用户名: 密码: 验证码:
EGCG与锌离子相互作用机制及其在LNCaP细胞中的生物学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌在欧美等西方国家是男性最常见的和第2位的癌症致死病因。而近几年,我国的前列腺癌发病率呈明显上升趋势。茶作为世人普遍引用的饮料,对多种癌症具有防治作用,如肺癌、乳腺癌、前列腺癌等。虽然茶与前列腺癌的流行病学调查呈不一致的结论,但在中国、日本等地区进行的病例对照调查表明饮用绿茶能有效的抑制前列腺癌的发病风险。其中,主要的抗癌活性成分为茶儿茶素。EGCG作为绿茶儿茶素的主要组分,具有显著的抗氧化、抗癌、抗突变等生物学活性。近来,EGCG与金属离子的相互作用及其生物学效应开始成为国内外学者研究的热点。锌是人体必需的微量元素。其缺乏与过量都有诱发前列腺癌的危险。因此,研究EGCG与Zn~(2+)相互作用对EGCG防治前列腺癌具有重要意义。
     本研究主要利用激素依赖型前列腺癌细胞株LNCaP培养体系研究了EGCG和Zn~(2+)对LNCaP生长状态的影响及其作用机制,以及Zn~(2+)存在时EGCG对前列腺癌细胞的作用行为。MTT实验和划痕实验结果表明,EGCG和Zn~(2+)都能明显抑制前列腺癌细胞株LNCaP的增殖和迁移,呈浓度依赖效应;光学倒置显微镜观察细胞形态后发现,高浓度的EGCG和Zn~(2+)(80~160μM)处理能明显诱导细胞形态发生变化,由正常的梭形均匀分布到变圆簇聚成块;Hoechst 33258试剂盒和罗丹明123染色法检测表明,80μM的EGCG和Zn~(2+)能够诱导LNCaP细胞凋亡。这些实验结果表明,EGCG和Zn~(2+)能够抑制前列腺癌细胞LNCaP的增殖和迁移,诱导LNCaP细胞凋亡。为明确EGCG和Zn~(2+)对前列腺癌细胞LNCaP生长抑制的机理,研究了EGCG和Zn~(2+)对前列腺癌细胞LNCaP中的表皮生长因子(EGF)、细胞膜流动性和线粒体功能的影响。研究结果表明,80μM EGCG能明显抑制LNCaP细胞中EGF的表达,降低细胞膜的流动性,改变细胞内锌的分布和调控细胞线粒体功能,包括诱导活性氧(ROS)的产生、抑制ATP的合成、线粒体膜电位的降低、细胞色素C的释放和激活Caspase-3的表达。80μM Zn~(2+)之所以能诱导前列腺癌细胞LNCaP的凋亡,主要是通过与细胞线粒体直接的相互作用和引起线粒体Ca~(2+)水平积聚,损伤细胞线粒体,释放细胞色素C等凋亡因子,激活Caspase-3,诱导细胞凋亡。
     同时,本研究还表明了Zn~(2+)存在时EGCG对前列腺癌细胞的作用行为。在对细胞膜流动性、活性氧和EGF的研究中,表明Zn~(2+)存在时能降低EGCG对前列腺癌细胞的作用行为。相反地,在对线粒体功能调控中,发现Zn~(2+)存在时却提高了EGCG对前列腺癌细胞线粒体功能的调控行为。说明EGCG与Zn~(2+)共存时,究竟是提高还是降低EGCG的作用行为,与Zn~(2+)的作用靶标极其相关:Zn~(2+)能直接损伤线粒体功能和促使Ca~(2+)在线粒体积聚,且作用效果Zn~(2+)>EGCG,则EGCG+Zn~(2+)>EGCG;Zn~(2+)不能诱导线粒体活性氧的产生和抑制细胞中EGF的表达,作用效果Zn~(2+)<EGCG,则EGCG+Zn~(2+)<EGCG。
Prostate cancer is the most common malignancy and the second leading cause ofmale death in USA and many European countries. However, the reported incidence ofprostate cancer in China is increasing rapidly in recent years. Tea is the commonlyconsumed beverage in the world that has been investigated for chemopreventive effectson many kinds of cancer such as lung cancer, breast cancer and prostate cancer.Although epidemiological studies on tea and prostate cancer have generatedinconsistent results, the case-control studies from China and Japan reported asignificant inhibition between green tea consumption and prostate cancer risk. EGCG,the main compound of catechins derived from green tea, has exhibited the greatsubstantial properties such as antioxidant, anticancer and antimutation. Recently,special interest has been directed to the interaction of EGCG and metal ions. Zinc isindispensable to human health. Higher and lower zinc ion concentration may increasethe risk of prostate cancer. Hence, the investigations of EGCG and Zn~(2+) play animportant role in EGCG against prostate cancer.
     In the present work, we aimed to study the effect(s) of EGCG and Zn~(2+) on viabilityof LNCaP cells, and actions elicited by EGCG in the presence of Zn~(2+). MTT assaysand scratch test showed that treatments with EGCG or Zn~(2+) inhibited the growth andmigration of LNCaP cells in a concentration-dependent manner. After treatments withhigh concentrations of EGCG or Zn~(2+) (80~160μM), morphology of LNCAP cells weremarkedly changed from on the plate uniformly with compressed shape to round inshape and clustered on the plate. Hoechst 33258 and rhodamine 123 stainings indicatedthat 80μM EGCG or Zn~(2+) induced apoptosis of LNCaP cells. These observations gavea hint that EGCG or Zn~(2+) could inhibit the proliferation and migration of LNCaP cells,and induce apoptosis of LNCaP cells. In order to investigate the mechanisms of EGCGor Zn~(2+) on inhibition of growth of LNCaP cells, we futher studied the effects of EGCGand Zn~(2+) on expression of EGF, membrane fluidity and mitochondrial functions. The results showed that 80μM EGCG significantly inhibited the expression of EGF,decreased the membrane fluidity, altered the distribution of cellular zinc and regulatedmitochondrial functions including inducing the generation of ROS, inhibiting thesynthesis of ATP, decline of mitochondrial membrane potential, release of cytochromeC and activation of Caspase-3.80μM Zn~(2+) induced apoptosis of LNCaP cells throughdirect interactions with mitochondria and accumulation of Ca~(2+) in mitochondria, whichresulted in mitochondrial dysfunction and triggered cell apoptotic pathway.
     We also investigated the bioactivity of EGCG in the presence of Zn~(2+). The resultsindicated that the effect was EGCG+ Zn~(2+) (1:1)<EGCG in the trials of EGF, ROS andmembrane fluidity. However, the effect was EGCG+ Zn~(2+) (1:1)>EGCG in theregulation of mitochondrial function. These results showed that Zn~(2+) enhanced theaction of EGCG due to its targets in the mixture of EGCG and Zn~(2+) (1:1): Treatmentwith Zn~(2+) could directly interact with mitochondria and increased the accumulation ofmitochondrial Ca~(2+), and the effects were Zn~(2+)>EGCG and EGCG+Zn~(2+)>EGCG;Treatment with Zn~(2+) did not significantly stimulate the generation of ROS and inhibitthe expression of EGF, and the effects were Zn~(2+)<EGCG and EGCG+Zn~(2+)<EGCG.
引文
[1] Kinlen LJ, Willows AN, Goldblatt P, Yudkin J. Tea consumption and cancer. Brit J Cancer 1988, 58:397-401.
    [2] Heilburn LK, Nomura A, Stemmermann GN. Black tea consumption and cancer risk: A prospective study. Br J Cancer 1986, 54:677-683.
    [3] Gupta S, Ahmad N, Mukhtar H. Prostate cancer chemoprevention by green tea. Semin Urol Oncol 1999, 17:70-76.
    [4] Jian L, Xie LP, Lee AH, Binns CW. Prospective effect of green tea against prostate cancer: A case-control study in southeast China. Int J Cancer 2004, 108:130-135.
    [5] Kurahashi N, Sasazuki S, Iwasaki M, Inoue M, and Shoichiro Tsugane for the JPHC Study Group. Green tea consumption and prostate cancer risk in Japanese men: A prospective study. Am J Epidemiol 2008, 167:71-77.
    [6] Jain MG, Hislop GT, Howe GR, Burch JD, Ghadirian P. Alcohol and other beverage use and prostate cancer risk among Canadian men. Int J Cancer 1998, 78:707-711.
    [7] Sonoda T, Nagata Y, Mori M, Miyanaga N, Takashima N, Okumura K, Goto K, Naito S, Fujimoto K, Hirao Y, Takahashi A, Tsukamoto T, Fujioka T, Akaza H. A case-control study of diet and prostate cancer in Japan: Possible protective effect of traditional Japanese diet. Cancer Sci 2004, 95:238-242.
    [8] Severson RK, Nomura AM, Grove JS, Stemmermann GN. A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res 1989,49:1857-1860.
    [9] Slattery ML, West DW. Smoking, alcohol, coffee, tea, caffeine, and theobromine: Risk of prostate cancer in Utah (United States). Cancer Cause Control 1993, 4:559-563.
    [10] La Vecchia C, Negri E, Franceschi S, D'Avanzo B, Boyle P. Tea consumption and cancer risk. Nutr Cancer 1992, 17:27-31.
    [11] Ellison LE. Tea and other beverage consumption and prostate cancer risk: A Canadian retrospective cohort study. Eur J Cancer Prev 2000, 9:125-130.
    [12] Liao S, Umekita Y, Guo J, Kokontis JM, Hiipakka RA. Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett 1995,96:239-243.
    [13] Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Nalt Acad Sci USA 2001, 98:10350-10355.
    [14] Sartor L, Pezzato E, Dona M, Aica ID, Calabrese F, Morint M, Albint A, Garbisa S. Prostate carcinoma and green tea: (-) epigallocatechin-3-gallate inhibits inflammation-triggered MMP-2 activation and invasion in murine TRAMP model. Int J Cancer 2004, 112:823-829.
    [15] Adhami VM, Siddiqui IA, Ahmad N, Gupta S, Mukhtar H. Oral consumption of green tea polyphenols inhibits insulin-like growth factor- I -induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 2004, 64:8715-8722.
    [16] Harper CE, Patel BB, Wang J, Eltoum IA, Lamartiniere CA. Epigallocate-3-gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: Mechanisms of action. Prostate 2007,67:1576-1589.
    [17] Siddiqui IA, Zaman N, Aziz MH, Reagan-Shaw SR, Sarfaraz S, Adhami VM, Ahmad N, Raisuddin S, Mukhtar H. Inhibition of CWR22R v 1 tumor growth and PSA secretion in athymic nude mice by green and black teas. Carcinogenesis 2006, 27:833-839.
    [18] Siddiqui IA, Shukla Y, Adhami VM, Sarfaraz S, Asim M, Hafeez BB, Mukhtar H. Suppression of NFκB and its regular gene products by oral administration of green tea polyphenols in an autochthonous mouse prostate cancer model. Pharm Res 2008, 25:2135-2142.
    [19] Caporali A, Davalli P, Astancolle S, D'Arca D, Brausi M, Bettuzzi S, Corti A. The chemoprevention action of catechins in the TRAMP mouse model of prostate carcinogenesis is accompanied by clusterin over-expression. Carcinogenesis 2004, 25:2217-2224.
    [20] McCarthy S, Caporali A, Enkemann S, Scaltriti M, Eschrich S, Davalli P, Corti A, Lee A, Sung J, Yeatman TJ, Bettuzzi S. Green tea catechins suppress the DNA synthesis marker MCM7 in the TRAMP model of prostate cancer. Mol Oncol 2007, 1:196-204.
    [21] Suganuma M, Ohkura Y, Okabe S, Fujiki H. Combination cancer chemoprevention with green tea extract and sulindac shown in intestinal tumor formation in min mice. J Cancer Res Clin Oncol 2001, 127:69-72.
    [22] Zhou JR, Yu L, Zhong Y, Blackburn GL. Soy phytochemicals and tea bioactive compounds synergistically inhibit androgen-sensitive human prostate tumors in mice. J Nutr 2003, 133:516-521.
    [23] Bhatia N, Agarwal R. Hydrogen peroxide-mediated prooxidant activity of epigallocatechin 3-gallate in human prostate carcinoma DU145 cells: effect on cell growth and viability, and MAP kinase. Proc Am Assoc Cancer Res 2000, 41:533-538.
    [24] Bhatia N, Zi X, Agarwal R. Enhanced polyphenolic nature of flavonoid antioxidant plays a detrimental role in the activation of survival factor Akt and apoptosis in prostate cancer DU145 cells: A comparison of silymarin, genistein and EGCG. Proc Am Assoc Cancer Res 1999, 40:533-536.
    [25] Gupta S, Ahmad N, Nieminen AL, Mukhtar H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol Appl Pharmacol 2000, 164:82-90.
    [26] Gupta S, Hussain T, Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 2003, 410:177-185.
    [27] Jung YD, Kim MS, Shin BA, Chay KO, Ahn BW, Liu W, Bucana CD, Gallick GE, Ellis LM.. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 2001, 84:844-850.
    [28] Adhami VM, Ahmad N, Mukhtar H. Molecular targets for green tea in prostate cancer prevention. J Nutr 2003, 133:2417-2424.
    [29] Cao Y, Cao R, Ebba Brakenhielm E. Antiangiogenic mechanisms of diet-derived polyphenols. J Nutr Biochem 2002, 13:380-390.
    [30] Lamy S, Gingras D, Beliveau R. Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res 2002, 62:381-385.
    [31] Siddiqui IA, Adhami VM, Afaq F, Ahmad N, Mukhtar H. Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J Cell Biochem 2004, 91:232-242.
    [32] Maeda-Yamamoto M, Suzuki N, Sawai Y, Miyase T, Sano M, Hashimoto-Ohta A, Isemura M. Association of suppression of extracellular signal-regulate kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcomaHT1080 cells. JAgric Food Chem 2003, 51:1858-1863.
    [33] Roy M, Chakrabarty S, Sinha D, Bhattacharya RK, Siddiqi M. Anticlastogenic, antigenotoxic ang apoptotic activity of epigallocatechin gallate: a green tea polyphenol. Mutat Res 2003, 523-524:33-41.
    [34] Kuzuhara T, Tanabe A, Sei Y, Yamaguchi K, Suganuma M, Fujiki H. Synergistic effects of multiple treatments, and both DNA and RNA direct bindings on, green tea catechins. Mol Carcinog 2007, 46:640-645.
    [35] Kuzuhara T, Sei Y, Yamaguchi K, Suganuma M, Fujiki H. DNA and RNA as new binding targets of green tea catechins. J Biol Chem 2006, 281:17446-17456.
    [36] Paschka AG, Butler R, Young CY. Induction of apoptosis in prostate cancer cell lines by the green tea component, (-)-epigallocatechin-3-gallate. Cancer Lett 1998, 130:1-7.
    [37] Kazi A, Smith DM, Zhong Q, Dou QP. Inhibition of bcl-x(l) phosphorylation by tea polyphenols or epigallocatechin-3-gallate is associated with prostate cancer cell apoptosis. Mol Pharmacol 2002, 62:765-771.
    [38] Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 2003, 22:4851-4859.
    [39] Gupta S, Hastak K, Afaq F, Ahmad N, Mukhtar H. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene 2004, 23:2507-2522.
    [40] Ren F, Zhang S, Mitchell SH, Butler R, Young CY. Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene 2000,19:1924-1932.
    [41] Pezzato E, Sartor L, Dell'Aica I, Dittadi R, Gion M, Belluco C, Lise M, Garbisa S. Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP-2 activation are inhibited by (-)epigallocatechin-3-gallate. Int J Cancer 2004, 112:787-792.
    [42] Chuu CP, Chen RY, Kokontis JM, Hiipakka RA, Liao S. Suppression of androgen receptor signaling and prostate specific antigen expression by (-)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Lett 2009, 275:86-92.
    [43] Ren F, Zhang S, Mitchell SH, Butler R, Young CY. Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene 2000, 19:1924-1932.
    [44] Li M, He Z, Ermakova S, Zheng D, Tang F, Cho YY, Zhu F, Ma WY, Sham Y, Rogozin EA, Bode AM, Cao Y, Dong Z. Direct inhibition of insulin-like growth factor-I receptor kinase activity by (-)-epigallocatechin-3-gallate regulates cell transformation. Cancer Epidemiol Biomarkers Prev 2007, 16:598-605.
    [45] Thomas F, Patel S, Holly JM, Persad R, Bahl A, Perks CM. Dihydrotestosterone sensitises LNCaP cells to death induced by epigallocatechin-3-Gallate (EGCG) or an IGF-I receptor inhibitor. Prostate 2009, 69:219-224.
    [46] Zhou YD, Kim YP, Li XC, Baerson SR, Agarwal AK, Hodges TW, Ferreira D, Nagle DG. Hypoxia-inducible factor-1 activation by (-)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts. J Nat Prod 2004, 67:2063-2069.
    [47] Thomas R, Kim MH. Epigallocatechin gallate inhibits HIF-1 alpha degradation in prostate cancer cells. Biochem Biophys Res Commun 2005, 334:543-548.
    [48] Zhang Q, Tang X, Lu Q, Zhang Z, Rao J, Le AD. Green tea extract and (-)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-lalpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells. Mol Cancer Ther 2006,5:1227-1238.
    [49] Lin SK, Shun CT, Kok SH, Wang CC, Hsiao TY, Liu CM. Hypoxia-stimulated vascular endothelial growth factor production in human nasal polyp fibroblasts: effect of epigallocatechin-3-gallate on hypoxia-inducible factor-1 alpha synthesis. Arch Otolaryngol Head Neck Surg 2008, 134:522-527.
    [50] Fujimura Y, Umeda D, Kiyohara Y, Sunada Y, Yamada K, Tachibana H. The involvement of the 67 kDa laminin receptor-mediated modulation of cytoskeleton in the degranulation inhibition induced by epigallocatechin-3-O-gallate. Biochem Biophys Res Commun 2006, 348:524-531.
    [51] Fujimura Y, Umeda D, Yano S, Maeda-Yamamoto M, Yamada K, Tachibana H. The 67kDa laminin receptor as a primary determinant of anti-allergic effects of O-methylated EGCG. Biochem Biophys Res Commun 2007, 364:79-85.
    [52] Umeda D, Yano S, Yamada K, Tachibana H. Involvement of 67-kDa laminin receptor-mediated myosin phosphatase activation in antiproliferative effect of epigallocatechin-3-O-gallate at a physiological concentration on Caco-2 colon cancer cells. Biochem Biophys Res Commun 2008, 371:172-176.
    [53] Fujimura Y, Umeda D, Yamada K, Tachibana H. The impact of the 67kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins. Arch Biochem Biophys 2008, 476:133-138.
    [54] Waltregny D, de Leval L, Me nard S, de Leval J, Castronovo V. Independent prognostic value of the 67-kd laminin receptor in human prostate cancer. J Natl Cancer Inst 1997, 89:1224-1227.
    [55] Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Bio 2004, 11:380-381.
    [56] Zhang LC, Yu HN, Sun SL, Yang JG, He GQ, Ruan H, Shen SR. Investigations of the cytotoxicity of epigallocatechin-3-gallate against PC-3 cells in the presence of Cd2+ in vitro. Toxicol In Vitro 2008, 22:953-960.
    [57] Yu HN, Yin JJ, Shen SR. Growth inhibition of prostate cancer cells by epigallocatechin gallate in the presence of Cu~(2+). J Agric Food Chem 2004, 52:462-466.
    [58] Nakazato T, Ito K, Ikeda Y, Kizaki M. Green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clin Cancer Res 2005, 11:6040-6049.
    [59] Wang CT, Chang HH, Hsiao CH, Lee MJ, Ku HC, Hu YJ, Kao YH. The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Mol Nutr Food Res 2008, 53:349-360.
    [60] Naasani I, Oh-Hashi F, Oh-Hara T, Feng WY, Johnston J, Chan K, Tsuruo T. Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer Res 2003, 63:824-830.
    [61] Zhen MC, Huang XH, Wang Q, Sun K, Liu YJ, Li W, Zhang LJ, Cao LQ, Chen XL. Green tea polyphenol epigallocatechin-3-gallate suppresses rat hepatic stellate cell invasion by inhibition of MMP-2 expression and its activation. Acta Pharmacol Sin 2006, 27:1600-1607.
    [62] Brusselmans K, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV. Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int J Cancer 2003, 106:856-862.
    [63] Hiipakka R.A, Zhang H.Z, Dai W, Dai Q, Liao S. Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols. Biochem Pharmacol 2002, 63:1165-1176.
    [64] Banerjee S, Manna S, Mukherjee S, Pal D, Panda CK, Das S. Black tea polyphenols restrict benzopyrene-induced mouse lung cancer progression through inhibition of Cox-2 and induction of caspase-3 expression. Asian Pac J Cancer Prev 2006, 7:661-666.
    [65] Annabi B, Lachambre MP, Bousquet-Gaqnon N, Page M, Gingras D, Beliveau R. Green tea polyphenol(-)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in gliblastoma cells. Biochim Biophys Acta 2002, 1542:209-220.
    [66] Hong J, Smith TJ, Ho CT, August DA, Yang CS. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem Pharmacol 2001, 62:1175-1183.
    [67] Hussain T, Gupta S, Adhami V M, Mukhtar H. Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int J Cancer 2005, 113:660-669.
    [68] Khan SG, Katiyar SK, Aqarwal R, Mukhtar H. Enhancement of antioxidant and phaseⅡ enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemprevention. Cancer Res 1992, 52:4050-4052.
    [69] Wang X, Song K S, Guo Q X, Tian WX. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem Pharmacol 2003, 66:2039-2047.
    [70] Zhang R, Xiao W, Wang X, Wu X, Tian W. Novel inhibitors of fatty-acid synthase from green tea (Camellia sinensis Xihu Longjing) with high activity and a new reacting site. Biotechnol Appl Biochem 2006, 43:1-7.
    [71] Vayalil PK, Katiyar SK. Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-jun and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate 2004, 59:33-42.
    [72] Peng G, Dixon DA, Muga SJ, Smith TJ, Wargovich MJ. Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog 2006, 45:309-319.
    [73] Maeda-Yamanoto M, Suzuki N, Sawai Y, Miyase T, Sano M, Hashimoto-Ohta A, Isemura M. Aossociation of suppression of extracellular signal-regulated kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells. J Aqric Food Chem 2003, 51:1858-1863.
    [74] Pan MH, Lin CC, Lin JK, Chen WJ. Tea polyphenol (-)-epigallocatechin 3-gallate suppresses heregulin-betal-induced fatty acid synthase expression in human breast cancer cells by inhibiting phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase cascade signaling. J Agric Food Chem 2007, 55:5030-5037.
    [75] Demeule M, Brossard M, Page M, Gingras D, Be liveau R. Matrix metalloproteinase inhibition by green tea catechins. Biochim Biophys Acta 2000, 1478:51-60.
    [76] Sun SL, He GQ, Yu HN, Yang JG, Borthakur D, Zhang LC, Shen SR, Das UN. Free Zn (2+) enhances inhibitory effects of EGCG on the growth of PC-3 cells. Mol Nutr Food Res 2008, 52:465-471.
    [77] Zhang LC, Shen SR, Sun SL, Yang JG, He GQ, Yu HN. Growth inhibition of prostate cancer cells by epigallocatechin-3-gallate in the presence of Zn2+ in vitro. Fen Zi Xi Bao Sheng Wu Xue Bao 2008, 41:443-449. [In Chinese]
    [78] Hoshino N, Kimura T, Hayakawa F, Yamaji A, Ando T. Bactericidal activity of catechin-copper (Ⅱ) complexes against Staphylococcus aureus compared with Escherichia coli. Lett Appl Microbiol 2000, 31:213-217.
    [79] Kumamoto M, Sonda T, Nagayama K, Tabata M. Effects of pH and metal ions on antioxidative activities of catechins. Biosci Biotechnol Biochem 2001, 65:126-132.
    [80] Zago MP, Oteiza PI. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radic Biol Med 2001, 31:266-274.
    [81] Sakagami T, Satoh K, Ishihara M, Sakagami H, Takeda F, Kochi M, Takeda M. Effect of cobalt ion on radical intensity and cytotoxic activity of antioxidants. Anticancer Res 2000, 20:3143-3150.
    [82] Ishino A, Kusama K, Watanabe S, Sakagami H. Inhibition of epigallocatechin gallate-induced apoptosis by CoC12 in human oral tumor cell lines. Anticancer Res 1999, 19:5197-5201.
    [83] Yamanaka N, Oda O, Nagao S. Green tea catechins such as (-)-epicatechin and (-)-epigallocatechin accelerate Cu2+-induced low density lipoprotein oxidation in propagation phase. FEBS Lett 1997, 401:230-234.
    [84] Hu C, Kitts DD. Evaluation of antioxidant activity of epigallocatechin gallate in biphasic model systems in vitro. Mol Cell Biochem 2001, 218:147-155.
    [85] Navarro RE, Santacruz H, Inoue M. Complexation of epigallocatechin gallate (a green tea extract, egcg) with Mn~(2+): nuclear spin relaxation by the paramagnetic ion. J Inorg Biochem 2005, 99:584-588.
    [86] Tang DS, Shen SR, Chen X, Zhang YY, Xu CY. Interaction of catechins with aluminum in vitro. J Zhejiang Univ Sci 2004, 5:668-675.
    [87] Fernandez MT, Mira ML, Flor (?) ncio MH, Jennings KR. Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. J Inorg Biochem 2002, 92:105-111.
    [88] Esparza I, Salinas I, Santamaria C, Garcia-Mina JM, Fernandez JM. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal Chim Acta 2005, 543:267-274.
    [89] Ohyoshi E, Sakata T, Kurihara M. Complexation of aluminium with (-)-epigallocathechin gallate studied by spectrophotometry. J Inorg Biochem 1999, 73:31-34.
    [90] Hynes MJ, Coinceanainn MO. The kinetics and mechanisms of the reaction of iron(Ⅲ) with gallic acid, gallic acid methyl ester and catechin. J Inorg Biochem 2001, 85:131-142.
    [91] 郭炳莹,程启坤.茶汤组分与金属离子的络合性能.茶叶科学1991,11:139-144.
    [92] 沈生荣,赵玉芳,赵保路.铁存在下儿茶素的抗自由基效应.茶叶科学1997,S1:119-123.
    [93] 戚向阳,谢笔钧.表没食子儿茶素没食子酸酯(EGCG)锗(Ⅳ)配合物的研究.天然产物研究与开发1994,6:35-44.
    [94] Chen YM, Wang MK, Huang PM. Catechin transformation as influenced by aluminum. J Agric Food Chem 2006, 54:212-218.
    [95] Bodini ME, Valle MA, Tapia R. Zinc catechin complexes in apro medium. Redox chemistry and interaction with superoxide radical anion. Polyhedron 2001,20:1005-1009.
    [96] Kagaya N, Tagawa Y, Nagashima H, Saijo R, Kawase M, Yagi K. Suppression of cytotoxin-induced cell death in isolated hepatocytes by tea catechins. Eur J Pharmacol 2002, 450:231-236.
    [97] Yu HN, Shen SR, Xiong YK. Cytotoxicity of epigallocatechin-3-gallate to LNCaP cells in the presence of Cu2+. J Zhejiang Univ Sci B 2005, 6:125-131.
    [98] 陈勋,于海宁,沈生荣.EGCG与锌离子互作对前列腺癌细胞PC-3生长的影响.茶叶科学2006.26:219-224.
    [99] Yu HN, Yin JJ, Shen SR. Effects of epi-gallocatechin gallate on PC-3 cell cytoplasmic membrane in the presence of Cu2+. Food Chem 2006, 95:108-115.
    [100] Kostyuk VA, Potapovich AI, Vladykovskaya EN, Korkina LG, Afanas'ev IB. Influence of metal ions on flavonoid protection against asbestos-induced cell injury. Arch Biochem Biophys 2001, 385:129-137.
    [101] Mazzio E, Huber J, Darling S, Harris N, Soliman KF. Effect of antioxidants on L-glutamate and N-methyl-4-phenylpyridinium ion induced-neurotoxicity in PC12 cells. Neurotoxicology 2001, 22:283-288.
    [102] Kang WS, Chung KH, Chung JH, Lee JY, Park JB, Zhang YH, Yoo HS, Yun YP. Antiplatelet activity of green tea catechins is mediated by inhibition of cytoplasmic calcium increase. J Cardiovasc Pharmacol 2001, 38:875-884.
    [103] Tang SZ, Kerry JP, Sheehan D, Buckley DJ. Antioxidative mechanisms of tea catechins in chicken meat systems. Food Chem 2002, 76:45-51.
    [104] Coudray C, Bousset C, Tressol JC, P (?) pin D, Rayssiguier Y. Short-term ingestion of chlorogenic or caffeic acids decreases zinc but not copper absorption in rats, utilization of stable isotopes and inductively-coupled plasma mass spectrometry technique. Br J Nutr 1998, 80:575-584.
    [105] Kuo SM, Leavitt PS, Lin CP. Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biol Trace Elem Res 1998, 62:135-153.
    [106] Choi JH, Rhee IK, Park KY, Park KY, Kim JK, Rhee SJ. Action of green tea catechin on bone metabolic disorder in chronic cadmium-poisoned rats. Life Sci 2003, 73:1479-1489.
    [107] Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MB. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 2006, 50:229-234.
    [108] Franklin RB, Costello LC. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys 2007, 463:211-217.
    [109] Costello LC, Franklin RB, Feng P, Tan M, Bagasra O. Zinc and prostate cancer : a critical scientific, medical, and public interest issue(United States). Cancer Causes Control 2005, 16:901-915.
    [110] Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Effect of zinc on prostatic tumorigenicity in nude mice. Ann N Y Acad Sci 2003, 1010:316-320.
    [111] Huang L, Kirschke CP, Zhang Y. Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int 2006, 31:6-10.
    [112] Kolonel LN, Yoshizawa CN, Hankin JH. Diet and prostatic cancer: a case-control study in Hawaii. Am J Epidemiol 1988, 127:999-1012.
    [113] Leitzmann MF, Stampfer MJ, Wu K, Colditz GA, Willett WC, Giovannucci EL. Zinc supplement use and risk of prostate cancer. J Natl Cancer Inst 2003, 95:1004-1007.
    [114] Gallus S, Foschi R, Negri E, Talamini R, Franceschi S, Montella M, Ramazzotti V, Tavani A, Dal Maso L, La Vecchia C. Dietary zinc and prostate cancer risk: a case-control study from Italy. Eur Urol 2007, 52:1052-1056.
    [115] West DW, Slattery ML, Robison LM, French TK, Mahoney AW. Adult dietary intake and prostate cancer risk in Utah: a case-control study with special emphasis on aggressive tumors. Cancer Causes Control 1991, 2:85-94.
    [116] Platz EA, Helzlsouer KJ, Hoffman SC, Morris JS, Baskett CK, Comstock GW. Prediagnostic toenail cadmium and zinc and subsequent prostate cancer risk. Prostate 2002, 52:288-296.
    [117] Kristal AR, Stanford JL, Cohen JH, Wicklund K, Patterson RE. Vitamin and mineral supplement use is associated with reduced risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 1999,8:887-892.
    [118] Wagner SE, Burch JB, Hussey J, Temples T, Bolick-Aldrich S, Mosley-Broughton C, Liu Y, Hebert JR. Soil zinc content, groundwater usage, and prostate cancer incidence in South Carolina. Cancer Causes Control 2009, 20:345-353.
    [119]Gonzalez A, Peters U, Lampe JW, White E. Zinc intake from supplements and diet and prostate cancer. Nutr Cancer 2009, 61:206-215.
    [120] Zaichick VYe, Sviridova TV, Zaichick SV. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol 1997, 29:565-574.
    [121] Costello LC, Franklin RB. Citrate metabolism of normal and malignant prostate epithelial cells. Urology 1997,50:3-12.
    [122] Liang JY, Liu YY, Zou J, Franklin RB, Costello LC, Feng P. Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate 1999, 40:200-207.
    [123] Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate 2002, 52:311-318.
    [124] Feng P, Li T, Guan Z, Franklin RB, Costello LC. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer 2008, 7:25.
    [125] Park JA, Koh JY. Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J Neurochem 1999, 73:450-456.
    [126] Chun YS, Choi E, Yeo EJ, Lee JH, Kim MS, Park JW. A new HIF-1 alpha variant induced by zinc ion suppresses HIF-1-mediated hypoxic responses. J Cell Sci 2001, 114:4051-4061.
    [127] Uzzo RG, Crispen PL, Golovine K, Makhov P, Horwitz EM, Kolenko VM. Diverse effects of zinc on NF-kappaB and AP-1 transcription factors: implications for prostate cancer progression. Carcinogenesis 2006, 27:1980-1990.
    [128] Golovine K, Uzzo RG, Makhov P, Crispen PL, Kunkle D, Kolenko VM. Depletion of intracellular zinc increases expression of tumorigenic cytokines VEGF, IL-6 and IL-8 in prostate cancer cells via NF-kappaB-dependent pathway. Prostate 2008, 68:1443-1449.
    [129] Golovine K, Makhov P, Uzzo RG, Shaw T, Kunkle D, Kolenko VM. Overexpression of the zinc uptake transporter hZIPl inhibits nuclear factor-kappaB and reduces the malignant potential of prostate cancer cells in vitro and in vivo. Clin Cancer Res 2008, 14:5376-5384.
    [130] Wong PF, Abubakar S. High intracellular Zn2+ ions modulate the VHR, ZAP-70 and ERK activities of LNCaP prostate cancer cells. Cell Mol Biol Lett 2008, 13:375-390.
    [131] Ishii K, Usui S, Sugimura Y, Yoshida S, Hioki T, Tatematsu M, Yamamoto H, Hirano K. Aminopeptidase N regulated by zinc in human prostate participates in tumor cell invasion. Int J Cancer 2001, 92:49-54.
    [132] Ishii K, Usui S, Sugimura Y, Yamamoto H, Yoshikawa K, Hirano K. Inhibition of aminopeptidase N (AP-N) and urokinase-type plasminogen activator (uPA) by zinc suppresses the invasion activity in human urological cancer cells. Biol Pharm Bull 2001, 24:226-230.
    [133] Webber MM, Waghray A, Bello D. Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clin Cancer Res 1995, 1:1089-1094.
    [134] Ishii K, Otsuka T, Iguchi K, Usui S, Yamamoto H, Sugimura Y, Yoshikawa K, Hayward SW, Hirano K. Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Lett 2004, 207:79-87.
    [135] Kumar A, Mikolajczyk SD, Goel AS, Millar LS, Saedi MS. Expression of pro form of prostate-specific antigen by mammalian cells and its conversion to mature, active form by human kallikrein 2. Cancer Res 1997, 57:3111 -3114.
    [136] Lovgren J, Airas K, Lilja H. Enzymatic action of human glandular kallikrein 2 (hK2). Substrate specificity and regulation by Zn2+ and extracellular protease inhibitors. Eur J Biochem 1999,262:781-789.
    [137] Kim MH, Chung J. Synergistic cell death by EGCG and ibuprofen in DU-145 prostate cancer cell line. Anticancer Res 2007, 27:3947-3956.
    [138] Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000, 403:98-103.
    [139] Orrenius S. Mitochondrial regulation of apoptotic cell death. Toxicol Lett 2004, 149:19-23.
    [140] Danial NN. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 2007, 13:7254-7263.
    [141] Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B, Vallette FM. Bax activation and mitochondrial insertion during apoptosis. Apoptosis 2007, 12:887-896.
    [142] Shi Y. Caspase activation: revisiting the induced proximity model. Cell 2004, 117:855-858.
    [143] Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 2005, 37:719-727.
    [144] Reed JC. Cytochrome c: can' t live with it-can' t live without it. Cell 1997, 97:559-562.
    [145] Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002, 108:153-164.
    [146] Purring-Koch C, McLendon G Cytochrome c binding to Apaf-1: the effects of dATP and ionic strength. ProcNatlAcad Sci USA 2000, 97:11928-11931.
    [147] Hatai T, Matsuzawa A, Inoshita S, Mochida Y, Kuroda T, Sakamaki K, Kuida K, Yonehara S, Ichijo H, Takeda K. Execution of apoptosis signal-regulating kinase 1 (ASKl)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem 2000, 275:26576-26581.
    [148] Wu YH, Shih SF, Lin JY. Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J Biol Chem 2004, 279:19264-19275.
    [149] Pereverzev MO, Vygodina TV, Konstantinov A A, Skulachev VP. Cytochrome c, an ideal antioxidant. Biochem Soc Trans 2003, 31:1312-1315.
    [150] Barros MH, Netto LE, Kowaltowski AJ. H2O2 generation in Saccharomyces cerevisiac respiratory pet mutants:effect of cytochrome c. Free Radic Biol Med 2003, 35:179-188.
    [151] Haga N, Fujita N, Tsuruo T. Mitochondrial aggregation precedes cytochrome c release from mitochondria during apoptosis. Oncogene 2003, 22:5579-5585.
    [152] Gogvadze V, Orrenius S, Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta 2006, 1757:639-647.
    [153] van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 2002,9:1031-1042.
    [154] Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: a review. Clin Cancer Res 2005, 11:3155-3162.
    [155] Bernardi P, Rasola A. Calcium and cell death: the mitochondrial connection. Subcell Biochem 2007, 45:481-506.
    [156] Barros MH, Netto LE, Kowaltowski AJ. H(2)O(2) generation in Saccharomyces cerevisiae respiratory pet mutants: effect of cytochrome c. Free Radic Biol Med 2003, 35:179-188.
    [157] Shih CM, Ko WC, Wu JS, Wei YH, Wang LF, Chang EE, Lo TY, Cheng HH, Chen CT. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J Cell Biochem 2004, 91:384-397.
    [158] Chung LY, Cheung TC, Kong SK, Fung KP, Choy YM, Chan ZY, Kwok TT. Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells. Life Sci 2001, 68:1207-1214.
    [159] Zhao Y, Yang LF, Ye M, Gu HH, Cao Y. Induction of apoptosis by epigallocatechin-3-gallate via mitochondrial signal transduction pathway. Prev Med 2004, 39:1172-1179.
    [160] Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 2003,63:8118-8121.
    [161] Roy AM, Baliga MS, Katiyar SK. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol Cancer Ther 2005, 4:81-90.
    [162] Shankar S, Suthakar G, Srivastava RK. Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front Biosci 2007, 12:5039-5051.
    [163] Ran ZH, Xu Q, Tong JL, Xiao SD. Apoptotic effect of Epigallocatechin-3-gallate on the human gastric cancer cell line MKN45 via activation of the mitochondrial pathway. World J Gastroenterol 2007, 13:4255-4259.
    [164] Chen XL, Wang Q, Cao LQ, Huang XH, Fu XH, Tan HX, Zhen MC, Chen JS. Epigallocatechin-3-gallate induces apoptosis in human hepatocellular carcinoma cells. Zhonghua Yi Xue Za Zhi 2008, 88:2524-2528. [Article in Chinese]
    [165] Nakazato T, Ho K, Miyakawa Y, Kinjo K, Yamada T, Hozumi N, Ikeda Y, Kizaki M. Catechin, a green tea component, rapidly induces apoptosis of myeloid leukemic cells via modulation of reactive oxygen species production in vitro and inhibits tumor growth in vivo. Haematologica 2005, 90:317-325.
    [166] Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 2005, 26:958-967.
    [167] Chen C, Shen G, Hebbar V, Hu R, Owuor ED, Kong AN. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis 2003, 24:1369-1378.
    [168] Yin ST, Tang ML, Deng HM, Xing TR, Chen JT, Wang HL, Ruan DY. Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2009, [Epub ahead of print].
    [1] Gupta S, Ahmad N, Mukhtar H. Prostate cancer chemoprevention by green tea. Semin Urol Oncol 1999, 17:70-76.
    [2] Jian L, Xie LP, Lee AH, Binns CW. Prospective effect of green tea against prostate cancer: A case-control study in southeast China. Int J Cancer 2004, 108:130-135.
    [3] Wang X, Song KS, Guo QX, Tian WX. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase.Biochem Pharmacol 2003, 66:2039-2047.
    [4] Salucci M, Stivala LA, Maiani G, Bugianesi R, Vannini V. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br J Cancer 2002, 86:1645-1651.
    [5] Lee SF, Lin JK. Inhibitory effects of phytopolyphenols on TPA-induced transformation, PKC activation, and c-jun expression in mouse fibroblast cells._Nutr Cancer 1997, 28:177-183.
    [6] Oikawa S, Furukawaa A, Asada H, Hirakawa K, Kawanishi S. Catechins induce oxidative damage to cellular and isolated DNA through the generation of reactive oxygen species.Free Radic Res 2003, 37:881-890.
    [7] Caturla N, Vera-Samper E, Villalain J, Mateo CR, Micol V. The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes. Free Radic Biol Med 2003, 34:648-662.
    [8] Lin JK, Lin YL, Yn S, Shiau L. Anticarcinogenesis and antiinflammation of (-)-epigallocatechin-3-gallate through modulating the induction of nitric oxide synthase. Toxicol Lett 1998,95:114.
    [9] Johnson MK, Loo G. Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA..Mutat Res 2000, 459:211-218.
    [10] Fujiki H, Suganuma M, Imai K, Nakachi K. Green tea: cancer preventive beverage and/or drug._Cancer Lett 2002, 188:9-13.
    [11] Chen L, Zhang HY. Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin-3-gallate..Molecules 2007, 12:946-957.
    [12] Dou QP, Landis-Piwowar KR, Chen D, Huo C, Wan SB, Chan TH. Green tea polyphenols as a natural tumour cell proteasome inhibitor.Jnflammopharmacology 2008, 16:208-212
    [13] Khan N, Mukhtar H. Multitargeted therapy of cancer by green tea polyphenols._Cancer Lett 2008, 269:269-280.
    [14] Paschka AG, Butler R, Young CY. Induction of apoptosis in prostate cancer cell lines by the green tea component, (-)-epigallocatechin-3-gallate._Cancer Lett 1998, 130:1-7.
    [15] Gupta S, Ahmad N, Nieminen AL, Mukhtar H.Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells._Toxicol Appl Pharmacol 2000, 164:82-90.
    [16] Zaichick VY, Sviridova TV, Zaichick SV. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol 1997, 29:565-574.
    [17] Ishii K, Otsuka T, Iguchi K, Usui S, Yamamoto H, Sugimura Y, Yoshikawa K, Hayward SW, Hirano K. Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Lett 2004, 207:79-87.
    [18] Goel T, Sankhwar SN. Comparative study of zinc levels in benign and malignant lesions of the prostate. Scand J Urol Nephrol 2006, 40:108-112.
    [19] Franklin RB, Milon B, Feng P, Costello LC. Zinc and zinc transporters in normal prostate and the pathogenesis of prostate cancer. Front Biosci 2005, 10:2230-2239.
    [20] Leitzmann MF, Stampfer MJ, Wu K, Colditz GA, Willett WC, Giovannucci EL. Zinc supplement use and risk of prostate cancer. J Natl Cancer Inst 2003, 95:1004-1007.
    [21] Yu HN, Yin JJ, Shen SR. Effects of epi-gallocatechin gallate on PC-3 cell cytoplasmic membrane in the presence of Cu~(2+). Food Chem 2006, 95:108-115.
    [22] Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells._Prostate 2002, 52:311-318.
    [23] Feng P, Li T, Guan Z, Franklin RB, Costello LC. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer 2008, 7:25.
    [24] Navarro RE, Santacruz H, Inoue M. Complexation of epigallocatechin gallate (a green tea extract, egcg) with Mn2+: nuclear spin relaxation by the paramagnetic ion. J Inorg Biochem 2005, 99:584-588.
    [25] Esparza I, Salinas I, Santamara C, Garcia-Mina JM, Fernandez JM. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal Chim Acta 2005, 543:267-274.
    [26] Webber MM, Waghray A, Bello D. Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clin Cancer Res 1995, 1:1089-1094.
    [27] Pezzato E, Sartor L, Dell'Aica I, Dittadi R, Gion M, Belluco C, Lise M, Garbisa S. Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP-2 activation are inhibited by (-)epigallocatechin-3-gallate. Int J Cancer 2004, 112:787-792.
    [28] Chuu CP, Chen RY, Kokontis JM, Hiipakka RA, Liao S. Suppression of androgen receptor signaling and prostate specific antigen expression by (-)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Lett 2009, 275:86-92.
    [29] Ren F, Zhang S, Mitchell SH, Butler R, Young CY. Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene 2000, 19:1924-1932.
    [1] Hayakawa F, Kimura T, Hoshino N, Ando T. DNA cleavage activities of (-)-epigallocatechin, (-)-epicatechin, (+)-catechin, and (-)-epigallocatechin gallate with various kinds of metal ions. Biosci Biotechnol Biochem 1999, 63:1654-1656.
    [2] Kostyuk VA, Potapovich AI, Vladykovskaya EN, Korkina LG, Afanas'ev IB. Influence of metal ions on flavonoid protection against asbestos-induced cell injury. Arch Biochem Biophys 2001, 385:129-137.
    [3] Sun SL, He GQ, Yu HN, Yang JG, Borthakur D, Zhang LC, Shen SR, Das UN. Free Zn(2+) enhances inhibitory effects of EGCG on the growth of PC-3 cells. Mol Nutr Food Res 2008, 52:465-471.
    [4] Huang L, Kirschke CP, Zhang Y. Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int Mar 2006, 31:6-10.
    [5] Gallus S, Foschi R, Negri E, Talamini R, Franceschi S, Montella M, Ramazzotti V, Tavani A, Dal Maso L, La Vecchia C. Dietary zinc and prostate cancer risk: a case-control study from Italy. Eur Urol 2007, 52:1052-1056.
    [6] Costello LC, Franklin RB. Citrate metabolism of normal and malignant prostate epithelial cells. Urology 1997, 50:3-12.
    [7] Franklin RB, Costello LC. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys 2007, 463:211-217.
    [8] Yu HN, Shen SR, Yin JJ. Effects of metal ions, catechins, and their interactions on prostate cancer. Crit Rev Food Sci Nutr 2007, 47:711-719.
    [9] Connolly JM, Rose DP. Autocrine regulation of DU145 human prostate cancer cell growth by epidermal growth factor-related polypeptides. Prostate 1991, 19:173-180.
    [10] Mizokami A, Saiga H, Matsui T, Mira T, Sugita A. Regulation of androgen receptor by androgen and epidermal growth factor in a human prostatic cancer cell line, LNCaP. Endocrinol Jpn 1992, 39:235-243.
    [11] Hayakawa F, Ishizu Y, Hoshino N, Yamaji A, Ando T, Kimura T. Prooxidative activities of tea catechins in the presence of Cu~(2+). B iosci Biotechnol Biochem 2004, 68:1825-1830.
    [12] Thephinlap C, Ounjaijean S, Khansuwan U, Fucharoen S, Porter JB, Srichairatanakool S. Epigallocatechin-3-gallate and epicatechin-3-gallate from green tea decrease plasma non-transferrin bound iron and erythrocyte oxidative stress. Med Chem 2007, 3:289-296.
    [13] Kagaya N, Tagawa Y, Nagashima H, Saijo R, Kawase M, Yagi K. Suppression of cytotoxin-induced cell death in isolated hepatocytes by tea catechins. Eur J Pharmacol 2002,450:231-236.
    [14] Matsuo N, Yamada K, Shoji K, Mori M, Sugano M. Effect of tea polyphenols on histamine release from rat basophilic leukemia (RBL-2H3) cells: the structure-inhibitory activity relationship. Allergy 1997,52:58-64.
    [15] Hiipakka R.A, Zhang H.Z, Dai W, Dai Q, Liao S. Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols. Biochem Pharmacol 2002, 63:1165-1176.
    [16] Wang X, Song K S, Guo Q X, Tian WX. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem Pharmacol 2003, 66:2039-2047.
    [17] Zhang R, Xiao W, Wang X, Wu X, Tian W. Novel inhibitors of fatty-acid synthase from green tea (Camellia sinensis Xihu Longjing) with high activity and a new reacting site. Biotechnol Appl Biochem 2006, 43:1-7.
    [18] Navarro RE, Santacruz H, Inoue M. Complexation of epigallocatechin gallate (a green tea extract, egcg) with Mn~(2+): nuclear spin relaxation by the paramagnetic ion. J Inorg Biochem 2005, 99:584-588.
    [19] Hayakawa F, Kimura T, Hoshino N, Ando T. DNA cleavage activities of (-)-epigallocatechin, (-)-epicatechin, (+)-catechin, and (-)-epigallocatechin gallate with various kinds of metal ions. Biosci Biotechnol Biochem 1999, 63:1654-1656.
    [20] Sun SL, He GQ, Yu HN, Yang JG, Borthakur D, Zhang LC, Shen SR, Das UN. Free Zn (2+) enhances inhibitory effects of EGCG on the growth of PC-3 cells. Mol Nutr Food Res 2008,52:465-471.
    [21] Esparza 1, Salinas I, Santamaria C, Garcia-Mina JM, Fernandez JM. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal Chim Acta 2005, 543:267-274.
    [22] Inoue MB, Inoue M, Fernando Q, Valcic S, Timmermann BN. Potentiometric and (1)H NMR studies of complexation of Al(3+) with (-)-epigallocatechin gallate, a major active constituent of green tea. J Inorg Biochem 2002, 88:7-13.
    [23] Connolly JM, Rose DP. Secretion of epidermal growth factor and related polypetides by the DU 145 human prostate cancer cell line. Prostate 1989, 15:177-186.
    [24] Connolly JM, Rose DP. Production of epidermal growth factor and transforming growth factors-a by androgen-responsive LNCaP prostate cancer cell line. Prostate, 1990, 16:209-218.
    [25] Adachi S, Nagao T, Ingolfsson HI, Maxfield FR, Andersen OS, Kopelovich L, Weinstein IB. The inhibitory effect of (-)-epigallocatechin gallate on activation of the epidermal growth factor receptor is associated with altered lipid order in HT29 colon cancer cells. Cancer Res 2007, 67:6493-6501.
    [26] Adachi S, Nagao T, To S, Joe AK, Shimizu M, Matsushima-Nishiwaki R, Kozawa O, Moriwaki H, Maxfield FR, Weinstein IB. (-)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis 2008, 29:1986-1993.
    [27] Patra SK, Rizzi F, Silva A, Rugina DO, Bettuzzi S. Molecular targets of (-)-epigallocatechin-3-gallate (EGCG): specificity and interaction with membrane lipid rafts. J Physiol Pharmacol 2008, 59 Suppl 9:217-235.
    [1] Stuart EC, Scandlyn MJ, Rosengren RJ. Role of epigallocatechin gallate (EGCG) in thetreatment of breast and prostate cancer. Life Sci 2006, 79:2329-2336.
    [2] Chen L, Zhang HY. Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin-3-gallate. Molecules 2007, 12:946-957.
    [3] Khan N, Mukhtar H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett 2008, 269:269-280.
    [4] Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Bio 2004, 11:380-381.
    [5] Fujimura Y, Umeda D, Yano S, Maeda-Yamamoto M, Yamada K, Tachibana H. The 67kDa laminin receptor as a primary determinant of anti-allergic effects of O-methylated EGCG. Biochem Biophys Res Commun 2007, 364:79-85.
    [6] Umeda D, Yano S, Yamada K, Tachibana H. Involvement of 67-kDa laminin receptor-mediated myosin phosphatase activation in antiproliferative effect of epigallocatechin-3-O-gallate at a physiological concentration on Caco-2 colon cancer cells. Biochem Biophys Res Commun 2008, 371:172-176.
    [7] Chen X, Yu H, Shen S, Yin J. Role of Zn~(2+) in epigallocatechin gallate affecting the growth of PC-3 cells. J Trace Elem Med Biol 2007, 21:125-131.
    [8] Sun SL, He GQ, Yu HN, Yang JG, Borthakur D, Zhang LC, Shen SR, Das UN. Free Zn (2+) enhances inhibitory effects of EGCG on the growth of PC-3 cells. Mol Nutr Food Res 2008, 52:465-471.
    [9] Costello LC, Franklin RB, Feng P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 2005, 5:143-153.
    [10] Singh KK, Desouki MM, Franklin RB, Costello LC. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol Cancer 2006, 5:14.
    [11] Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 1997, 89:1881-1886.
    [12] Ahmad N, Gupta S, Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch Biochem Biophys 2000, 376:338-346.
    [13] Chen ZP, Schell JB, Ho CT, Chen KY. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett 1998, 129:173-179.
    [14] Sunshine C, McNamee MG. Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim Biophys Acta 1994, 1191:59-64.
    [15] Salinas DG, De La Fuente M, Reyes JG. Changes of enzyme activity in lipid signaling pathways related to substrate reordering. Biophys J 2005, 89:885-894.
    [16] Balint E, Grimley PM, Gan Y, Zoon K.C, Aszalos A. Plasma membrane biophysical properties linked to the antiproliferative effect of interferon-alpha. Acta Microbiol Immunol Hung 2005, 52:407-432.
    [17] Cooper RA. Abnormalities of cell-membrane fluidity in the pathogenesis of disease. N Engl J Med 1977,297:371-377.
    [18] de Gomez Dumm NT, Giammona AM, Touceda LA, Raimondi C. Lipid abnormalities in chronic renal failure patients undergoing hemodialysis. Medicina (B Aires) 2001, 61:142-146.
    [19] Thewke D, Kramer M, Sinensky MS. Transcriptional homeostatic control of membrane lipid composition. Biochem Biophys Res Commun 2000, 273:1-4.
    [20] Turk M, Mejanelle L, Sentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitas A. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 2004, 8:53-61.
    [21] Oikawa S, Furukawaa A, Asada H, Hirakawa K, Kawanishi S. Catechins induce oxidative damage to cellular and isolated DNA through the generation of reactive oxygen species. Free Radic Res 2003, 37:881-890.
    [22] Bishop GM, Dringen R, Robinson SR. Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radic Biol Med 2007, 42:1222-1230.
    [23] Kanadzu M, Lu Y, Morimoto K. Dual function of (-)-epigallocatechin gallate (EGCG) in healthy human lymphocytes. Cancer Lett 2006, 241:250-255.
    [24] Teresa G, Anna A, Maria P, Zofia J, Gerard B. Carp erythrocyte lipids as a potential target for the toxic action of zinc ions. Toxicol Lett 2002, 132:57-64.
    [25] Navarro RE, Santacruz H, Inoue M. Complexation of epigallocatechin gallate (a green tea extract, EGCG) with Mn~(2+): nuclear spin relaxation by the paramagnetic ion. J Inorg Biochem 2005, 99:584-588.
    [26] Hashimoto T, Kumazawa S, Nanjo F, Hara Y, Nakayama T. Interaction of tea catechins with lipid bilayers investigated with liposome systems. Biosci Biotechnol Biochem 1999, 63:2252-2255.
    [27] Kajiya K, Kumazawa S, Nakayama T. Steric effects on interaction of tea catechins with lipid bilayers. Biosci Biotechnol Biochem 2001, 65:2638-2643.
    [28] Tsui KH, Chang PL, Juang HH. Zinc blocks gene expression of mitochondrial aconitase in human prostatic carcinoma cells. Int J Cancer 2006, 118:609-615.
    [29] Liang JY, Liu YY, Zou J, Franklin RB, Costello LC, Feng P. Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate 1999, 40:200-207.
    [30] Feng P, Liang JY, Li TL, Guan ZX, Zou J, Franklin R, Costello LC. Zinc induces mitochondria apoptogenesis in prostate cells. Mol Urol 2000, 4:31-36.
    [31] Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate 2002, 52:311-318.
    [32] Franklin RB, Costello LC. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys 2007, 463:211-217.
    [33] Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Effect of zinc on prostatic tumorigenicity in nude mice. Ann N Y Acad Sci 2003, 1010:316-320.
    [34] Truong-Tran AQ, Ho LH, Chai F, Zalewski PD. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death. J Nutr 2000, 130:1459S-1466S.
    [35] Nodera M, Yanagisawa H, Wada O. Increased apoptosis in a variety of tissues of zinc-deficient rats. Life Sci 2001, 69:1639-1649.
    [36] Chen YM, Wang MK, Huang PM. Catechin transformation as influenced by aluminum. J Agric Food Chem 2006, 54:212-218.
    [37] Hayakawa F, Ishizu Y, Hoshino N, Yamaji A, Ando T, Kimura T. Prooxidative activities of tea catechins in the presence of Cu~(2+). Biosci Biotechnol Biochem 2004, 68:1825-1830.
    [38] Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S. (-)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA. Biochem Pharmacol 2003, 66:1769-1778.
    [39] Azam S, Hadi N, Khan NU, Hadi SM. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicol In Vitro 2004, 18:555-561.
    [40] Esparza I, Salinas I, Santamara C, Garcia-Mina JM, Fernandez JM. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal Chim Acta 2005, 543:267-274.
    [1] Gupta S, Ahmad N, Nieminen AL, Mukhtar H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol Appl Pharmacol 2000, 164:82-90.
    [2] Paschka AG, Butler R, Young CY. Induction of apoptosis in prostate cancer cell lines by the green tea component, (-)-epigallocatechin-3-gallate. Cancer Lett 1998, 130:1-7.
    [3] Stuart EC, Scandlyn MJ, Rosengren RJ. Role of epigallocatechin gallate (EGCG) in the treatment of breast and prostate cancer. Life Sci 2006, 79:2329-2336.
    [4] Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 2006, 66:2500-2505.
    [5] Lambert JD, Yang CS. Mechanisms of cancer prevention by tea constituents. J Nutr 2003, 133:3262S-3267S.
    [6] Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000, 403:98-103.
    [7] Bernardi P, Rasola A. Calcium and cell death: the mitochondrial connection. Subcell Biochem 2007, 45:481-506.
    [8] Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev 2008, 22:1577-1590.
    [9] Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate 2002, 52:311-318.
    [10] Feng P, Li T, Guan Z, Franklin RB, Costello LC. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer 2008, 7:25.
    [11] Chen X, Yu H, Shen S, Yin J. Role of Zn~(2+) in epigallocatechin gallate affecting the growth of PC-3 cells. J Trace Elem Med Biol 2007, 21:125-131.
    [12] Sun SL, He GQ, Yu HN, Yang JG, Borthakur D, Zhang LC, Shen SR, Das UN. Free Zn (2+) enhances inhibitory effects of EGCG on the growth of PC-3 cells. Mol Nutr Food Res 2008, 52:465-471.
    [13] Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443:787-795.
    [14] Orrenius, S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 2007, 39:443-455.
    [15] Ran ZH, Xu Q, Tong JL, Xiao SD. Apoptotic effect of Epigallocatechin-3-gallate on the human gastric cancer cell line MKN45 via activation of the mitochondrial pathway. World J Gastroenterol 2007, 13:4255-4259.
    [16] Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 2003,63:8118-8121.
    [17] Nakazato T, Ito K, Miyakawa Y, Kinjo K, Yamada T, Hozumi N, Ikeda Y, Kizaki M. Catechin, a green tea component, rapidly induces apoptosis of myeloid leukemic cells via modulation of reactive oxygen species production in vitro and inhibits tumor growth in vivo. Haematologica 2005, 90:317-325.
    [18] Ling YH, Liebes L, Zou Y, Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 2003, 278:33714-33723.
    [19] Malik F, Kumar A, Bhushan S, Khan S, Bhatia A, Suri KA, Qazi GN, Singh J. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 2007, 12:2115-2133.
    [20] Liu MJ, Wang Z, Li HX, Wu RC, Liu YZ, Wu QY. Mitochondrial dysfunction as an early event in the process of apoptosis induced by woodfordin I in human leukemia K562 cells. Toxicol Appl Pharmacol 2004, 194:141-155.
    [21] Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, Lee KT. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett 2003, 96:143-152.
    [22] Lee MG, Lee KT, Chi SG, Park JH. Costunolide induces apoptosis by ROS-mediated mitochondrial permeability transition and cytochrome C release. Biol Pharm Bull 2001, 24:303-306.
    [23] Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004, 7:97-110.
    [24] Chen YM, Wang MK, Huang PM. Catechin transformation as influenced by aluminum. J Agric Food Chem 2006, 54:212-218.
    [25] Hayakawa F, Ishizu Y, Hoshino N, Yamaji A, Ando T, Kimura T. Prooxidative activities of tea catechins in the presence of Cu~(2+) .Biosci Biotechnol Biochem 2004, 68:1825-1830.
    [26] Matsuo N, Yamada K, Shoji K, Mori M, Sugano M. Effect of tea polyphenols on histamine release from rat basophilic leukemia (RBL-2H3) cells: the structure-inhibitory activity relationship. Allergy 1997, 52:58-64.
    [27] Hiipakka R.A, Zhang H.Z, Dai W, Dai Q, Liao S. Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols. Biochem Pharmacol 2002, 63:1165-1176.
    [28] Wang X, Song K S, Guo Q X, Tian WX. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem Pharmacol 2003, 66:2039-2047.
    [29] Navarro RE, Santacruz H, Inoue M. Complexation of epigallocatechin gallate (a green tea extract, EGCG) with Mn~(2+): nuclear spin relaxation by the paramagnetic ion. J Inorg Biochem 2005, 99:584-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700