restriction of experiments, such as the difficulty of sampling, this work is restricted to nitrate. The simulations show similar trend as the measurements, but this is still some discrepancy. Further research is needed.
引文
[1]王留运,叶清平,岳兵.我国微灌技术发展的回顾与预测[J].节水灌溉,2000(3):3~7.
    [2]李光永等.地表点源滴灌土壤水分运动的动力学模型与数值模拟[J].水利学报,1998(11):21~25.
    [3]付琳.滴灌时的土壤浸润状况[J].灌溉排水,1983,7(3):36~45.
    [4]彭贵芳等译.蓬勃发展中的滴灌—第三届国际滴灌会议论文选编[R].1987.9.
    [5]徐明岗,姚其华,吕家珑著.土壤养分运移[M].中国农业科技出版社.2000年第一版.
    [6]Tadaaki Fukushimaa,Katsuo Yarlmizul,Toshio Kitamura,etal.The relation between water stress and the climacteric in respiration of some fruits[J].Scientia Horticulturae,1980,12(3):259~264.
    [7]Katleen De Winnea,Leonard W.Seymourb,Etienne H.Schacht.Synthesis and in vitro evaluation of macromolecular antitumour derivatives based on phenylenediamine mustard[J].European Journal of Pharmaceutical Sciences,2005,24(2-3):159~168.
    [8]R.Tesi,R.Beck,L.Lambiase,S.Haque,L.Flint and B.Jaffe.Living-related small-bowel transplantation:Donor evaluation and outcome[J].Transplantation Proceedings,1997,29,(1-2):686~687.
    [9]Papadopoulos I.Nitrogen fertigation of greenhouse-grown cucumber[J].Plant and Soil,1993:87~93.
    [10]Bresler,E.Two-dimensional transport of solutes during nonsteady infiltration from trickle source[J], Sci.Soc.Am.Proc,1975,39:604~613
    [11]Bresler,E.Trickle-drip irrigation Principles and application to soil-water management[J].Advances in Agronomy,1977,29:343~383.
    [12]Bar-Yosef,B.,Shelkholslami,M.R.Distribution of water and ions in soil irrigated and fertilized from a trickle source[J].Sci.Soc.Am.,1975,40:575~582.
    [13]Omary M.Three-dimensional movement of water and pesticide from trickle irrigation:finite element model[J].SAE Trans.,1992,35(3):811~821.
    [14]Woodfin V.Ligon,Jr.and Ralph J.May.Isomer specific analysis of selected chlorodibenzofurans[J]. Journal of Chromatography A.,1984,294:87~98.
    [15]Pier,J.W.,Doerge,T.A.Nitrogen and water interactions in trickle-irrigated water melon[J].Sci.Soc. Am.,1995,59:145~150.
    [16]G.Pulgar,G.Villora,D.A.Moreno,L.Romero.Improving the Mineral Nutrition in Grafted Watermelon Plants:Nitrogen Metabolism[J].Biologia Plantarum,2000,43(4):607~609.
    [17]李伏生,陆申年.灌溉施肥的研究与应用[J].植物营养与肥料学报.2000,6(2):223~240
    [18]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311~318.
    [19]高峰,胡继超,卞赟.国内外土壤水分研究进展[J].安徽农业科学,2007,35(34):46~48
    [20]黄昌勇.土壤学[M].北京:中国农业出版社,2000:98~118.
    [21]张北赢,徐学选,李贵玉,等.土壤水分基础理论及其应用研究进展[J].中国水土保持科学,2007,5(2):122~1290.
    [22]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:1~24.
    [23]李锦秀,肖洪浪.流域尺度土壤水研究进展[J].中国沙漠,2006,26(4):536~542.
    [24]Peter A C R.Development in soil water physics since mid 1960s[J].Geoderma,2001,100:355~387.
    [25]Fundamentals of Reservoir Engineering,Developments in Petroleum Science,1978,(8):103~130
    [26]张超,王会肖.土壤水分研究进展及简要评述[J].干旱地区农业研究,2003,21(4):117~120,125.
    [27]陈明亮.土壤水分研究动态[A]//李阜棣,李学垣,刘武定,等.生命科学和土壤学中几个领域的研究进展.北京:农业出版社,1993:111~115.
    [28]D.希勒尔.土壤和水—物理原理和过程[M].北京:农业出版社,1981:1~4.
    [29]Hillel D.Environmental Soil Physics[M].San Diego:Academic Press,1998.129~ 653.
    [30]张成才,吴泽宁,余弘婧.遥感计算土壤含水量方法的比较研究[J].灌溉排水学报,2004,23(2):69~72.
    [31]Crow W,Ryu D,Famiglietti J.Up scaling of field scale soil moist ure measurement s using distributed land surface modelling[J].Advances in Water Resources,2005,28:1~4.
    [32]Constable GA,Hearn A B.Irrigation for crops in a subhumid environment[J].Irrigation Science, 1981,3:17~28.
    [33]Belmans C,Wessling J G,Feddes RA.Simulation of water balance of a cropped soil:SWATRE[J]. Hydrology,1983,63:271~286.
    [34]Genuchten V,Leig F J,Lund L J.Indirect methods for estimating the hydraulic properties of unsaturated soil[C]//Genuchten M T.Proceedings of the international workshop on indirection method for estimating the hydraulic properties of unsaturated soil.California,1992:563~576
    [35]Kiffer E M.A conceptual-stochastic of unsaturated flow in heterogenous soils[J].Hydrology, 1993,143:3~18.
    [36]雷志栋,杨诗秀.非饱和土壤水一维流动的数值计算[J].土壤学报,1982,19(2):141~153.
    [37]杨诗秀,雷志栋,谢森传.匀质土壤一维非饱和流动通用程序[J].土壤学报,1985(1):24~34.
    [38]杨诗秀,雷志栋.均质土壤降雨喷洒入渗模型的数值计算[J].水利学报,1983(5):1~9.
    [39]李恩羊.渗灌条件下土壤水分运动的数学模拟[J].水利学报,1982(4):1~10.
    [40]杨金忠.二维饱和与非饱和水分运动的理论及实验研究[J].水利学报,1989(4):55~61.
    [41]任理.有限解析法在求解非饱和土壤水流问题中的应用[J].水利学报,1990,(10):55~61.
    [42]申双和,周英.农田土壤水分预测模型应用研究[J].南京气象学院学报,1992,15(4):540~548.
    [43]申双和,周英.农田土壤水分的随机模拟和预报[J].南京气象学院学报,1993,16(3):324~328.
    [44]李洪文,高焕文.保护性耕地土壤水分模型[J].中国农业大学学报,1996,1(2):25~30.
    [45]李军,邵明安,张兴昌.黄土高原旱塬地冬小麦水分生产潜力与土壤水分动态的模拟研究[J].自然资源学报,2004,19(6):738~746.
    [46]仵峰,彭贵芳,吕谋超等.地下滴灌条件下土壤水分运动模型[J].灌溉排水.1996,15(3):26~29
    [47]R.S.Downing,F.A.Morrison Jr.Convective and dispersive transport in a porous medium. Computers & Fluids,1976,4(2):65~75.
    [48]Cortis,A.,B.Berkowitz.Anomalous transport in“classical”soil and sand columns,Soil Sci.Soc.Am. J.,2004,68(5),1539~1548.
    [49]Scheidegger A.E.An evaluation of the accuracy of the diffusive equation for describing miscible displacement in porous media,Proc.Theory Fluid Porous Media Conf.,1959,2nd,101~116.
    [50]Nielsen,D.R.,and J.W.Biggar,Miscible displacement in soils:Ⅲ.Theoretical consideration,Soil Sci.Soc.Am.Proc.,1962,26,216~221.
    [51]R.K.Taylor,D.A.Spears.The breakdown of British Coal Measure rocks[J].International Jounral of Rock Mechanics and Mining Science & Geomechanics Abstracts,1970,7(5):481-494.
    [52]李保国,胡克林,黄元仿,刘刚.土壤溶质运移模型的研究及应用[J].土壤,2005,37(4):345~352.
    [53] 王全九.土壤溶质迁移理论研究进展[J].灌溉排水学报, 2005,24(3): 77-80.
    
    [54] F.T. Lindstrom, L. Boersma. Simultaneous transport of parent and daughter compounds in aquifers with linear first-order sorption kinetics [J], Journal of Contaminant Hydrology, 1991, 7(4): 301~335.
    [55] P. Suresh C. Rao, Michael D. Annable. Heonki Kim, NAPL source zone characterization and remediation technology performance assessment: recent developments and applications of tracer techniques [J], Journal of Contaminant Hydrology, 2000, 45(1-2): 63~78.
    [56] Jaynes D B, S D Logsdon and r Horton. Field method for measuring mobile-immobile water content and so lute transfer rate coefficient [J]. Soil Sci Soc Am J, 1995, 59: 352~356.
    [57] Wang Quanjiu, Robert Horton and Jonhonn. A simple model relating soil water characteristic curve and solute break through curve [J]. Soil Science, 2002,167 (7): 436~443.
    [58] Jaehoon Lee,Dan BJaynes and R Horton. Evaluation of a simple method for estimating solute transport parameters: Laboratory studies [J]. Soil sci Soc Am J, 2000,64: 492~498.
    [59] G. S. V. Raghavan, E. McKyes. Physical and hydraulic characteristics in compacted clay soils [J], Journal of Terramechanics, 1983, 19(4): 235~242.
    [60] Nielsen DR, Biggar JW. Miscible displacement in soils: Experimental information [J], Soil Sci. Soc.Am.Proc, 1961,25:1~5.
    [61] Biggar JW, Nielsen DR. Miscible displacement: Ⅱ: Behavior of tracers [J]. Soil Sci. Soc. Am. Proc, 1962,26 (2): 125~128.
    [62] Nielsen DR, Biggar JW. Miscible displacement: Ⅳ: Mixing in glass beads [J]. Soil Sci. Soc. Am. Proc, 1963, 27(1): 10~13.
    [63] Biggar JW, Nielsen DR. Miscible displacement: Ⅴ: Exchange processes [J]. Soil Sci. Soc. Am. Proc, 1963, 27 (6): 623~627.
    [64] Coats JC, Smith BD. Dead-end pore volume and dispersion in porous and unsaturated sandstone[J]. Soil Sci. Soc. Am.Proc, 1964, 27: 258~262.
    [65] Van Genuchten MTh, Wagenet RJ. Two-site/two-region models for pesticide transport and degradation; theoreticaldevelopment and analytical solutions [J]. Soil Sci. Soc. Am., 1989, 53: 1303~1310.
    [66] Silliman, S. E., and E. S. Simpson. Laboratory evidence of the scale effect in dispersion of solutes in porous media [J], Water Resour. Res., 1987, 23 (8): 1667~1673.
    [67] Adams S. E., L. W. Gelhar. Filed -study of dispersion in a heterogeneous aquifer. 2. spatial moment analysis [J], Water Resour. Res., 1992, 28 (12): 3293~3307.
    [68] Ellsworth, T. R., P. J. Shouse, T. H. Skaggs, etal. Solute transport in unsaturated soil: Experimental design, parameter estimation, and model discrimination [J]. Soil Sci. Am, 1996, 60 (2): 397~ 407.
    [69] Pang, L. P., B. Hunt. Solutions and verification of a scale-dependent dispersion model [J]. Contam. Hydrol, 2001, 53 (1-2): 21~39.
    [70] Huang, G. H., Q. Z. Huang, H. B. Zhan. Evidence of one-dimensional scale-dependent fractional advection-dispersion [J], Contam. Hydrol, 2006, 85 (1-2): 53~71.
    [71] Pachepsky, Y., D. A. Benson, W. Rawls. Simulating scale-dependent solute transport in soils with the fractional advective-dispersive equation [J]. Soil Sci. Soc. Am., 2000,64 (4): 1234~1243.
    [72] Haggerty R., S. A. McKenna, L. C. Meigs. On the late-time behavior of tracer test breakthrough curves [J]. Water Resour. Res., 2000, 36 (12): 3467-3479.
    [73] Desmedt F., P. J. Wierenga. Solute transfer through columns of glass-beads [J]. Water Resor. Res., 1984, 20 (2): 225-232.
    [74] Scher, H, and E. W. Montroll. Anomalous transit-time dispersion amorphous solids [J], Phys. Rev. 1975,B,12:2455~2477.
    [75] Berkowitz, B., H. Scher. On characterization of anomalous dispersion in porous and fractured media [J]. Water Resour. Res., 1995, 31 (6): 1461~1466.
    [76] Berkowitz, B., H. Scher. Anomalous transport in random fracture networks [J]. Phys. Rev. Lett., 1997, 79 (20): 4038~4041.
    [77] Berkowitz, B., H. Scher. Theory of anomalous chemical transport in random fracture networks [J].Phys. Rev. E, 1998, 57 (5): 5858-5869, Part B.
    [78] Bijeljic, B., M. J. Blunt. Pore-scale modeling and continuous time random walk analysis of dispersion in porous media [J]. Water Resour. Res., 2005, 42 (1): Art. No. W01202.
    [79] Metzler, R., J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach [J]. Phys. Rep., 2000, 339 (1): 1~77.
    [80] Scher, H., M. Lax. Stochastic transport in disordered solid: I theory [J]. Phys. Rev. B., 1973, 7:4491~4502.
    [81] Jean Jacod, Thomas G. Kurtz, Sylvie Méléard, etal. The approximate Euler method for Levy driven stochastic differential equations [J], Annales de l'Institut Henri Poincare (B) Probability and Statistics, 2005, 41(3): 523~558.
    [82] Zhang X. X., J. W. Crawford, L. K. Deeks,etal. A mass-balance based numerical method for the fractional advection-dispersion equation: theory and application [J]. Water Resour. Res., 2005a.
    [83] Bear J. Dynamics of Fluids in Porous Media [M]. New York, Elsevier, 1972.
    [84] Wang J., X. X. Zhang, A. G. Bengough, etal. Domain-decomposition method for parallel lattice Boltzmann simulation of incompressible flow in porous media [J]. Phys. Rev. E, 2005, 72 (7): Art. No.016706.
    [85] Zhang X. X., A. G. Bengough, L. K. Deeks, etal. A novel 3-D lattice Boltzmann model for advection and dispersion of solute in variably saturated soils [J]. Water Resour. Res., 2002, 38 (9): Art. No.1167.
    [86] Zhang X. X., J. W. Crawford, etal. On boundary conditions in the Lattice Boltzmann model for Advection and anisotropic dispersion of solute in soils [J]. Adv. Water Resour., 2002,26: 691~699.
    [87] Zhang D.X., Kang Q.J. Pore scale simulation of solute transport in fractured porous media [J].Geophys Res Lett, 2004, 31: Art. No. L12504.
    [88] Lowe, W. E., D. Frenkel. Do hydrodynamic dispersion coefficients exist? [J]. Phys. Rev. Lett., 1996,77(22): 4552~4555.
    [89] Zhu Y, P. J. Fox. Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics [J]. J. Comput. Phys., 2002,182 (2): 622~645.
    [90] Zhang, X. X., L. K. Deeks, A. G. Bengough, etal.. Determination of soil hydraulic conductivity using lattice Boltzmann method and thin-section technique [J]. J. Hydrol., 2005, 306(1-4): 59~70.
    [91] Pot, V., A. Genty. Dispersion dependence on retardation in a real fracture geometry using lattice-gas cellular automaton [J]. Adv. Water Resour. Res., 2007, 30(2): 273~283.
    [92] Branko B, Blunt MJ. Pore-scale modeling and continuous time random walk analysis of dispersion in porous media [J]. Water Resour Res, 2006, 41: W01202.
    [93] Maier RS, Kroll DM, Bernard RS,etal.. Pore-scale simulation of dispersion [J]. Physics of Fluids , 2000, 12:2065~2079.
    
    [94] Oswald S, Kinzelbach W, Greiner A, etal.. Observation of flow and transport processes in artificial porous media via magnetic resonance imaging in three dimensions [J]. Geoderma, 1997, 80: 417~429.
    
    [95] Chen, H. D., S. Y. Chen, W. H. Matthaeus Recovery of the Navier-Stokes equations using lattice-gas Boltzmann method, [J]. Phys. Rev. A, 1992, 45 (8): R5339~5342.
    [96] Guy McNamara, Berni Alder. Analysis of the lattice Boltzmann treatment of hydrodynamics, Physica A: Statistical Mechanics and its Applications [J]. 1993,194(1-4): 218~228.
    [97] Qian, Y. H., D. Dhumieres, P. Lallemand. Lattice BGK models for Navier-Stokes equation [J]. Europhys. Lett., 1992,17 (6BIS): 479~484.
    [98] Zou, Q. S., S. L. Hou, and S. Y. Chen. An improved incompressible lattice Boltzmann model for time-independent flows [J]. J. Stat. Phys., 1995, 81 (1-2): 35~48.
    [99] Xiaoyi He, Shiyi Chen, Raoyang Zhang. A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability [J]. Journal of Computational Physics, 1999,152(2): 642~663.
    [100] Kandhai D, A. Koponen, A. Hoekstra, etal. Implementation Aspects of 3D Lattice-BGK: Boundaries, Accuracy, and a New Fast Relaxation Method, Journal of Computational Physics [J]. 1999, 150(2):482~501.
    [101] Berkowitz, B., A. Cortis, M. Dentz, etal.. Modeling non-Fickian transport in geological formations as a continuous time random walk [J]. Rev. Geophys., 2006, 44 (2): Art. No. RG2003.
    [102] Cortis, A., Y. J. Chen, H. Scher, etal.. Quantitative characterization of pore-scale disorder effects on transport in "homogeneous" granular media [J]. Phys. Rev. E, 2004, 70 (4): Art. No. 041108.
    [103] Dentz, M., A. Cortis, H. Scher, etal.. Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport [J]. Adv. Water Resour., 2004, 27 (2): 155~173.
    [104] Cortis, A., B. Berkowitz. Computing "Anomalous" contaminant transport in porous media: The CTRW MATLAB toolbox [J]. Ground Water, 2005, 43 (6): 947~950.
    [105] Benson DA, Tadjeran C, Meerschaert MM, etal.. Radial fractional-order dispersion through fractured rock [J]. Water Resour Res., 2004, 40: Art. No. W12416.
    [106] Deng ZQ, de Lima JLMP, de Lima MIP,etal.. A fractional dispersion model for overland solute transport [J]. Water Resour Res., 2006,42: W03416.
    [107] Liu F, Anh V, Turner I. Numerical solution of the space fractional Fokker-Planck equation [J]. Journal of Computational and Applied Mathematics 2004; 166:209~219.
    [108] Lynch VE, Carreras BA, Del-Castillo-Negrete D, etal.. Numerical methods for the solution of partial differential equations of fractional order [J]. J Comput Phys, 2003, 192: 406~421.
    [109] Meerschaert MM, Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations [J]. Journal of Computational and Applied Mathematics, 2004, 172: 65~77.
    [110] Deng ZQ, Singh VP, Bengtsson L. Numerical solution of fractional advection-dispersion equation [J]. Journal of Hydraulic Engineering, 2004, 130: 422~431.
    [111] Roop JP. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R-2 [J]. Journal of Computational and Applied Mathematics, 2006, 193:243~268.
    [112]Tadjeran C,Meerschaert MM,Scheffler HP.A second-order accurate numerical approximation for the fractional diffusion equation[J].J Comput Phys.,2006,213:205~213.
    [113]Benson DA,Wheatcraft SW,Meerschaert MM.The fractional-order governing equation of Levy motion[J].Water Resour Res.,2000,36:1403~1412.
    [114]Zhou LZ,Selim HM.Application of the fractional advection-dispersion equation in porous media[J]. Soil Sci Soc Am J,2003,67:1079~1084.
    [115]Benson DA,Schumer R.Meerschaert MM,etal.Fractional dispersion,Levy motion,and the MADE tracer tests[J].Transport in Porous Media,2001,42:211~240.
    [116]Benson DA,Wheatcraft SW,Meerschaert MM.Application of a fractional advection-dispersion equation[J].Water Resour Res,2000,36:1413~1423.
    [117]Lu SL,Molz F J,Fix GJ.Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media[J].Water Resour Res,2002,38:Art.No.1165.
    [118]Schneider WR,Wyss W.Fractional diffusion and wave equations[J].Journal of Mathematical Physics,1989,30:134~144.
    [119]Van Genuchten MT,Parker JC.Boundary-conditions for displacement experiments through short laboratory columns[J].Soil Sci Soc Am.,1984,48:703~708.
    [120]Boggs JM,Young SC,Beard LM,etal..Field study of dispersion in heterogeneous aquifer,1. overview and site description[J].Water Resour Res,1992,28:3281~3291.
    [121]Freyberg DL.A natural gradient experiment on solute transport in a sand aquifer,2.spatial moments and the advection and dispersion on non-reactive tracers[J].Water Resour Res,1986,22: 2031~2046.
    [122]LeBlanc DR,Garabedian SP,Hess KM,etal..Large-scale natural gradient tracer experiment test in sand and gravel,1.experimental design and observed tracer movement[J].Water Resour Res,1991, 27:895~910.
    [123]Deeks LK,Bengough AG,Low D,Zhang X,etal..Spatial variation of effective porosity and its implications for discharge in an upland headwater catchment in Scotland[J].J Hydrol,2004,290: 217~228.
    [124]Stutter,MI,Deeks LK,and M.F.Billett.Transport of conservative and reactive tracers through a naturally structured upland podzol field lysimeter[J].J Hydrol,2005,300:1~19.
    [125]Scher,H.,G.Margolin,R.Metzler,etal..The dynamical foundation of fractal stream chemistry:The origin of extremely long retention times[J].Geophys.Res.Lett.,2002,29(5):Art.no.1061.
    [126]McNeil JD,Oldenborger GA,Schincariol RA.Quantitative imaging of contaminant distributions in heterogeneous porous media laboratory experiments[J].J Contam Hydrol,2006,84:36~54.
    [127]毛萌.阿特拉津在室内滴灌施药条件和农田尺度下运移的数值模拟[D].北京:中国农业大学,2004.
    [128]Chen,W.,Wagenet,R.J.Description of atrazine transport in soil with heterogeneous nonequilibrium sorption[J].Soil Sci.Soc.Am.J.,1997,61(2):360~371,.
    [129]Green,W.H.,Ampt,G.A.Studies on soil physics:Ⅰ.Flow of air and water through soils[J].Journal of Agricultural Science,1971,(4):1~24.
    [130]Parlange,J.Y.,Hill.Theoretical analysis of wetting front instability in soils[J].Soil Sci.,1976,122: 236~239
    [131]D.A.Barry,J.-Y.Parlange,G.C.Sander,etal..A class of exact solutions for Richards' equation[J]. Journal of Hydrology,1993,142(1-4):29~46.
    [132]吕谋超,仵峰,彭贵芳等.地下和地表滴灌土壤水分室内试验研究[J].灌溉排水,1996,15(1):42-44
    [133]Celia,M.A.,Bouloutas,E.T.,Zarba,etal..A general mass-conservative numerical solution for the unsaturated flow equation[J].Water Resour.Res.,1990,26:1483~1496.
    [134]Zhang X,Ewen J.Efficient method for simulating gravity-dominated water flow in unsaturated soils[J].Water Resour.Res.,2000,36:2777~2780.
    [135]Zhang X.,Bengough A.,Crawford J,etal.Efficient methods for solving water flow in variably saturated soils under prescribed flux infiltration[J].Journal of Hydrology,2002,260:75~87.
    [136]Li,C.W..A simplified Newton iteration method with linear finite elements for transient unsaturated flow[J].Water Resour.Res.,1993,29:965~971.
    [137]van der Vorst,H.A.Bi-CGSTAB,a fast and smoothly conjugate gradient variant of Bi-CG for solution of non-symmetric linear system,SIAM[J].Stat.Comput.,1992,13:632~644.
    [138]van Genuchten,M.A closed-form equation for predicting the hydraulic conductivity of unsaturated soil[J].Soil Sci.Soc.Am.J.,1980,44:892~898.
    [139]Scheidegger.An evaluation of the accuracy of the diffusive equation for describing miscible displacement in porous media,Proc.Theory Fluid Porous Media Conf.,A.E.1959,2~(nd):101~116.
    [140]Adams,S.E.,L.W.Gelhar.Filed-study of dispersion in a heterogeneous aquifer.2.spatial moment analysis[J].Water Resour.Res.,1992,28(12):3293~3307.
    [141]Bromly,M.,and C.Hinz,Non-Fickian transport in homogeneous unsaturated repacked sand[J]. Water Resour.Res.,2004,40(7):W07402.
    [142]Hatano,Y.,and N.Hatano(1998),Dispersive transport of ions in column experiments:An explanation of long-tailed profiles,Water Resour.Res.,34(5),1027-1033.
    [143]Deng J,Jiang X,Zhang X,et al.Continuous time random walk model better describes the tailing of atrazine transport in soil[J].Chemosphere,2008,71(11):2150~2157。
    [144]Metzler,R.,J.Klafter.The restaurant at the end of the random walk:recent developments in the description of anomalous transport by fractional dynamics[J].J.Phys.A-Math.Gen.,2004,37(31), R161~208.
    [145]Xiaoxian Zhang,Mouchao Lv et al.The impact of boundary on the fractional advection-dispersion equation for solute transport in soil:Defining the fractional dispersive flux with the Caputo derivatives[J].Adv.Water Resour.,2007,30:1205~1217.
    [146]Gelhar LW,Welty C,Rehfeldt KR.A critical review on field-scale dispersion in aquifers[J].Water Resour Res,1992,28:1955~1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700