用户名: 密码: 验证码:
生物信息学网格环境下任务调度关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着后基因组时代的到来,爆炸式增长的生物数据对计算资源的性能提出了严峻的挑战,作为应对挑战的生力军,网格技术得到了空前的重视,专门用来处理生物数据的生物信息学网格也随之诞生。除传统网格所面临的技术挑战外,由于生物数据所特有的数据量大、彼此间不相关或弱相关、任务粒度大以及需要多方协作等特性,生物信息学网格对资源管理、任务调度、负载均衡等技术和方法提出了特殊需求,需要根据生物信息学应用的特点对其进行必要的改进,使底层资源与高层应用有机结合,从而有效提高资源利用率和任务执行效率,简化生物学研究人员使用网格平台的复杂程度,使生物信息学网格作为生物学研究的重要基础设施最大限度地发挥其服务潜力。
     在对网格资源管理模式详细分析的基础上,提出双层资源定义机制,综合考察系统底层物理资源特性和高层应用的逻辑关联,使网格平台在进行任务调度、负载均衡以及服务流的动态组织等关键操作时能够兼顾到物理和应用两方面的特征,做到服务与任务的最佳匹配,有效避免了纵向资源定义机制可能带来的拓扑失配问题。基于双层横向资源定义的思想,分别给出了适合生物信息学网格任务调度、负载均衡以及服务流动态组合调度的新策略。
     复杂生物学应用通常由多个子任务根据特定应用逻辑共同协作完成,基于相关服务组合优化的思想,给出了基于逻辑组合划分的两级服务调度策略SP2SP。根据复杂应用各子任务之间的逻辑关系确定符合其需求的服务集并定义为服务的逻辑分组,首先实现复杂应用和服务逻辑分组之间的一级优化匹配,进而在服务的逻辑分组内部,实现基于QoS和加权队列的二级匹配。SP2SP有效降低了调度器与信息服务的交互次数,实现了资源预留,同时兼顾到任务的优先级,提高了网格任务的执行效率,保证了多任务之间对资源竞争使用的公平性。
     网格负载均衡是保证网格系统整体性能不可或缺的功能模块。针对生物信息学网格负载均衡过程中,任务的动态迁移可能引起大数据迁移现象,提出基于最小代价最大流信道M~2C的负载均衡策略M~2ON。M~2ON通过语义覆盖网搜索计算性能符合需求的网格节点,通过M~2C考察源节点与可能的目标节点之间的通信状态,最后通过双线性插值函数DLI将其融合成综合影响因子IIF作为最终目标节点的选择依据。M~2ON避免了传统单覆盖网模型可能引起的拓扑失配问题,降低了任务或数据传输开销在整个任务完成时间中的比例,从而提高了网格任务的执行效率。
     为了降低使用网格平台的复杂程度,互相协作的多个网格服务可以根据特定的应用逻辑自动组织成特定的服务流,在服务流程确定后,由于任务粒度较大且不均匀,可能引起资源负载不均衡,进而影响资源总体利用率。针对生物数据之间不相关或弱相关特性,给出了基于任务粒度分解的多级流水线服务调度策略MP-GridWF;结合副本创建机制,进而给出基于多级流水和多粒度副本创建的服务调度策略MP&MR-GridWF。MP-GridWF与MP&MR-GridWF相继提高了需要多个服务串行协作的网格任务的执行效率。
     结合上述研究内容和方法,基于中国教育科研网格公共支撑平台CGSP,作为国家科技基础条件平台NPPC的一部分,搭建了生物信息学网格子平台H-BioGrid。实际应用测试充分表明上述研究方法可以有效提高网格资源的利用率和任务执行效率,降低了网格任务平均完成时间。H-BioGrid可以集成任何意欲加入平台的软、硬资源,已经部署并公开发布了实验室开发的多个生物信息学应用软件和数据库,为国内外生物信息学研究提供必要的支持。
Bioinformatics which is absorbed in creating and developing advanced computational techniques to manage and extract useful information from DNA/RNA/protein sequence is fast emerging as important discipline for life science research. The bioinformatics applications are extremely computationally or data intensive, providing motivation for using Grid technology. However, some functional modules of grid such as resource management, scheduling method, and load balancing policy etc. must be adjusted to accommodate to the bioinformatics applications that are computationally/data intensive, data irrelevant, great task granularity, and cooperative.
     A novel bi-partite model for resource management is proposed based on the detailed analysis on grid resource management mode. This bi-partite model can let grid users observe grid resources from both low level physical characteristics and high level application characteristics. Based on the bi-partite model, a novel grid service scheduling policy, a load balancing method based on min-cost & max-flow channel, and a dynamic combinatorial optimization method for grid service are separately presented to enhance the global performance of grid platform.
     Complicated bioinformatics applications usually include multiple sub-tasks which need to interact with each other to coordinately accomplish the whole tasks. A set of optimal services taking account of certain performance constrains are invoked in order to satisfy the complicated tasks. Thus, coordinating the optimal invoking of such services is important to increase responsiveness and to ensure optimal application execution and system usage in general. we present a method called SP2SP, 2-level grid Service Scheduling Policy based on Logical Subnet Partitioning, which tackles the service scheduling problem in Bio-Grid environments in three steps:1) a similarity based logical subnet partitioning algorithm which classifies individual services into different subsets according to similarity constrains that are based on performance metrics; 2) the employment of a requirement based prediction algorithm that maps the bioinformatics applications that are composed of multiple sub-tasks into optimal subnet; and 3) multi-priority queue based service scheduling algorithm used inside individual subnet taking charge of allocating each sub-task to an optimal physical service within the subnet. Based on the sub-grid platform of NPPC, comprehensive experiments are performed in order to evaluate proposed SP2SP mechanism. Results have shown that SP2SP outperforms other scheduling algorithms. In particular, SP2SP performs best for scenarios where a group of tasks has similar resource requirements or need to cooperate with each other to obtain better performance as a whole.
     To realize load balance among all grid nodes, a bipartite model for load balancing (LB) in grid computing environments, called Transverse viewpoint based Bi-Tier model (TBT), is proposed. TBT can efficiently eliminate topology mismatching between overlay-and physical-networks during the load transfer process. As an implementation of TBT, a novel LB policy called M~2ON (Min-cost and Max-flow Channel based Overlay Network) is presented. In M~2ON, the communication capability is denoted as M~2C (Min-cost and Max-flow Channel) which is obtained using a Labeled Tree Probing (LTP) method. The computing capacity is denoted as the Idle Factor (IF) which is obtained from the semantic overlay. The higher- and lower-level characteristics are combined into an Integrated Impacting Factor (ⅡF) using a Double Linear Inserting (DLI) function. Based onⅡF, optimal topology matching can be achieved in the LB process. Extensive experiments and simulations have been performed and will be discussed. The results show that M ON achieves more accurate topology matching with a minimum increment in the overall locating time yet achieving higher system performance as a whole.
     Based on the theory and research production mentioned above, a bioinformatics grid platform called H-BioGrid is designed and constructed.This platform can integrated any hardware, software, and data resources which come forward to join to this platform. Some bioinfromatics and database developed in our lab are already deployed into H-BioGrid and provide free access to the global bioinformatics researchers.
引文
1.张阳德.生物信息学.科学出版社.北京.2005
    2.乔立安.基于网格的生物信息学计算流程系统的研究.博士学位论文,华中科技大学图书馆,2004,1-8
    3. I. Foster. The Grid: A New Infrastructure for 21st Century Science. Physics Today, 2002, 55(2): 42-47
    4. I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the grid enabling scalable virtual organizations. International Journal Supercomputer Applications, 2001, 15(3): 200-222
    5. J. M. Schopf and B. Nitzberg. Grids: Top Ten Questions Scientific Programming. Special issue on Grid Computing, 2002, 10(2): 103-111
    6. I. Foster. Grid service for Distributed System Integration. IEEE Transaction on Computer. 2002, 35(6): 37-46
    7.郑然.网格计算环境下工作流关键技术的研究.博士论文,华中科技大学图书馆,2006.1-3
    8. D. Bechors. Principles and potential of a new multidisciplinary tool: Trends in Biotechnology. Bioinformatics, 1996, 14(8): 262-272
    9. B. MS. Current Opinion in Genetic Developement. Bioinformatics, 1994, 4(3): 383-388
    10.欧阳曙光,贺福初.生物信息学:生物实验数据和计算技术结合的新领域.科学通报,1999,44(14):1457-1468
    11. D.R. Westhead, J. H. Parish, R. M. Twyman. Bioninformatics. Scientific Publishers, 2002
    12. E. Marshall. Hot property: Biologists who compute. Science, 1996, 272(5269): 1730-1732
    13. E. Marshall. Data sharing-Genome researchers take the pledge. Science, 1996 272(5261): 477-478
    14. M. Chicurel. Bioinformatics: bringing it all together. Nature, 2002, 419:751-755
    15. T.K. Attwood. Genomics-The babel of bioinformatics. Science, 2000, 290(5491): 471-473
    16. C. Gibas, P. Jambeck. Developing Bioinformatics Computer Skill. O'Reilly & Associates, 2001
    17. A.M. Campbell, L. J. Heyer. Discovering Genomics. Proteomics and Bioinformatics Pearson Education, 2003
    18.张成岗,贺福初.生物信息学方法与实践.科学出版社,北京,2002
    19.陈润生.当前生物信息学的重要研究任务.生物工程进展,1999,19(4):11-14
    20.张春霆.生物信息学的现状与展望.世界科技研究与发展,2000,22:17-20
    21. E. Jain. Current trends in bioinformatics. Trends in Biotechnology, 2002, 20(8): 317-319
    22.张柏林.生物信息学手册(第二版).上海科学技术出版社,上海,2002
    23. I. Foster, C. Kesselman. The Globus Project: A Status Report. In Proc. IPPS/SPDP'98, Heterogeneous Computing Workshop, Orlando, Florida, USA, IEEE Press, 1998:4-18
    24. I. Foster. What is the Grid? A Three Point Checklist. GRID Today, July 20, 2002
    25. I. Foster, C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Intl J. Supercomputer Applications, 1997, 11(2): 115-128
    26. I. Foster, C. Kesselman, J. Nick et al. The Physiology of the Grid: An Open Grid Service Architecture for Distributed Systems Intergation, 2002
    27. I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the grid enabling scalable virtual organizations. International Journal Supercomputer Applications, 2001, 15(3): 200-222
    28.金海,袁平鹏,石柯.(译)网格计算.北京:电子工业出版社,2004
    29. K. Czajkowski, I. Foster, C. Kesselman. Resource Co-Allocation in Computational Grid. In: Proc. the 8th IEEE International Symposium on High Performance Distributed Computing (HPDC-8), Redondo Beach, California, USA, IEEE Press, 2001: 219-228
    30.卢墩.网格服务挖掘中网格服务部署关键技术研究.博士论文 华中科技大学图书馆.2006.
    31.李季.网格资源定位和任务调度的研究.博士论文华中科技大学图书馆,2005.
    32.何琨.多任务调度问题的研究与实现.博士论文 华中科技大学图书馆,2005.
    33.许智宏.关于提高网格计算性能和服务质量的几点研究.博士论文 华中科技大学图书馆,2004.
    34.谷青范.网格环境下的服务调度机制研究.博士论文 华中科技大学图书馆,2006.
    35.邹德清.具有QoS保障的服务网格关键理论与技术研究.博士论文 华中科技大学图书馆,2004.
    36. I. Foster, C. Kesselman. The Globus Project: A Status Report. In: Proc. IPPS/SPDP'98 Heterogeneous Computing Workshop. Orlando, Florida, USA. IEEE Press, 1998:4-18
    37. S. Brunett, K. Czajkowski, S. Fitzgerald. Application Experiences with the Globus Toolkit. In: Proceedings of the 7th IEEE Symp. on High Performance Distributed Computing. Chicago, USA, IEEE Press, 1998:81-88
    38. D. McMullen, R. Bramley, C. Huffman. The Xport Collaboratory for High Brilliance X-ray Crystallography. http://www.cs.indiana.edu/ngi/sc2000/
    39. W. Allcock, A. Chervenak, I. Foster. The Data Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientific Datasets. Journal of Network and Computer Applications, 2001.23:187-200
    40. G. Avellino, S. Beco, B. Cantalupo. The DataGrid Workload Management System: Challenges and Results. Journal of Grid Computing, 2004, 2(4): 353-367
    41. I. Foster. The Grid 2. Publish house of electronics industry, 2004.
    42. S.B. Davidson, C. Overton, P. Buneman. Challenges in integrating biological data sources. Journal of Computational Biology, 1995, 2: 557-572
    43. D.S. Roots. Computational biology-Bioinformatics-Trying to swim in a sea of data. Science, 2001, 291(5507): 1260-1261
    44. L. Stein. Creating a bioinformatics nation. Nature. 2002, 417: 119-120
    45.张广治.生物网格计算环境下网格服务的应用研究.硕士论文 华中科技大学图书馆,2004.
    46.陈冲.基于本体的生物信息网格服务发现与组合研究.硕士论文 华中科技大学图书馆,2007.
    47.肖国荣.一个生物计算网格原型的设计与实现.硕士论文 华中科技大学图书馆,2005.
    48. C. Goble. The low down on e-science and grids for biology. Comparative and Functional Genomics. 2001, 2(6): 365-370
    49. J. Wypychowski, J. Pytlinski, L. Skorwider. Life sciences grid in EUROGRID and GRIP projects. New Generation Computing, 2004, 22(2): 147-156
    50. S. Hoon, K. K. Ratnapu. Biopipe: A flexible framework for protocol based bioinformatics analysis. Genome Research, 2003, 13: 1904-1915
    51. S. Alsairafi, F. S. Emmanouil, M. Ghanem. The design of discovery net: Towards open grid services for knowledge discovery. International Journal of High Performance Computing Applications, 2003, 17(3): 297-315
    52. R. D. Stevens, A. J. Robinson, C. A. Goble. myGrid: personalised bioinformatics on the information grid. Bioinformatics, 2003, 19(s1): 1302-1304
    53. http://www.apbionet.org/
    54. http://www.ncbiogrid.org/
    55. http://biogrid.icm.edu.pl/
    56. M.D. Wilkinson, M. Links. BioMOBY: an open-source biological web services proposal. Briefings in Bioinformatics, 2002, 3:331-341
    57. http://www.biogrid.jp/
    58. http://www.ict.ac.cn/3-1-4-3.htm
    59. http://www.cngfid.org/web/guest/home
    60. http://chinagrid.hust.edu.cn/.
    61.金海,ChinaGrid建设目标:最大最先进最实用.http://www.edu.cn/20050510/3136736.shtml, 2005.
    62. Casanova. Heuristics for scheduling parameter sweep applications in grid environments. In: Proc. of the 9~(th) Heterogeneous Computing Workshop, 2000: 349-363.
    63. M. Orlowska, S. Weerawarana, P. Mike. Service-Oriented Computing. ICSOC 2003, First International Conference, Trento, Italy, December 15-18,2003, Proceedings Springer 2003, 2003
    64.李静.数据网格的资源管理相关策略及算法研究.博士论文 华中科技大学图书馆,2007
    65.李波.支持网格资源预留的作业调度算法研究.博士论文 华中科技大学图书馆,2005
    66.鞠光明.校园网负载平衡调度算法研究.硕士论文,华中科技大学图书馆 2006.
    67.张坚.分布式工作流引擎及其负载均衡技术的研究与实现.硕士论文 华中科技大学图书馆,2005
    68. Liu Y H, Zhuan Z Y, Li X et al. A distributed approach to solving overlay mismatching problem. Distributed Computing Systems, 2004. In: Proceedings. 24th International Conference on, 2004: 132-139
    69. Liu Y H, Liu X L, Li X et al. Location-aware topology matching in P2P systems. INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, 2004. 4: 2220-2230
    70.胡明生.网格环境中决策资源协同调度研究.博士论文 华中科技大学图书馆,2006.
    71.谢夏.网格计算环境下工作流关键技术的研究.博士论文 华中科技大学图书馆,2006.
    72. Jiang W.C, M. Baumgarten, Zhou Y.H, Jin H. A Bipartite Model for Load Balancing in Bio-Grid Computing Environments. Frontiers of Computer Science in China, (accepted)
    73.姜文超,金海,王述振,陶文兵,章勤.一种基于多优先级队列和Qos的服务调度策略.小型微型计算机系统,2008.29(23):450-455
    74. Jiang W.C, Wang J, Zhou Y.H. SP2SP: Subnet-Partition based 2-level Grid Service Scheduling Policy. In: Proceedings of 3~(rd) International Conference on Semantics, Knowledge and Grid (SKG2007), 2007: 158-163
    75.姜文超,王佳,刘融,陆枫,周艳红.融合副本和流水线的网格工作流调度策略.小型微型计算机系统,2009.30(4):601-605
    76. P. Allen, S. Orientation. Winning Strategies and Best Practices. Cambridge University Press, 2006.
    77. T.S. Dillon, C. Wu, E. Chang. GRIDSpace: Semantic Grid Services on the Web Evolution towards a SoftGrid. Proceedings of the Third International Conference on Semantics. Knowledge and Grid, 2007: 7-14
    78. G. C. Fox, M. E. Pierce, A. F. Mustacoglu et al. Web 2.0 for E-Science Environments. Proceedings of the Third International Conference on Semantics. Knowledge and Grid, 2007: 1-6
    79. L. Chunlin, L. Layuan. Optimization decomposition approach for layered QoS scheduling in grid computing. Journal of Systems Architecture, 2007, 53: 816-832
    80. Zhang, Y, A. Mandal, H. Casanova. Scalable Grid Application Scheduling via Decoupled Resource Selection and Scheduling. Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid, 2006.
    81. J. Liou, M.Palis. A comparison of General Approaches to Multiprocessor Scheduling. In: Proc. Int'1 Parallel Processing Symp, 1997: 152-156
    82. N. Fujimoto. A Comparison among Grid Scheduling Algorithms for Independent Coarse-Grained Tasks. In: Proceedings of the 2004 International Symposium on Applications and the Internet Workshops, 2004.
    83. D. M. Batista, L. S. Nelson, K. Flavio et al. Self-adjustment of resource allocation for grid applications. Computer Networks, 2008.
    84. B. Hamidzadeh, L. Y. Kit, D. J. Lilja. Dynamic Task Scheduling Using Online Optimization. IEEE Transactions on Parallel and Distributed Systems., 2000, 11(11):1151-1164
    85. M. Maheswaran, S. Ali, H. J. Siegel et al. Dynamica Macthing and Scheduling of A Class of Independent Tasks onto Heterogeneous Computing Systems. In: Proc. of the 8th Heterogeneous Computing Workshop (HCW'99) Washington, IEEE Computer Socitey Press., 1999: 30-44
    86. D. Abramson, J. Giddy, L. Kotler. High Performance Parametric Modeling with Nimrod/G: Killer Application for the Global Grid. In: Proc. of the 14th International Conference on Parallel and Distributed Processing Symposium, 2000: 520-528
    87. G Yang, R. Hongqiang, Joshua et al. Adaptive grid job scheduling with genetic algorithms. Future Generation Computer Systems, 2005, 21: 151-161
    88. S. Leea, S. Kumarab, N. Gautamc. Efficient scheduling algorithm for component-based networks. Future Generation Computer Systems, 2007, 23:558-568
    89. 殷锋.基于Qos的校园网络中关键技术研究.博士论文 华中科技大学图书馆,2006.
    90. S. M. Figueira. Optimal partitioning of nodes to space-sharing parallel tasks. Parallel Computing, 2006.
    91. H. Senger, A. Fabncio, B. Silva et al. Hierarchical Scheduling of Independent Tasks with Shared Files. In: Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid Workshops, 2006
    92. Du X. L., Jiang C. J., Xu G R. et al. A Grid DAG Scheduling Algorithm Based on Fuzzy Clustering. Journal of Software, 2006, 17(11): 2277-2288
    93. 王述振.图像处理网络相关技术的研究.硕士论文 华中科技大学图书馆,2006.
    94. Zhuang Y. T, Yang J, Li Q et al. A Graphic-Theoretic Model for Incremental Relevance Feedback in Image Retrieval. IEEE ICIP, 2002
    95. S. Dhakal, M. Majeed, E. P. Jorge et al. Dynamic Load Balancing in Distributed Systems in the Presence of Delays: A Regeneration-Theory Approach. IEEE Transaction on Parallel and Distributed System, 2007, 18(4): 7-14
    96. S.V. R. Nageswara. Overlay Networks of In Situ Instruments for Probabilistic Guarantees on Message Delays in Wide-Area Networks. IEEE Journal on selected areas in communications, 2004, 22(1): 79-81
    97. Zeng, Z, B. Veeravalli. On the Design of Distributed Object Placement and Load Balancing Strategies in Large-Scale Networked Multimedia Storage Systems. IEEE Trans. Parallel and Distributed Systems, 2008, 20(3): 369-383
    98. M. Jacques. S. C. V. Bahi, R. Couturier. Dynamic Load Balancing and Efficient Load Estimators for Asynchronous Iterative Algorithms. IEEE Trans. Parallel and Distributed Systems, 2005, 16(4): 289-300
    99. Lin H. C, C.S. Raghavendra. A Dynamic Load-Balancing Policy with a Central Job Dispatcher (LBC). IEEE Transactions on Software Engineering, 1992: 148-58
    100. N. G. Shivaratri, P. Krueger, M. Singhal. Load Distributing for Locally Distributed Systems. Computer Comm., 1992: 33-44
    101. D. Giannacopoulos. Optimal Discretization-Based Load Balancing for Parallel Adaptive Finite-Element Electromagnetic Analysis. IEEE Transactions on magnetics, 2004, 40(2): 977-1001
    102. D. Grosu A. T. Chronopoulos. A Game-Theoretic Model and Algorithm for Load Balancing in Distributed Systems. In: Proc. 16th Int'Parallel & Distributed Symp, 2002
    103. Zeng, Z, V. Bharadwaj. Design and Analysis of a Non-Preemptive Decentralized Load Balancing Algorithm for Multi-Class Jobs in Distributed Networks. Computer Communications, 2004, 27: 679-694
    104. D. Grosu, A. T. Chronopoulos, Algorithmic Mechanism Design for Load Balancing in Distributed Systems. IEEE Transactions on systems, man and cybernetics-Part B:cybernetics, 2004-2. 34(1)
    105. Lu K, R. Subrata, A. Y. Zomaya. Towards Decentralized Load Balancing in a Computational Grid Environments. In Proc. of the 1 st International Conference on Grid and Pervasive Computing (Springer Verlag Lecture Notes in Computer Science), Taichung, Taiwan, 2006
    106. Lu K, R. Subrata, A.Y. Zomaya. An Efficient Load Balancing Algorithm for Heterogeneous Grid Systems Considering Desirability of Grid Sites. In: Proceedings 25th IEEE International Performance Computing and Communications Conference, Phoenix, Arizona, USA, 2006
    107. G. D. Fatta, M. R. Berthold. Dynamic Load Balancing for the Distributed Mining of Molecular Structures. IEEE Trans.on Parallel and Distributed Systems, 2006-08, 17(8): 773-786
    108. C. Boeres, A. Lima, V. E. F. Rebello. Hybrid Task Scheduling: Integrating Static and Dynamic Heuristics. In: Proceedings 15th Symposium on Computer Architecture and High Performance Computing,Sao Paulo, Brazil, 2003: p. 199-206
    109. M. Avvenuti, L. Rizzo, L. Vicisano. A hybrid approach to adaptive load sharing and its performance. Journal of Systems Architecture, 1997, 42: 679-96
    110. Cao J, Agent-Based Grid Load Balancing Using Performance-Driven Task Scheduling. In: Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS'03), 2003
    111. R. Subrata, A. Y. Zomaya, B. Landfeldt. Game Theoretic Approach for Load Balancing in Computational Grids. IEEE Transactions on parallel and distributed systems 2007, 18(2): 23-26
    112. Zhang Y, H. Kameda, K. Shimizu. Adaptive Bidding Load Balancing Algorithms in Heterogeneous Distributed Systems. In: Proc. IEEE Second Int'1 Workshop Modeling, Analysis, and Simulation of Computer and Telecomm. Systems, 1994:250-254
    113. Zhang Y, H. Franke, J. Moreira. An Integrated Approach to Parallel Scheduling Using Gang-Scheduling, Backfilling, and Migration. IEEE Trans, on Parallel and Distributed Systems, 2003, 14(3): 236-247
    114. O. Akay. K. Erciyes. A Dynamic Load Balancing Model for a Distributed System. Math, and Computational Applications, 2003, 8(nos. 1-3): 353-360
    115. M. A. Salehi. H. Deldari. Grid Load Balancing Using An Echo Ssytem of Intelligent Ants. In: Proceedings of the 24th LASTED international Multi-Conference Parallel and Distributed Computing and Networks, 2006, 14(16):47-53.
    116. R. F. D. Mello, L. J. Senge, L.T. Yang. A Routing Load Balancing Policy for Grid Computing Environments. In: Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA06), 2006
    117. R. F. D. Mello. RouteGA: A Grid Load Balancing Algorithm with Genetic Support. In: Proceedings 21st International Conference on Advanced Networking and Applications (AINA'07), 2006
    118. J. S. A. Bridgewater, P. O. Boykin, V. P. Roychowdhury. Balanced Overlay Networks (BON): An Overlay Technology for Decentralized Load Balancing. IEEE Transaction on Parallel and Distributed System, 2007, 18(8): 1122-1134
    119. D. Carra, R. L. Cigno, E. W. Biersack. Stochastic Graph Processes for Performance Evaluation of Content Delivery Applications in Overlay Networks. IEEE Transaction on Parallel and Distributed System, 2007
    120. M. EL-Darieby, D. Petriu, J. Rolia. Load-Balancing Data Traffic Among Inter-Domain Links. IEEE Journal on Selected Areas in Communications, June 2007, 25(5)
    121. Liu Y H, Li X, Ni L M. Building a Scalable Bipartite P2P Overlay Network. IEEE Transaction on Parallel and Distributed System, 2007, 18(9): 1296-1307
    122. David Andersen, H. B. Frans Kaashoek, Robert Morris. Resilient Overlay Networks. In: Proc. 18th ACM Symp. on Operating Systems Principles (SOSP) October 2001, Banff, Canada., 2001
    123. Hou Y T, Duan Z, Zhang Z. Service overlay networks: SLA, QoS and bandwidth provisioning. In: Proc. Int. Conf. Network Protocols, 2002: 11-17
    124. W. Matthews. L. Cottrell. The Ping ER project: Active Internet performance monitoring for the NENP community. IEEE Commun. Mag, May 2000: 130-136
    125. Cao J. Self-Organizing Agents for Grid Load Balancing. In: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing, 2004
    126. Huang Y, Jin B, Cao J. A distributed approach to construction of topology mismatching aware P2P overlays in wireless ad hoc networks. Parallel, Distributed, and Network-Based Processing, In: Proc. 14th Euromicro International Conference on, 2006.
    127. J. S. A. Bridgewater, P. O. Boykin, V. P. Roychowdhury. Statistical mechanical load balancer for the web. Physical Reviewer, 2005, 71(71.046133): 46133
    128. Li M, Liu F, and Ren F L. Routing strategy on a two-dimensional small-world network model. PHYSICAL REVIEW, E75, 066115, 2007
    129. Jiang, W.C, Zhou Y.H, Jin H. Probing Multiple Node-Disjoint Paths Using Multi-Labelled Tree Traversing. International Journal of Autonomous and Adaptive Communications Systems, 2009. 2(2): 175-199
    130. P. Elias, A. Feinstein, C. E. Shannon. A note on the maximum flow through a network. IRE Transacions on information theory, 1956: 117-121
    131. T. Y. Cheung. Graph traveral techniques and the maximum flow problem in distributed compution. IEEE Transactions on software Engineering, 1983, SE-9(4)
    132. A. Ramamoorthy, J. Shi, R. D. Wesel. On the capacity of network coding for random networks. IEEE Transactions on information theory, 2005, 51(8): 2878-2886
    133. D.A. Dunn, Q. D.Grover, M. H. MacGregor. Comparison of k-shortest paths and maximum flow routing for network facility restoration. IEEE Journal on Seclected Areas in Communications, 1994, 12(1): 88-100
    134. "Netmodeler Graph Library" http://boykin.acis.ufl.edu/wiki/index.php/Netmodeler. 2007.
    135. L. Fisher (eds.), Workflow Handbook, Workflow Management Coalition, 2002.
    136. S. Krishnan, P. Wagstrom, G.von Laszewski. GSFL: A workflow framework for grid services. ANL/MCS-P980- 0802, Argonne National Laboratory, 2002
    137. H.P. Bivens. Grid workflow. Grid Computing Environments Working Group, Global Grid Forum, 2001
    138. I. Foster, C. Kesselman. The physiology of the grid: An open grid services architecture for distributed systems integration. 2002
    139. Staffware, Web Page. Available: http://www.staffware.com
    140. Software-Ley. COSA User Manual, Software-Ley GmbH, Pullheim, Germany, 1998
    141. InConcert: Tibco Software, Web Page. Available: http://www.tibco.com
    142. Eastman Software, Web Page. http://www.eastmansoftware.com
    143. S. P. Nielsen, C. Easthope, P. Gosselink, K. Gutsze et al. Using Lotus Domino Workflow 2.0, IBM, Poughkeepsie, USA, Redbook SG24-5693-00, 2000
    144. Websphere MQ Workflow, http://www-3.ibm.com/software/integration/wmqwf
    145. Visual Workflo: FileNet, Web Page. Available: http://www.filenet.com
    146. I-Flow: Fijitsu, Web Page. Available: http://www.i-flow.com
    147. E. Deelman, J. Blythe, Y. Gil et al. Workflow Management in GriPhyN. The grid resource management: State of the art and future trends. 2003
    148. G. E. Graham, D. Evans, I. Bertram. Mcrunjob: a high energy physics workflow planner for grid. Computing in High Energy and Nuclear Physics, March 2003
    149. G. Laszewski, N. Zaluzec, M. Hategan et al. Gridant: Client side workflow management in grids with application onto position resolved diffraction. Midwest Software Engineering Conference, June 2003
    150. J. Frey, T. Tannenbaum, I. Foster et al. Condor-G: A Computation Management Agent for Multi-Institutional Grids. In: Proceedings of the 10th IEEE Symposium on High Performance Distributed Computing (HPDC 10), 7-9, August 2001
    151. M. Govindaraju, S. Krishnan, K. Chiu et al. XCAT 2.0: A Component-Based Programming Model for Grid Web Services, Technical report 562, Dept. of C.S., Indiana Univ., June 2002
    152. M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski et al. Merging the CCA Component Model with the OGSI Framework. In: Proceedings of CCGrid2003, 3rd International Symposium on Cluster Computing and the Grid, May 2003
    153. Daniele Turi, Paolo Missier, Carole Goble et al. Taverna Workflows: Syntax and Semantics, In Proceedings 3rd IEEE International Conference on e-Science and Grid Computing, Bangalore, India, 10-13 Dec 2007
    154. H. C. Hoppe, D. Mallmann. Eurogrid: European testbed for grid applications General article on the EUROGRID project in GRIDSTART Technical Bulletin October 2002
    155. Virinder Batra, Phil Emer, Chudk Kesler, Alex Tropsha, NCBioGrid: Challenges in Grid Deployment and Application Enablement
    156. H. Sugawara, S. Miyazaki. Towards the Asia-Pacific Bioinformatics Network, Pacific Symposium on Biocomputing, 1998(3):757-762
    157. Zhu J, Guo A, Lu Z H et al. Analysis of the bioinformatics grid technique applications in China, Cluster Computing and the Grid Workshops, 2006. Sixth IEEE International Symposium on, 2006(2), 16-19
    158. Ou H F, Chen X W, Cai B et al. A Distributed Workflow Management Approach in CGSP, Grid and Cooperative Computing, 2006. GCC 2006. Fifth International Conference, Oct. 2006 207-212
    159. Wang Q J, Zhang L. Improving Grid Scheduling of Pipelined Data Processing by Combining Heuristic Algorithms and Simulated Annealing, Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)
    160. Tianchi Ma, R. Buyya, Critical-Path and Priority based Algorithms for Scheduling Workflows with Parameter Sweep Tasks on Global Grids, IEEE Proceedings of the 17th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'05)
    161. D. Bhardwaj, J. Cohen, S. McGough, S. Newhouse. A Componentized Approach to Grid Enabling Seismic Wave Modeling Application. The International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Singapore, Dec. 2004
    162. Meichun Hsu. Special Issue on Workflow and Extended Transaction Systems. volume 16(2) of Bulletin of the IEEE Technical Committee on Data Engineering. June 1993
    163. Yu J, R. Buyya. A Taxonomy ofWorkflow Management Systems for Grid Computing, Technical Report, GRIDS-TR-2005-1, Grid Computing and Distributed Systems Laboratory, University of Melbourne, Australia, March 10, 2005
    164. D. Nunzio. Agostino, M. Aversano, M. Lusia Chiusano. ParPEST: a pipeline for EST data analysis based on parallel computing, BMC Bioinformatics, 2005(12)
    165. 陆枫.真核生物基因组结构自动注释系统研究.博士论文 华中科技大学图书馆,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700