用户名: 密码: 验证码:
混合粒子群协同优化算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在科学技术研究中,很多计算问题都可以归结为具有非线性和多峰特性目标函数的全局优化问题,高效求得此类问题的全局最优解一直是优化计算领域的研究方向。粒子群优化(Particle Swarms Optimization,PSO)算法是应用于求解此类问题的一种有效方法,与其它优化算法相比,它的优点突出。虽然PSO算法在很多问题中已得到成功应用,但仍存在早熟收敛导致的局部收敛速度慢,计算精度不高等问题,进一步提高PSO算法的计算性能已是当前研究的热点。
     本文在深入研究粒子群优化算法的基础上,从提升其计算性能入手,提出了若干改进的粒子群优化算法,相应得到了较高的优化性能;在算法混合思想指导下,重点提出了两种混合粒子群协同优化算法,取得了更为全面的计算性能。并成功应用优化算法精确、高效地解决了氧化铝生产工艺过程的物料平衡计算难题。论文主要包括如下研究内容:
     综合表述了PSO算法产生背景及其国内外研究与应用现状,并对标准PSO算法结构特性和计算过程进行必要分析。
     论文以提高粒子在解空间中的探索能力来提升PSO算法的全局收敛性能,定义了平稳度和聚集度的概念,提出了三种改进的粒子群优化算法。①基于空间变异的粒子群优化算法(SM-PSO)。在最优解的搜索过程中,根据群体适应度变化情况,通过自适应调整搜索空间来提高粒子群的局部寻优效率和全局寻优性能,以提高搜索速度和成功率。其中证明了算法收敛性。②具有加速因子的粒子群优化算法(AF-PSO)。根据粒子的运动轨迹,对粒子的速度进行动态调整,从而通过改进粒子的空间探索能力来提高算法的收敛速度。其中对算法的收敛性进行了证明,并给出了有关参数选取的指导性原则。③具有随机变异特性的改进型粒子群算法(AM-PSO)。该算法克服了标准粒子群算法后续迭代过程速度慢且易陷入局部最优解的缺点。在迭代过程中,粒子的变异概率取决于粒子的适应度值以及当前所有粒子的聚集度和平稳度,通过变异,粒子可有效地探索新的空间领域,从而可以有效地避免陷入局部最优解。通过大量实验仿真以及在激光焊接质量检测中的实际工程应用对三种改进方法分别进行了性能对比分析与讨论。
     对于复杂的优化问题,算法在解空间中的探测和开发能力往往单靠某一种算法在整体计算性能上很难得到全面有效利用与平衡,从而影响算法的整体求解精度和效率。对此,本文提出并实现了由粒子群优化算法作主导框架,将其它优化算法中某些优良计算特性与机制融入其中的两种混合粒子群协同优化算法(SASM-PSCO和CSM-PSCO)。它们既保留了粒子群优化算法原有的优点,其不足之处则被其它算法的优点所弥补,诸如模拟退火法中具有的突跳性,单纯形算法的快速收敛性,混沌运动的强随机性和遍历性等。仿真测试及工程应用结果表明,两种混合粒子群协同优化算法具有较为全面的优化计算整体性能。文中讨论了各种被引入的优化算法与粒子群优化算法的融合方法与步骤问题,并给出了混合粒子群协同优化算法的收敛性定理证明。
     在简要分析和讨论拜耳法氧化铝生产的基本原理和生产工艺流程基础上,针对实际工程应用中不同的生产工艺给出了拜耳法物料平衡计算的三种数学模型,将复杂的工程计算问题抽象成非线性多目标优化的数学问题,用前述各种优化算法进行计算,均取得了很好的应用结果,其中两种混合型优化算法的计算性能较之改进型优化算法更为全面。
     最后,对粒子群优化算法的发展方向进行了展望。
In science and technology research, a lot of computing problems can be formulated as a global optimization problem of the objective function with nonlinear and multi-peak characteristics. How to solve a global solution of these problems is one of the most important topics in optimization. Recently, particle swarm optimization (PSO) algorithm is one of the most powerful methods for solving such problems, compared with other optimization algorithms, its advantages highlighted. Although PSO has gained much attention and wide applications in different fields, there are still slower local convergence and lower computational accuracy problem caused by premature convergence, and how to improve the globally convergence ability has been the main research direction so far.
     In this paper, based on in-depth study of particle swarm optimization algorithm, from start to upgrade its computing performance, a number of improved particle swarm optimization algorithms were given, the corresponding measure has been higher results; Under the guidance of thought of the hybrid algorithm, hybrid particle swarm cooperative optimization algorithms were proposed and achieved very good computing performance and results. The difficult problems of the material balance computation in the alumina production process were solved accurately and efficiently. Several points are included in this paper as follows:
     The origin and background of PSO were introduced, and the current research and application situations were summarized deeply, and then structural characteristics and calculation process of the standard PSO algorithm were carried out the necessary analysis of the process.
     It is reasonable that improving exploration ability can make particles explore solution space more efficiently in order to improve PSO global performance, the concepts of the gathering degree and the steady degree were defined, then three different improved PSO algorithms were proposed. First is a novel particle swarm optimization algorithm based on adaptive space mutation (SM-PSO). During the searching process, the convergence speed and globally convergence ability is greatly improved by the adaptive space mutation based on the variance of the population's fitness, the convergence theorem of the algorithm is proved. Second is a particle swarm optimization algorithm with accelerating factor (AF-PSO). The particle can dynamically adjust flying velocity according to flying direction at the different iterations, and effectively escapes from local optimum solution according to the gathering degree and the steady degree, and finally attains global optimum solution, and then the convergence and parameter selection of the algorithm are analyzed and discussed deeply. Third is a novel particle swarm optimization with stochastic mutation (AM-PSO). The mutation probability of the current particle is determined by the mean of all the particle's fitness, the gathering degree and the steady degree, the exploration ability is efficiently improved by the mutation, and the probability of falling into local optimum is greatly decreased. Experimental results and practical application in quality monitoring of laser welding process show the new methods have faster convergence speed and higher globally convergence ability than the standard PSO.
     For complex optimization problems, the abilities of exploration and exploitation of algorithm often cannot be utilized and balanced effectively by depending solely on one method, thus influence solving overall precision and efficiency of the algorithm. Based on the main framework of particle swarm optimization algorithm, we proposed two hybrid particle swarm cooperative optimization algorithms in combination with certain excellent characteristics and mechanisms of other optimization algorithms. They retain the original advantages of particle swarm optimization, the disadvantages were offset by the merits of other algorithms, such as sudden jump characteristics of simulated annealing, fast convergence of the simplex algorithm, and randomness and ergodicity of the strong chaotic motion. Simulation testing and engineering application results show that hybrid particle swarm cooperative optimization algorithms have a more comprehensive optimization performance. The paper discusses the methods and steps of the integration problem of other algorithms and particle swarm optimization, and the convergence theorems of hybrid algorithms were proved.
     Based on the in-depth analysis and discussion the technological process and the basic principles of the alumina production process in Bayer, three mathematical models of Bayer material balance computation were proposed for practical engineering applications in different production technology, complex engineering computing problems were first converted into non-linear multi-objective optimization problems, and the above optimization algorithms were applied to solve them and achieved excellent results. The results also show that two hybrid optimization algorithms have more comprehensive computing performance than the improved optimization algorithms.
     Finally, the whole research contents were summarized, particle swarm optimization algorithm was prospected for the direction of development in future.
引文
[1] 王凌.智能优化算法及其应用[M].北京:清华大学出版社,2000.
    [2] Kennedy J, Eberhart R C. Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks Ⅳ, IEEE Press, Piscataway, NJ (1995),1942-1948.
    [3] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, IEEE Press, Piscataway, NJ (1995), 39-43.
    [4] Hu X, Shi Y and Eberhart R C. Recent Advance in Particle Swarm. In: The 2004 Congress on Evolutionary Computation.Piscataway, NJ:IEEE Press,2004,90-97.
    [5] Langton C G. Artificial Life: an overview. MIT Press,1995.
    [6] 熊勇.粒子群优化算法的行为分析与应用实例[D].浙江大学,2005.
    [7] Ray T S. An evolutionary approach tosynthetic biology to synthetic biology: Zen and the art of creating life. Artificial Life Journal, vol. 1, numberb 1/2, 179-209, The MIT Press,1994.
    [8] Millonas M M. Swarm, phase transitions,and collective intelligence. In C.G.Langton, Ed., Artificial Life Ⅲ, Addison-Wesley,Reading, MA. 1994.
    [9] Reynolds C W. Flocks, herds and schools: A distributed behavioral model. Computer Graphics,vol.21,no.4, 25-34.
    [10] Van Den Bergh F. An Analysis of Partiele Swarm Optimizers. PhD Thesis.University of Pretoria, Nov 2001.
    [11] Clerc M and Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, 58-73, 2002.
    [12] Trelea IC. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters. Vol.85, Issue:6, MAR 2003, 317-325.
    [13] Zeng Jian-Chao, Cui Zhi-Hua. Guaranteed global convergence particle swarm optimizer .Computer Research and Development, v41, n8, August, 2004, 1333-1338.
    [14] 赫然,王永吉,王青等.一种改进的自适应逃逸粒子群算法及实验分析.软件学报,2005,16(12),2036-2044.
    [15] 胡旺,李志蜀.一种更简化而高效的粒子群优化算法.软件学报,2007,18(4),861-868.
    [16] 刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法.控制与决策,v21,n6,2006,636-640+645.
    [17] Jin Xin-Lei, Ma Long-Hua, Wu Tie-Jun et al. Convergence analysis of the particle swarm optimization based on stochastic processes. Zidonghua Xuebao/Acta Automatica Sinica, v33, n12, December, 2007, 1263-1268.
    [18] Lin Chuan, Feng Quanyuan. The standard particle swarm optimization algorithm convergence analysis and parameter selection. Proceedings - Third International Conference on Natural Computation, ICNC 2007, v3, 2007, 823-826.
    [19] Jiang M, Luo Y P, Yang S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters, v102, n1, Apr 15, 2007, 8-16.
    [20] Shi Y and Eberhart R C. A modified particle swarm optimizer. Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, NJ. 1998, 69-73.
    [21] Shi Y and Eberhart R C. Particle swarm optimization with fuzzy adaptive inerita weight. Proceedings of the Workshop on Particle Swarm Optimization 2001, Indianapolis, 2001.
    [22] Clerc M. The swarm and the queen:towards a deterministic and adaptive particle swarm optimization. Proceedings of the 1999 Congress on Evolutionary Computation, Piscataway, NJ,USA:IEEE, 1999,1927-1930.
    [23] Eberhart R C and Shi Y. Comparing inertia weigthts and constriction factors in particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2000), San Diego, CA. 2000, 84-88.
    [24] Ratnaweera A, Halgamuge S and Watson H. Self-organizing hierarchical particle swarm optimizer with time varying accelerating coefficients. IEEE Trans. Evol. Comput., vol.8, Jun. 2004, 240-255.
    [25] Monson C K, Sepp K D. The Kalman Swarm-A New App roach to Particle Motion in Swarm Optimization. Proceedings of the Genetic and Evolutionary Computation Conference. Springer, 2004,140-150.
    [26] Zielinski Karin, Laur Rainer. Adaptive parameter setting for a multi-objective particle swarm optimization algorithm. 2007 IEEE Congress on Evolutionary Computation, CEC 2007, 3019-3026.
    [27] Song Shengli, Kong Li, Zhang Pu et al. Improved particle swarm optimization algorithm with accelerating factor. Journal of Harbin Institute of Technology (New Series), v14, ns2, January, 2007, 146-149.
    [28] Song S L, Kong L, Cheng J J et al.. A novel stochastic mutation technique for particle swarm optimization. Dynamics Of Continuous Discrete And Impulsive Systems-Series B-Applications & Algorithms. Aug. 2007,vol.l4, 500-505.
    [29] Blackwell T M and Bentley P J. Don't push me! collision-avoiding swarms. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002),Honolulu, Hawaii USA. 2002.
    [30] Higashitani Mitusharu, Ishigame Atsushi, Yasuda Keiichiro. Particle swarm optimization with controlled mutation. IEEE Transactions on Electrical and Electronic Engineering, v2, n2, March, 2007, 192-194.
    [31] Paul S. An investigation into mutation operators for particle swarm optimization Andrews. IEEE Congress on Evolutionary Computation, CEC 2006, 1044-1051.
    [32] Van Den Bergh F, Engelbrecht AP. A cooperative approach to particle swarm optimization. IEEE Trans, on Evolutionary Computation, 2004, vol8(3),225-239.
    [33] Liang J J and Suganthan P N. Dynamic Multi-Swarm Particle Swarm Optimizer. Proc. of IEEE International Swarm Intelligence ymposium, 2005, 124-129.
    [34] Iwamatsu M. Locating all global minima using multi-species particle swarm optimizenthe inertia weight and the constriction factor variants. In: Proc. of 2006 IEEE Congress on Evolutionary Computation.Vancouver,BC,Canada,2006,816-822.
    [35] Seo JH, Im CH, and et al. Multimodal Function Optimization Based on Particle Swarm Optimization. IEEE Trans, on Magnetics, 2006, 42(4), 1095-1098.
    [36] Kennedy J and Mendes R. Population structure and particle swarm performance. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii USA. 2002.
    [37] Kennedy J and Mendes R. Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms. Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications 2003, 45-50.
    [38] Mendes R, Kennedy J and Neves J. Watch Thy Neighbor Or How The Swarm Can Learn From Its Environment. In Proc.IEEE Int.Conf. on Evolutionary Computation Indianapolis,2003, 88-94.
    [39] Suganthan P N. Particle swarm optimiser with neighbourhood operator. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999), Piscataway, NJ.1999,1958-1962.
    [40] Krink T, Vesterstroem J S and Riget J. Particle swarm optimisation with spatial particle extension. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii USA. 2002.
    [41] Angeline P J. Using selection to improve particle swarm optimization. Anchorage, Alaska, USA. IEEE International Conference on Evolutionary Computation. 1998,84-89.
    [42] Angeline P J. Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. 1998. The Seventh Annual Conf. on Evolutionary Programming.
    [43] Lovbjerg M, Rasmussen T K, and Krink T. Hybrid particle swarm optimiser with breeding and subpopulations. 2001. Proceedings of the third Genetic and Evolutionary Computation Conference (GECCO-2001).
    [44] Sadri Javad, Suen Ching Y. A genetic binary particle swarm optimization model Source:, 2006 IEEE Congress on Evolutionary Computation, 2006, 656-663.
    [45] Kao Yi-Tung, Zahara Erwie. A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft Computing Journal, v8,n2, March, 2008, 849-857.
    [46] Katare S, Kalos A, West D. A Hybrid Swarm Optimizer for Efficient Parameter Estimation. Proceedings of the IEEE Congress on Evolutionary Computation. 2004,309-315.
    [47] 王华秋,曹长修.基于模拟退火的并行粒子群优化研究.控制与决策.v20,n5,May 2005,500-504.
    [48] Vaz A, Ismael F, Pereira Ana I P N et al. Particle swarm and simulated annealing for multi-global optimization. WSEAS Transactions on Information Science and Applications, v2, n5, May, 2005, 534-539.
    [49] Sadati Nasser, Zamani Majid, Mahdavian Hamid Reza Feyz. Hybrid particle swarm-based-simulated annealing optimization techniques. IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, 2006, 644-648.
    [50] 吕强,陈如清,俞金寿.量子连续粒子群优化算法及其应用.系统工程理论与实践,2008,v5,122-130.
    [51] Jun Sun, Wenbo Xu, Wei Fang et al. Quantum-behaved particle swarm optimization with binary encoding. 8th International Conference: Adaptive and Natural Computing Algorithms. ICANNGA 2007. Proceedings, Part Ⅰ (Lecture Notes in Computer Science Vol. 4431), 2007, 376-385.
    [52] Victoire TA A, JeyakumarA E. Hybrid PSO-SQP for Economic Dispatch with Valve-point Effect. Electric Power Systems Research, 2004, 71 (1), 51-59.
    [53] 戴冬雪,王祁,阮永顺.基于混沌思想的粒子群优化算法及其应用.华中科技大学学报(自然科学版),v33,n10,Oct.2005,53-55.
    [54] 莫愿斌,陈德钊,胡上序.求解非线性方程组的混沌粒子群算法及应用.计算力学学报.v24,n4,August,2007,505-508.
    [55] Bo Liu, Ling Wang, Yi-Hui Jin et al. Improved particle swarm optimization combined with chaos .Chaos, Solitons & Fractals, Vol.25, Issue 5, Sep. 2005, 1261-1271.
    [56] Wang Fang, Qiu Yuhui. Multimodal function optimizing by a new hybrid nonlinear simplex search and particle swarm algorithm. Lecture Notes in Computer Science, v 3720 LNAI, 2005, 759-766.
    [57] Fan S K S, Zahara E. A hybrid simplex search and particle swarm optimization for unconstrained optimization. European Journal of Operational Research, v181, n2, Sept. 2007, 527-548.
    [58] Gao Shang, Jiang Xin-Zi, Tang Kezong. Hybrid algorithm combining ant colony optimization algorithm with particle swarm optimization. 2006 Chinese Control Conference Proceedings, CCC 2006, 2006, 1428-1432.
    [59] Mozafari B, Ranjbar A M, Amraee T et al. A hybrid of particle swarm and ant colony optimization algorithms for reactive power market simulation. Journal of Intelligent and Fuzzy Systems, v17, n6, 2006, 557-574.
    [60] Shelokar P S, Siarry Patrick, Jayaraman V K et al. Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Applied Mathematics and Computation, v188, n1, May, 2007, 129-142.
    [61] 丁铸,马大为,汤铭端.基于禁忌退火粒子群算法的火力分配.系统仿真学报.v18,n9,Sept.2006,2480-2483.
    [62] Nakano S, Ishigame A, Yasuda K. Particle swarm optimization based on the concept of Tabu search. 2007 IEEE Congress on Evolutionary Computation, 2007, 3258-63.
    [63] 周殊,潘炜,罗斌.一种基于粒子群优化方法的改进量子遗传算法及应用.电子学报,v34,n5,May,2006,897-901.
    [64] 宋胜利,孔力,程晶晶.混合优化算法在氧化铝生产中物料平衡计算上的应用.仪表技术与传感器.(已录用)
    [65] Shengli Song, Li Kong, Yong Gan, Rijian Su. Hybrid particle swarm cooperative optimization algorithm and its application to MBC in alumina production. Progress in Natural Science, Vol. 18(11), 2008, 1423-1428.
    [66] Poli R. An analysis of publications on particle swarm optimization applications. Technical Report CSM-469, Department of Computer Science, University of Essex, 2007.
    [67] Parsopoulos K E, Plagianakos V P, Magoulas G D et al. Stretching technique for obtaining global minimizers through particle swarm optimization. Proc. Particle Swarm Optimization Workshop, Indianapolis, 2001, 22-29.
    [68] Parsopoulos K E, Vrahatis M N, On the computation of all global minimizers through particle swarm optimization. IEEE Trans. on Evolutionary Computation, 2004,8(3), 211-224.
    [69] Vrahatis M N, Androulakis G S, Manoussakis M E. A new unconstrained optimization method for imprecise function and gradient values. Journal of Mathematical Analysis and Applications, 1996, 197, 586-607.
    [70] Seo Jang-Ho, Heo Chang-Geun, Kim Jae-Kwang et al. Multimodal function optimization based on particle swarm optimization. IEEE Transactions on Magnetics, v42, n4, April, 2006, 1095-1098.
    [71] Iwamatsu Masao. Multi-species particle swarm optimizer for multimodal function optimization. IEICE Transactions on Information and Systems, v E89-D, n3, 2006, 1181-1187.
    [72] Korenaga Takeshi, Hatanaka Yoshiharu, Uosaki Katsuji. Performance improvement of particle swarm optimization for high-dimensional function optimization. 2007 IEEE Congress on Evolutionary Computation, CEC 2007, 2008, 3288-3293.
    [73] Kennedy J and Eberhart R C. A discrete binary version of the particle swarm algorithm. Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics 1997, Piscataway, NJ., 1997, 4104-4109.
    [74] Kennedy J and Spears W. Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. 1998. Anchorage, Alaska, USA. IEEE International Conference on Evolutionary Computation. 5-4-1998.
    [75] Clerc M. Discrete Particle Swarm Optimization. New Optimization Techniques in Engineering Springer-Verlag, 2004.
    [76] 刘钊,康立山,蒋良孝,杨林权.用粒子群优化改进算法求解混合整数非线性规划问题.小型微型计算机系统.Vol.26,No.6,June 2005,991-994.
    [77] Kitayama Satoshi,Yasuda Keiichiro. A method for mixed integer programming problems by particle swarm optimization. Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), v157, n2, Nov 15, 2006, 40-49.
    [78] Ho Shinn-Ying, Lin Hung-Sui, Liauh Weei-Humg et al. OPSO: Orthogonal particle swarm optimization and its application to task assignment problems. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, v38, n2, March, 2008, 288-298.
    [79] Zhong Yi-Wen, Yang Jian-Gang. Discrete particle swarm optimization algorithm for independent task assignment problem. Pattern Recognition and Artificial Intelligence, v19, n3, June, 2006, 399-405.
    [80] 高尚,杨静宇.武器-目标分配问题的粒子群优化算法.系统工程与电子技术.v27,n7,July,2005,1250-1252+1259.
    [81] Liu Yi, Ye Chunming, Chen Baogang. Improved particle swarm optimization for flexible job-shop scheduling problem. Journal of Computational Information Systems, v1, n4, December, 2005, 693-699.
    [82] Xia Wei-Jun, Wu Zhi-Ming. A hybrid particle swarm optimization approach for the job-shop scheduling problem. International Journal of Advanced Manufacturing Technology, v29, n3-4, June, 2006, 360-366.
    [83] 岑翼刚,秦元庆,孙德宝.粒子群算法在小波神经网络中的应用.系统仿真学报.2004,16(12),2783-2785.
    [84] El-Telbany M. A., Konsowa H.G., El-Adawy M.. Studying the predictability of neural network trained by particle swarm optimization. Journal of Engineering and Applied Science, v53, n3, June, 2006, 377-390.
    [85] Su Rijian, Kong Li, Song Shengli et al. A new ridgelet neural network training algorithm based on improved particle swarm optimization. Proceedings - Third International Conference on Natural Computation, ICNC 2007, 2007, v3, 411-415.
    [86] Carvalho Mareio, Ludermir Teresa B. Particle swarm optimization of neural network architectures and weights. Proceedings - 7th International Conference on Hybrid Intelligent Systems, HIS 2007, 2007, 336-339.
    [87] Ismail A, Engelbrecht A. Training product units in feedforward neural networks using particle swarm optimization. Proceeding of the International Conference on Artificial intelligence. Durban ,South Africa,1999, 36-40.
    [88] Eberhart R, Hu X H. Human tremor analysis using particle swarm optimization. Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 1999, 1927-1930.
    [89] 马清峰,潘宏侠.基于粒子群优化神经网络的传动箱故障诊断方法研究.中国机械工程.v17,AUG.2006,332-334.
    [90] Venayagamoorthy G K, Doctor S. Navigation of Mobile Sensors Using PSO and Embedded SO in a Fuzzy Logic Controller. IEEE 39th Industry Applications Conference. 2004, 1200-1206.
    [91] 韩璞,王学厚,李剑波.粒子群优化的模糊控制器设计.动力工程,2005,25(5),663-667.
    [92] Yufei Zhang, Zhiyan Dang, Jie Wei. Research and simulation of fuzzy controller design based on particle swarm optimization. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), v1, 2006, 3757-3761.
    [93] 胡海兵,胡庆波,吕征宇.基于粒子群优化的PID伺服控制器设计.浙江大学学报(工学版),v40,n12,December,2006,2144-2148.
    [94] Junfeng Chen, Ziwu Ren, Xinnan Fan. Particle swarm optimization with adaptive mutation and its application research in tuning of PID parameters. 1st International Symposium on Systems and Control in Aerospace and Astronautics, 2006, p990-994.
    [95] Wu H, Sun F C, Sun Z Q et al. Optimal Trajectory Planning of a Flexible Dualarm Space Robot with Vibration Reduction. Journal of Intelligent & Robotic Systems, 2004, 40 (2),147-163.
    [96] 李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究.计算机学报,Vol.27,No.7,July 2004,897-903.
    [97] Qing Z, Limin Q, Yingchun L et al. An improved particle swarm optimization algorithm for vehicle routing problem with time windows. 2006 IEEE Congress on Evolutionary Computation, CEC 2006, 2006, 1386-1390.
    [98] 刘海江,黄炜.基于粒子群算法的数控加工切削参数优化.同济大学学报(自然科学版),Vol.36 No.6,June 2008,803-806
    [99] Yang L, Hu W W, Yang S Y et al. Application of Particle Swarm Optimization in Multi-sensor Multi-target Tracking. 1st International Symposium on Systems and Control in Aerospace and Astronautics, 2006,715 -719.
    [100] 胡炜薇,杨雷,杨莘元,廖艳苹.粒子群算法在多传感器多目标跟踪的应用.哈尔滨工程大学学报,Vol.28 No.1,Jan.2007,102-107+113.
    [101] 张文静,赵先章,台宪青.基于粒子群算法的火炮伺服系统摩擦参数辨识.清华大学学报(自然科学版),2007,Vol.47,No.s2,1717-1720.
    [102] Yoshida H. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. Transactions of the Institute of Electrical Engineers of Japan, 1999, 119-B (12), 1462-1469.
    [103] Naka S. A hybrid particle swarm optimization for distribution state estimation. IEEE Transactions on Power Systems 2003, 18 (1),60-68.
    [104] Gaing Z L. Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints. IEEE Transactions on Power Systems, 2003, 18 (3), 1187-1195.
    [105] 刘自发,葛少云,余贻鑫.一种混合智能算法在配电网络重构中的应用.中国电机工程学报,2005,25(15),73-78.
    [106] Jeyakumar D N, Jayabarathi T, Raghunathan T. Particle swarm optimization for various types of economic dispatch problems. Electrical Power and Energy Systems, 2006, 28(1),36-42.
    [107] Lin Wei-Qi, Jiang Jian-Hui, Shen Qi et al. Piecewise hypersphere modeling by particle swarm optimization in QSAR studies of bioactivities of chemical compounds. Journal of Chemical Information and Modeling, v45, n3, May, 2005, 535-541
    [108] Halter Werner, Mostaghim Sanaz. Bilevel optimization of multi-component chemical systems using particle swarm optimization. 2006 IEEE Congress on Evolutionary Computation, CEC 2006, 2006, 1240-1247.
    [109] Guo Qianjin, Yu Haibin, Xu Aidong. A hybrid PSO-GD based intelligent method for machine diagnosis. Digital Signal Processing. 2006, 16,402-418.
    [110] 戈新生,孙鹏伟.自由漂浮空间机械臂非完整运动规划的粒子群优化算法.机械工程学报 Vol.3,No.4.Apr.2007,34-38.
    [111] Chang Jui-Fang, Chu Shu-Chuan, Roddick John F et al. A parallel particle swarm optimization algorithm with communication strategies. Journal of Information Science and Engineering, v21, n4, July, 2005, 809-818.
    [112] Soo K K, Siu Y M, Chan W Set al. Particle-swarm-optimization-based multiuser detector for CDMA communications. IEEE Transactions on Vehicular Technology, v56, n5, September, 2007, 3006-3013.
    [113] Zhou SH, Zhang Q, Zhao J et al. DNA encodings based on multi-objective particle swarm. Journal Of Computational and Theoretical Nanoscience. Vol.4, Issue:7-8,NOV-DEC 2007, 1249-1252.
    [114] Yang Xuan, Pei Jihong. Image registration by maximization of mutual information based on edge width matching using particle swarm optimization. Chinese Optics Letters, v3, n9, September, 2005, 510-512.
    [115] Sousa T, Silva A, Neves A. Particle Swarm based Data Mining Algorithms for classification tasks. Parallel Computing. Vol.30,Issue:5-6, MAY-JUN 2004,767-783.
    [116] Pavlidis N G, Parsopoulos K E, Vrahatis M N. Computing Nash Equilibria Through Computational Intelligence Methods. Journal of Computational and Applied Mathematics, 175(1), 2005, 113-136.
    [117] Wolpert D H and Macteady W G. No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation, xl(l), 2005, 67-82.
    [118] Schumacher C, Vose M D and Whitley L D. The No Free Lunch and Problem Description Length. In: The 2001 Genetic and Evolutionary Computation Conference. Piscataway, NJ:IEEE Press, 2001,565-570.
    [119] Christensen S, Oppacher F. What Can We Learn from No Free Lunch? A First Attempt to Characterize the Concept of Searchable Function. In: The 2001 Genetic and Computation Conference. Piscataway, NJ:IEEE Press,2001,1219-1226.
    [120] Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975.
    [121] Goldberg D E. Genetic algorithms in Search, Optimization, and Machine Learning.Reading MA: Addison-Wesley,1989.
    [122] Rechenberg I. Bionic, Evolution and Optimizing. Naturwissen Schaftliche Rundschau, 26(11),465-472.
    [123] Schwefel H P. Numerische Optimierung von Computer-Modellen mittels der Evolutions straregie. Interdisciplinary Systems Research. Birkhauser, Basel, 1977.
    [124] Rechenberg I. Evolution strategy. In: Proceedings of Computational Intelligence-Imitating Life. Piscataway, NJ:IEEE Press,1994,147-159.
    [125] Heitkotter J, Beasley D. The hiteh-hiker's guide to evolutionary computation. FAQ in Comp Ai Genetic. 1995.
    [126] Fogel L J, Owens A J, Walsh M J. Artificial intelligience through simulated evolution. New York,Wiley, 1966.
    [127] 彭喜元,彭宇,戴毓丰.群智能理论及应用.电子学报.Vol.31,No.12A,Dec.2003.1982-1988.
    [128] Colorni A, Dorigo M, Maniezzo V et al. Dist ributed optimization by ant colonies. Proceedings of the 1st European Conference on Artificial Life, 1991, 134-142.
    [129] Dorigo M. Optimization, learning and natural algorithms[D]. Ph. D. Thesis, Department of Electronics, Politecnico diMilano, Italy, 1992.
    [130] Dorigo M, Maniezzo V and Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transaction on Systems, Man, and Cybernetics-Part B, 26 (1), 1996, 29-42.
    [131] 段海滨,王道波,于秀芬.蚁群算法的研究进展评述.自然杂志,18(2),2007,102-105.
    [132] 段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005.
    [133] Taillard E D, Gambardella L. Adaptive memories for the Quadratic Assignment Problems. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, Technical Report: IDSIA-87-97, 1997.
    [134] Costa D, Hertz A. Ants can colour graphs. Journal of the Operational Research Societyx, 48 (3) 2007, 295-305.
    [135] Ruud S, Owen H, Janet B. Ant-like agents for load balancing in tele-communications networks. Proceedings of the first international conference on Autonomous agents, Marina del Rey, California, United States, 1997.
    [136] Hussein O H, Saadawi T M, Myung Jong. Probability routing algorithm for mobile adhoc networks resources management. IEEE Journal on Selected Areas in Communications, 23 (12), 2005, 2248-2259.
    [137] Zecchin A C, Simpson A R, H R Maier et al. Parametric study for an ant algorithm applied to water distribution system optimization. IEEE Transactions on Evolutionary Computation, 9(2), 2005, 175-191.
    [138] Wai Kuan F, Holger RM, Angus R S. Ant colony optimization for power plant maintenance scheduling optimization. The Genetic and Evolutionary Computation Conference, Washington DC,USA, 2005.
    [139] Gambardella L M, Taillard (?), Agazzi G. MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. In New ideas in optimization: McGraw-Hill Ltd.,UK, 1999,63-76.
    [140] Ho S L, Shiyou Y, Wong H C et al. An imp roved ant colony optimization algorithm and its application to electromagnetic devices designs. IEEE Transactions on Magnetics, 41 (5), 2005, 1764-1767.
    [141] 李晓磊.一种新型的智能优化方法_人工鱼群算法[D].浙江,浙江大学,2003.
    [142] 周永华,毛宗源.一种新的全局优化搜索算法-人口迁移算法(Ⅰ).华南理工大学学报(自然科学版),31(3),March 2003,1-5.
    [143] 周永华,毛宗源.一种新的全局优化搜索算法-人口迁移算法(Ⅱ).华南理工大学学报(自然科学版),31(4),April 2003,41-55.
    [144] 曾建潮,介倩,崔志华.微粒群算法[M].北京:科学出版社,2004。
    [145] 曾浩.激光焊接过程的监测理论与技术研究[D].武汉:华中科技大学图书馆,2001.
    [146] Hornik K, Stinchcombe M, White H. Multilayer feed-forward networks are universal approximators.Neural Networks, 2(5), 1989,359-366.
    [147] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back propagating errors. Nature,323 (11), 1986, 533-536.
    [148] Pu Zhang, Li Kong, Wenzhong Liu. Real-time monitoring of laser welding based on multiple sensors. Control and Decision Conference, 2008. CCDC 2008. Chinese.2-4 July 2008, 1746-1748.
    [149] 吴金水.拜耳法与混联法氧化铝生产工艺物料平衡计算[M].北京:冶金工业出版社.2002.
    [150] 毕诗文.氧化铝生产工艺[M].北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700