用户名: 密码: 验证码:
图像复原—模型、贝叶斯推理及迭代算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于大气干扰、相对运动、散焦、成像设备本身的物理局限性和噪声等诸多因素存在,导致获取的图像不可避免的会质量下降。而在许多应用领域,又需要高清晰、高质量的图像,因此,研究图像复原具有重要的意义。图像复原的目的是对退化图像进行处理,恢复出原始图像。它是图像处理、模式识别和机器视觉的基础,因而受到广泛研究,在天文学、遥感、医疗图像和军事等领域获得广泛应用。
     本文以图像复原为主要研究问题,包括图像建模、图像估计的贝叶斯准则及快速迭代图像复原算法。首先研究了图像小波域建模和空域Markov随机场建模,提出了基于最大后验估计和变分贝叶斯原理的图像复原方法。然后探讨了图像复原的迭代算法,并给出了多步迭代算法的快速收敛性结论。最后,将提出的图像模型和推理方法推广到多帧图像的超分辨率复原问题,并给出了结论和展望。主要研究内容包括以下几个方面:
     介绍了图像复原的基本理论和方法。给出了成像系统的基本退化模型及点扩展函数的常用表达式,并探讨了图像空域Markov随机场模型和图像多尺度变换域模型的研究现状。回顾了几种经典图像复原方法,对图像复原的贝叶斯方法进行了重点讨论,同时还给出了图像质量评价的几个客观准则和主观准则。
     对小波域图像复原方法进行了深入研究。探讨了图像小波系数的基本统计特征和几个典型的小波域图像统计模型。提出了一种图像小波系数的两层局部模型,该模型假设图像小波系数服从零均值的局部高斯分布,且局部高斯方差通过贝叶斯方法估计出来。并提出了以此模型作为图像先验分布函数的小波域图像复原算法。
     图像复原常用的最大后验估计本质上属于点估计范畴,且不能对模型参数进行有效估计,针对这种不足,本文提出了一种基于小波域变分贝叶斯理论的联合图像复原和模型参数估计方法。变分贝叶斯方法是用原始图像的后验密度函数的中值作为复原图像,因此,能够克服MAP估计复原图像的不足,取得复原图像效果也优于用最大后验估计方法复原的图像。
     系统论述了空域Markov随机场基本理论。提出了一种基于局部两层Markov随机场模型和期望最大算法的图像复原算法,该图像复原方法可以认为是一种经验贝叶斯估计方法,首先通过积分将超参数向量消除掉,然后再用最大化算法估计未知的原始图像。同上章探讨的小波域图像复原方法相比,该方法复原图像质量略差,但计算复杂度优于小波方法。同时,提出了一种基于最大后验估计的盲图像复原方法,该方法用不同模型刻画原始图像和模糊点扩展函数的分布情况,并采用交替最小化算法联合估计原始图像和点扩展函数,最终得到复原的图像和点扩展函数。
     目前常用的低阶Markov随机场模型不能很好的刻画图像高阶统计特征,且模型参数也是通过经验方式确定。针对这些不足,提出一种新的机器学习方法一评分匹配法,从训练图像数据中学习得到一组高阶Markov随机场模型参数。为了验证通过学习得到的Markov随机场模型的能力,将学习得到的模型通过贝叶斯规则应用于图像去噪。实验结果表明:不管是根据峰值信噪比的大小还是根据主观视觉,都能取得优秀的去噪效果,从而表明该学习方法的有效性。
     介绍了常用于图像复原的几个迭代算法,主要有交替最小化迭代算法、极小优化迭代算法和期望最大迭代算法。由于这些迭代算法当且迭代解仅与前一步迭代解有关,通称单步迭代复原算法。以总变分图像复原和小波域图像复原为例,用单步迭代算法进行复原,发现算法收敛速度很慢。为此,提出了基于多步迭代的图像复原算法,由于多步迭代算法的当且迭代解依赖于前面更多方向,收敛速度较快。同时,通过经验方式确定权参数向量,每次迭代无需增加额外计算负担,相比单步迭代算法,提出的多步迭代算法复原图像能极大节约计算时间。
     将文中提出的图像模型和推理算法推广到多帧图像的超分辨率复原。给出了一种基于小波域变分贝叶斯理论的超分辨率图像复原方法,通过变分贝叶斯方法,可以联合估计高分辨率图像、模型参数和运动参数。同时,提出了一种基于Gauss-Newton算法的同时图像配准和超分辨率算法,该算法将未知高分辨率图像和运动参数向量看为一个整体,采用Gauss-Newton算法同时进行估计。这种算法的优势在于对于初始运动参数的设置不敏感,在复原高分辨率图像同时,也能估计出高精度的运动参数。
The presence image degradation is unavoidable due to the atmospheric turbulence, relative motion, defocus, imaging device limitations, noise and other factors. However, in many applications, the high-definition and quality images are needed . The image restoration technique is to restore original image for degraded image and is significant. It is the fundamental problem of image processing, pattern recognition and machine vision and is widely used in astronomy, remote sensing, medical image and military, etc.
     This dissertation focuses on the research on image restoration, including image models, the Bayesian rules for image estimation and fast iteration algorithms. Firstly, we research on image wavelet domain models and spatial Markov random field (MRF) models, and proposed image restoration method based maximum a posterior (MAP) estimation and variational Bayesian principle. We then discuss the iteration algorithms for image restoration and obtain the conclusion that the multi-step iteration algorithms are fast convergence. At last, we generalize the proposed models and inference method to multi-frame images super-resolution restoration problems and give conclusions and expectation. Several research aspects are presented in this dissertation, they are:
     The basic theory and method are introduced The ordinary degradation model of imaging system and several point spread function (PSF) expression are depicted. The research status of image spatial MRF models and multi-scale transform domain models are discussed. At the same time, we review several classical image restoration methods and emphasize the Bayesian method. At last, some objective and subjective criterions for evaluate image quality are proposed.
     We research on the wavelet domain image restoration methods in detail. The basic property of image wavelet coefficient and classical wavelet domain statistical models are discussed. We proposed a double level model of image wavelet coefficient. For this model, we assumed that wavelet coefficients obey zero mean local Gauss distributions and estimate local Gauss variance by Bayesian method. Then, A wavelet domain image restoration algorithm is proposed based on this prior distribution model.
     The MAP estimation for image restoration is point estimation and we haven't efficient methods to estimate model parameters. To this limitation, this dissertation proposed a joint image restoration and parameters estimation method based on wavelet domain variational Bayesian theory. We can calculate the posterior density function of original image through variational Bayesian method and the function mean is regarded as restoration image. Through this method, we avoid the lack of MAP estimation method and obtain the good restoration results.
     Spatial MRF theory is discussed systematically. We proposed an image restoration algorithm based on local double level MRF models and expectation maximization (EM) algorithm. This algorithm can be thought as empirical Bayesian method and the hyper-parameters are eliminated by intergrating. Then, the estimated value of original image is obtained by MAP. The restoring image quality by this method is poorer than wavelet domain image restoration method that has been discussed in last chapter. However, it is better than wavelet method according to computational complexity. At the same time, a blind image restoration algorithm is proposed base MAP estimation. We characterize the statistical distribution property of original image and PSF by using different priori models and gain the estimated results of original image and PSF through alternating minimization (AM) algorithm.
     At present, the traditional low-order MRF models can not characterize the image high-order statistical properties and the model parameters are gained by empirical form. In this dissertation, we adopted a new machine learning method-score matching and get a group of parameters of high-order MRF models by learning from training image data. We demonstrated the capabilities of the learning MRF models by applying them to image denoising according to Bayesian rule. Experiments show that our denoising algorithm can produce excellent results in the Peak Signal-to-Noise Ratios (PSNR) and subjective visual effect. Thus, our learning method is effective.
     We depicted the common image restoration iteration algorithms, including AM algorithm, majorization-minimization (MM) algorithm and EM algorithm. These algorithms are called as single-step iteration algorithms as the current iteration solutions of these algorithms only depend on previous one step solution. We find that the convergence rate of these iteration algorithms is slow through some restoration experiments, such as total variation and wavelet domain image restoration. For this reason, multi-step iteration restoration algorithms are proposed. The multi-step iteration algorithms have fast convergence rate because the current solutions of these algorithms depend on more previous solutions. At same time, the computational complexity of the multi-step algorithms is same as the single-step algorithms in each iteration step and can achieve convergence using less iteration numbers.
     The proposed image models and inference algorithms are generalized to multi-frame images super-resolution (SR) restoration. We proposed a wavelet domain SR image restoration method and jointly estimate high-resolution (HR) image and motion parameters based on variatonal Bayesian theory. And at same time, a Simultaneous image SR and registration algorithm are presented using Gauss-Newton algorithm. According to this algorithm, we consider unknown HR image and motion parameters vector as one whole and simultaneous estimation using Gauss-Newton algorithm. The merit of this algorithm is that it is robust to initial motion parameters, so this algorithm can recover the HR image and simultaneously estimate high-precision motion parameters vector.
引文
[1]Andrews H C,Hunt B R.Digital image restoration.Englewood Cliffs,NJ:Prentice-Hall,1977,10-50.
    [2]Banham M R,Katsaggelos A K,Digital image restoration.IEEE Signal Processing Magazine,1997,14(2):24-41.
    [3]邹谋炎.反卷积与信号复原.北京:国防工业出版社,2001,1-6,184-286.
    [4]冈萨雷斯.数字图像处理(第二版).阮秋琦译.北京:电子工业出版社,2003,175-220.
    [5]吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术.北京,北京大学出版社.2007,1-20.
    [6]S.C.Park,M.K.Park,M.G.Kang.Super-resolution image reconstruction:A technical overview.IEEE Signal Process Magazine,2003,20 (5):21-36.
    [7]H.Lee,A.Battle,R.Raina,et al.Efficient sparse coding algorithms.NIPS,2007,19 801~808.
    [8]D.L.Donoho.Compressed sensing.IEEE Trans.on information theory,2006,52(4):1289~1306.
    [9]Charbonnier P,Blanc-Feraud L,Aubert G,et al.Deterministic edge-preserving regularization in computed imaging.IEEE Transactions on Image Processing,1997,6 (2):298~311.
    [10]高鑫,刘来福,黄海洋.基于PDE和几何曲率流驱动扩散的图像处理和分析.数学进展,2003,32(3):285~294.
    [11]R.Molina,J.Nunez,F.J.Cortijo,etc.Image restoration in astronomy:A Bayesian perspective.IEEE Signal Processing Magazine,2001,18(2):11~29.
    [12]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报,2003,31(12):1975~1981.
    [13]焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望.计算机学报,2006,29(2):177~193.
    [14]W.Clem Karl.Regularization in Image Restoration and Reconstruction.Handbook of Image and Video Processing,Second Edition,ELSEVIER 2005.
    [15]Geman D,Yang C.Nonlinear image recovery with half-quadratic regularization.IEEE Transactions on Image Processing,1995,4 (7):932~946.
    [16]Osher S,Rudin L.I,Fatemi E.Nonlinear total variation based noise removal algorithms.Physica D,1992,60 (5):259-268.
    [17]C.R.Vogel and M.E.Oman.Fast,robust total variation-based reconstruction of noisy,blurred images.IEEE Transactions on Image Processing,1998,7 (6):813~824.
    [18]Tony F.Chan,Chiu-Kwong Wong.Total Variation Blind Deconvolution.IEEE Transactions on Image Processing,1998,7(3):370~375.
    [19]张航,罗大庸.一种改进的全变差盲图像复原方法.电子学报,2005,33 (7):1288~1290.
    [20]J.Bioucas-Dias,M.Figueiredo,J.Oliveira,Total variation image deconvolution:A majorization-minimization approach,In IEEE Intern.Conf.on Acoustics,Speech,and Signal Processing-ICASSP'2006,Toulouse.
    [21]J.Bioucas-Dias,M.Figueiredo,J.Oliveira.Adaptive total-variation image deconvolution:A majorization-minimization approach.in the EUSIPCO,Florence,Italy,Sep.2006.
    [22]Babacan,S.,Molina,R.,Katsaggelos,A.Parameter estimation in TV image restoration using variational distribution approximation.IEEE Transaction on Image Processing,2008,17 (3):326~339.
    [23]Babacan,S.,Molina,R.,Katsaggelos,A.Total variation blind deconvolution using a varitional approach to parameter,image,and blur estimation.ICIP 2008.
    [24]Tony F.Chan,S.Esedoglu,F.Park,and A.Yip.Recent Development of Total Variation image Restoration.In Mathematical Models of Computer Vision,N.Paragios,Y.Chen,and O.Faugeras,Springer Verlag,2005.
    [25] Geman S, Reynolds G Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(3):367-383.
    [26] M.C. Robini, T. Rastello, I.E. Magnin. Simulated annealing, acceleration techniques and image restoration. IEEE Transactions on Image Processing, 1999, 8(10):1374-1387.
    [27] Caselles V, Morel J M,Sapiro G, et al. Introduction to the special issue on partial differential equation and geometry-driven diffusion in image processing and analysis.IEEE Transactions on Image Processing, 1998, 7(3): 269-273.
    [28] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990,12 (7) :629 - 639.
    [29] O. Scherzer and J. Weickert, Relations between regularization and diffusion iterating, J.Math. Imaging Vision, 2000,12:43-63.
    [30] Whitaker R T, Pizer S M. A multi-scale approach to non-uniform diffusion. GVIGP:Image Understanding, 1993, 57(1): 99-110.
    [31] Weickert J. Multiscale texture enhancement. Computer analysis of images and patterns, Lecture Notes in Computer Science, 1995,970: 230-237.
    [32] Carmona R A, Zhong S F, Adaptive smoothing respecting feature directions. IEEE Transactions on Image Processing, 1998,7(3):353-358.
    [33] Chen Y, Vemuri B, Wang L. Image denoising and segmentation via nonlinear diffusion. Computer and Mathematics with applications, 2000, 39(5/6):131-149.
    [34] Weickert J. Theoretical foundation of anisotropic diffusion in image processing:Proceedings of the 7~(th) TFCV on Theoretical Foundations of Computer Vision, 1996, 11:221-236.
    [35] Weickert J. Coherence-enhancing diffusion filtering. International Journal Computer Vision, 1999,31(2/3):111-127.
    [36] Gilboa G, Zeevi Y Y, Sochen N A. Forward and backward diffusion process for adaptive image enhancement and denosing. IEEE Transactions on Image Processing, 2002,11(7): 689-703.
    [37] You Y L, Kaveh M. Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing, 2000,9(10): 1723-1730.
    [38] R. Molina, A. K. Katsaggelos, and J. Mateos. Bayesian and regularization methods for hyper parameter estimation in image restoration. IEEE Transaction on Image Processing, 1999, 8(2): 231-246.
    [39] N. A. Woods, N. P. Galatsanos, A. K. Katsaggelos. Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images. IEEE Transaction on Image Processing, 2006,15(1): 201-213.
    [40] R. Molina, J. Mateos, A. Katsaggelos. Blind deconvolution using a variational approach to parameter, image, and blur estimation. IEEE Transaction on Image Processing, 2006,15(12): 3715-3727.
    [41] Molina, R., Vega, M., Mateos, et al. Variational posterior distribution approximation in Bayesian super resolution reconstruction of multispectral images. Applied and Computational Harmonic Analysis, 2008,24(2): 251-267.
    [42] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6(6): 721-741.
    [43] P. Moulin and J. Liu. Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors, IEEE Transaction on Information Theory. 1999, 45 (3): 909-919.
    [44] Murat Beige, M.E.Kilmer, et al. Wavelet Domain Image Restoration with Adaptive Edge-Preserving Regularization. IEEE Trans Imaging Processing. 2000,9(4):597-608.
    [45] M.Welling, GHinton, S.osindero. Learning sparse topographic representation with products of Students-t distribution. NIPS, 2003,15:1359-1366.
    [46] Chandas, N. P. Galatsanos, A. Likas. Bayesian Restoration Using a New Non-Stationary Edge-Preserving Image Prior. IEEE Transaction on Image Processing, 2006,15(10): 2987-2997.
    [47] Ruimin Pan, Stanley J.Reeves. Efficient Huber-Markov Edge-Preserving Image Restoration. IEEE Transactions on Image Processing. 2006,15(12): 3728-3735.
    [48] M. J. Beal, Variational algorithms for approximate Bayesian inference, Ph.D. dissertation, The Gatsby Computational NeuroscienceUnit, Univ. College London, London, U.K., 2003.
    [49] K.Z.Adami. Variational methods in Bayesian deconvolution. PHYSTAT ECONF2003,2003.
    [50] C. Bishop. Pattern recognition and machine learning. Springer Verlag, August, 2006.
    [51] S.Derin Babacan, R. Molina, A. K. Katsaggelos. Generalized Gaussian Markov random field image restoration using variational distribution approximation. In IEEE International Conference on Audio, Speech and Signal Processing, 2008, 1265-1268.
    [52] D. Tzikas, A. Likas, N. Galatsanos. Variational Bayesian Blind Image Deconvolution with Student-T Priors. IEEE International Conference on ImageProcessing, (ICIP), Vol. 1,2007, Page(s): Ⅰ -109 -1 - 112.
    [53] G Chantas, N. Galatsanos, A. Likas, et al. Variational Bayesian image restoration based on product of t-distributions image prior. IEEE Transaction on image processing, 2008,17(10): 1795-1895.
    [54] Miguel Vega, J.Mateos, R. Molina, et al. Super Resolution of Multispectral Images using TV image models. In 2th International Coference on Knowledge-Based and Information & Engineering Systems, Zagreb, Croatia, Vol. LNAI-5179, Part Ⅲ, 2008,408-415.
    [55] R. Molina, J.Mateos, Miguel Vega, et al. Super resolution of multispectral images using locally adaptive models. In 15th European Signal Processing Coference, Poznan,Poland,2007,1497-1501.
    [56]D.L.Donoho,I.M.Johnstone.Ideal spatial adaptation by wavelet shrinkage.Biometrika,1994,81(3):425~455.
    [57]汪雪林,赵书斌,彭思龙.基于小波域隐马尔可夫树模型的图像复原.计算机学报,2005,28(6):1006~1012.
    [58]曹学光,肖志云,汪雪林等.复小波域HMT模型图像复原.光电子.激光,2005,16(12):1487~1491.
    [59]M.Figueiredo,R.D.Nowak.An EM algorithm for wavelet-based image restoration.IEEE Transactions on Image Processing,2003,12(8):906~916.
    [60]M.Figueiredo,R.D.Nowak.A bound optimization approach to wavelet-based image deconvolution.In IEEE Coference on Image Processing,ICIP,Genoa,Italy,Vol.2,2005,782~785.
    [61]J.Bioucas-Dias.Bayesian wavelet-based image deconvolution:a GEM algorithm exploiting a class of heavy-tailed priors.IEEE Transactions on Image processing,2006,15(4):937~951.
    [62]J.Portilla,V.Strela,M.Wainwright,et al.Image denoising using scale mixtures of Gaussians in the wavelet domain,IEEE Transaction on Image Processing.2003,12 (11):1338-1351.
    [63]J Portilla,E P Simoncelli.Image Restoration using Gaussian Scale Mixtures in the Wavelet Domain.In 9th IEEE Int'l Conf on Image Processing,Barcelona,Spain,vol.2,2003,965~968.
    [64]J.A.Guerrero-Colon,L.Mancera,J.Portilla.Image restoation using space-variant Gaussian scale mixtures in overcomplete pyramids.IEEE Transactions on Image Processing,2008,17(1):27~41.
    [65]N.G.Kingsbury.Image processing with complex wavelets.Phil.Trans.R.Soc.London A,Sept.1999.
    [66]N.G.Kingsbury.Complex wavelets for shift invariant analysis and filtering of signals. Appl. Compt. Harmon. Anal., 2001, 5:234-253.
    [67] E J Candes. Ridgelets: Theory and Applications: Ph.D. dissertation. USA: Department of Statistics, Stanford University, 1998.
    [68] E J Candes. Monoscale Ridgelets for the Representation of Images with Edges. Technical Report, USA: Department of Statistics, Stanford University, 1999.
    [69] Candes E J, D. L Donoho. Curvelets, multiresolution representation and scaling laws. In Proc. SPIE Wavelet Application in Signal and Image Precessing Ⅷ, San Joes, CA, USA, 2000, Vol. 4119,2000,1-12.
    [70] D L Donoho, M R Duncan. Digital curvelet transform: strategy, implementation and experiments. In Proc. SPIE Wavelet Applications Ⅶ, San Jose, CA, USA, 2000, Vol 4056,12-30.
    [71] Candes E J, Demanet L, Donoho D L, et al. Fast discrete Curvelet transforms, SLAM Multiscal Modeling and Simulation, 2006, 5(3): 861-899.
    [72] M. N. Do, M. Vetterli. Contourlets, Beyond Wavelets, G. V.Welland, Ed. New York: Academic, 2003.
    [73] M. N. Do, M. Vetterli. Framing pyramids. IEEE Transaction on Signal Processing, 2003,51(9): 2329-2342.
    [74] S. Mallat, E. LePennec. Sparse geometric image representation with bandelets. IEEE Transaction on Image Processing, 2005,14(4): 423-438.
    [75] S. Mallat, E. LePennec. Bandelet Image Approximation and Compression. SIAM Journ. of Multiscale Modeling and Simulation, 2005,4(3): 992-1039.
    [76] W. T. Freeman, E. H. Adelson. The design and use of steerable filters. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1991,13(9): 891-906.
    [77] E. P. Simoncelli, W. T. Freeman, E. H. Adelson et al. Shiftable multi-scale transforms. IEEE Transaction on Information Theory, 1992,38(2): 587-607.
    [78] J.L. Starck, E. Candes, D.L. Donoho. The Curvelet Transform for Image Denoising. IEEE Transactions on Image Processing. 2002,11(6): 670-684.
    [79]J.L.Starck,M.K.Neuyen,F.Murtagh.Deconvolution based on the curvelet transform.ICIP,2003.
    [80]A.L.Cunha,Jianping Zhou,Minh N.DO.The nonsubsampled contourlet transform:theory,design,and applications.IEEE Transactions on Image Processing.2006,15(10):3089~3101.
    [81]Ramin Eslami,Hayder Radha.Translatin-invariant contourlet transform and its application to image denoising.IEEE Transactions for Image Processing.2006,15(11):3362~3374.
    [82]戴维,于盛林,孙栓.基于Contourlet变换自适应阈值的图像去噪算法研究.电子学报,2007,35(10):1939~1943.
    [83]J.-L.Starck,M.K.Nguyen,F.Murtagh.Wavelets and Curvelets for Image Deconvolution: a Combined Approach. Signal Processing, 2003, 83(10):2279~2283.
    [84]You-Wei Wen,Michael K.NG,Wai-Ki Ching.Iterative algorithms based on decoupling of deblurring and denoising for image restoration.SIAM,2008,30(5):2655-2674.
    [85]Voloshynovskiy S V,Allen A R,Hrytskiv Z D.Robust edge-preserving image restoration in the presence of non-Gaussian noise.Electronics Letters,2000,36(24):2006~2007.
    [86]Mora M D,Germani A,A Nardecchia.Restoration of images corrupted by additive non-Gaussian noise.IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2001,48(7):859~875.
    [87]Besag J E.Spatial interaction and the statistical analysis of lattice system.J.Roy.Statist.Soc,.B.1974,36(2):192~236.
    [88]Besag J E.On the statistics analysis of dirty picture.J.Roy.Statist.Soc.,B.1986,48(3):259~302.
    [89]Stefan Roth.High-Order Markov Random Fields for Low-Level Vision.Ph.D. Dissertation,Brown University,May 2007.
    [90]Stefan Roth,Michael J.Black:Fields of Experts:A Framework for Learning Image Priors.In IEEE Conference on Computer Vision and Pattern Reconnition,vol 2,San Diego,CA,USA,2005,860~867.
    [91]M.F.Tappen.Utilizing Variational Optimization to Learn Markov Random Fields.In IEEE Conference on Computer Vision and Pattern Reconnition,Vol 1,Washington,DC,USA,2007,1~8.
    [92]鲁晓磊,王芙蓉,黄本雄.学习高阶马尔可夫随机场:评分匹配方法.计算机应用,2008,28(10):2529~2532.
    [93]S.C.Zhu and D.B.Mumford,Prior Learning and Gibbs Reaction-Diffusion,IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(11):1236~1250.
    [94]Felzenszwalb,P.F.,Huttenlocher,D.P.:Efficient belief propagation for early vision.International Journal of Computer Vision,2006,70(1):41~54.
    [95]M.F.Tappen,B.C.Russell,W.T.Freeman.Efficient Graphical Models for Processing Images.In Processing of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Washington,USA,Vol 2,2004,673~680.
    [96]Chantas,G.K.,Galatsaus,N.P.,Woods,N.A.Super-resolution based on fast registration and Maximum a posterior reconstruction.IEEE Transaction on Image processing.2007,16 (7):1821~1830.
    [97]Xiangyang Lan,Stefan Roth,Daniel P.Huttenlocher,et al.Efficient belief propagation with learned higher-order Markov random fields.In Proc.of the European Conference on Computer Vision (ECCV),Volume 2,Springer Verlag,LNCS 3952,2006,269~282.
    [98]M.Welling,G.Hinton,S.osindero.Learning sparse topographic representation with products of Students-t distribution.NIPS,2003,15:1359-1366.
    [99]D.L.Donoho,I.M.Johnstone.Ideal spatial adaptation by wavelet shrinkage.Biometrika,1994,81(3):425~455.
    [100]D.L.Donoho.De-noising by soft thresholding.IEEE Transaction on Information Theory,1995,41(3):613~627.
    [101]Levent Sendur,Ivan W.Selesnick.Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency.IEEE Transactions on Signal Processing,2002,50(11):2744~2756.
    [102]S Lyu and E P Simoncelli.Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures.IEEE Trans.Pattern Analysis and Machine Intelligence,2008,31(4):693~706.
    [103]Crouse M.S,Nowak R.D,Baraniuk R.G.Wavelet-based statistical signal processing using hidden Markov models.IEEE Transactions on Signal Processing.1998,46 (4):886~902.
    [104]Romberg J.K,Choi H,Baraniuk R.G.Bayesian tree structured image modeling using wavelet domain hidden Markov models.IEEE Transactions on Image Processing,2001,10(7):1056~1068.
    [105]Fan G.L,Xia X.G.Image denoising using local contextual hidden Markov model in the wavelet domain.IEEE Signal Processing Letters,2001,8 (5):125~128.
    [106]刘芳,刘文学,焦李成.基于复小波邻域隐马尔可夫模型的图像去噪.电子学报,2005,33 (7):1284~1287.
    [107]肖志云,文伟,彭思龙.小波域HMT模型参数的快速估计及其在图像降噪中的应用.计算机应用,2004,24 (12):7~10.
    [108]赵书斌,彭思龙.基于小波域HMT的图像超分辨率.计算机辅助设计与图形学学报,2003,15 (11):1347~1352.
    [109]R.R.Coifinan and D.L.Donoho,Translation-invariant de-noising,in Wavelets and Statistics (A.Antoniadisand G.Oppenheim,Eds.),Springer,New York,1995,125~150
    [110]M.Elad,J.-L Starck,D.Donoho et al.Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA).Journal on Applied and Comput ational Harmonic Analysis ACHA,2005,19(11):340~358.
    [111]J.-L.Starck,F.Murtagh,E.Candes et al.Gray and Color Image Contrast Enhancement by the Curvelet Transform.IEEE Transaction on Image Processing,2003,12(6):706~717.
    [112]Willis M,Jeffs B D,Long D G.Maximum entropy image restoration revisited.in Proc.IEEE Int.Conf.Image Processing,vol 1,Vancouver,BC,Canada,2000,89~92.
    [113]陈春涛,黄步根.最大熵图像复原及其新进展.光学技术,2004,30(1):36~39.
    [114]Jean-Luc Starck.Deconvolution and blind deconvolution in astronomy.2007.
    [115]R.Molina.On the Hierarchical Bayesian Approach to Image Restoration,Applications to Astronomical Images.IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(11):1122~1128.
    [116]唐新建.图像复原正则化方法研究:[博士学位论文].武汉,华中科技大学,2006.
    [117]王鸿南,钟文,汪静等.图形清晰度评价方法研究.中国图象图形学报,2004,9(7):828-831.
    [118]吴显金.自适应正则化图像复原方法研究:[博士学位论文].长沙,国防科学技术大学,2006.
    [119]汪雪林.小波域图像复原算法研究:[博士学位论文].北京,中国科学院自动化研究所,2004.
    [120]G.Narkiss,M.Zibulevsky,Sequential subspace optimization method for large-scale unconstrained problems,Technical Report CCIT 559,Technion-Israel Institute of Technology,Faculty of Electrical Engineering,2005.
    [121]M.Elad,B.Matalon,M.Zibulevsky,Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization. Applied and Computational Harmonic Analysis,2007,23:346~367.
    [122]J. Bioucas-Dias, M. Figueiredo. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration.IEEE Transactions on Image processing, 2007,16(12): 2980-2991.
    [123] M. Figueiredo, J. Bioucas-Dias, R. Nowak. Majorization-minimization algorithms for wavelet-based image deconvolution. IEEE Transactions on Image processing, 2007,16(12): 2992-3004.
    [124] Shapiro J. Embedded image coding using zero trees of wavelets coefficients. IEEE Transactions on Signal Processing, 1993,41(12): 3445-3462.
    [125] Chipman H, Kolaczyk E, McCulloch R. Adaptive Bayesian wavelet shrinkage. Journal of American Statistical Association, 1997, 92:1413-1421.
    [126] M. Banham, A. Katsaggelos. Spatially adaptive wavelet-based multiscale image restoration. IEEE Transactions on Image Processing, 1996,3 (6): 619-634.
    [127] R. Neelamani, H. Choi, R. Baraniuk. ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Transactions on Image Processing, 2004, 52 (2): 418-433.
    [128] A. Jalobeanu, N. Kingsbury, and J. Zerubia. Image deconvolution using hidden Markov tree modeling of complex wavelet packets. in Proc. IEEE Int. Conf. Image Processing, vol 1, Thessaloniki, Greece, 2001,201-204.
    [129] J. Liu and P. Moulin. Complexity -regularized image restoration. in Proc. IEEE Int. Conf. on Image Processing, Vol 1, Chicago, IL, USA, 1998, 555-559.
    [130] Tzikas, D.G, Likas, A.C, Galatsanos N.P. The variational approximation for Bayesian inference. IEEE Signal Processing Magazine, 2008,25(6): 131-146.
    [131] C.Liu, D.B.Rubin. ML estimation of the t distribution using EM and its extensions. ECM and ECME, Statistica Sinica, 1995, 5: 19-39.
    [132] E. Ising. Zeitsscgruft Physik. 1925,31: 253.
    
    [133] R. Szeliski. Bayesian modeling of uncertainty in low-level vision. International Journal of Computer Vision, 1990, 5(3):271-301.
    [134] A. Speis, G Healey. An analytical and experimental study of the performance of Markov random fields applied to texture images using small samples. IEEE Trans. on Image Processing,1996,5(3):447-458.
    [135]Teboul S,Blanc-Feraud L,Aubert G,et al.Variational approach for edge-preserving regularization using coupled PDE's.IEEE Transactions on Image Processing,1998,7(3):387~397.
    [136]茆诗松.贝叶斯统计.北京:中国统计出版社,1999,5-20.
    [137]N.Galatsanos,V.Mesarovic,R.Molina,J.Mateos,and A.Katsaggelos.Hyper-parameter estimation using gamma hyper-priors in image restoration from partially-known blurs.Optical Engineering,2002,41 (8):1845~1854.
    [138]Kurdur D,Hatzinakos D.Blind image deconvolution.IEEE Signal Processing Magazine,1996,13(3):43~64.
    [139]张航,罗大庸.图像盲复原算法研究现状及展望.中国图像图形学报,2004,9(10):1145~1152.
    [140]Fabian R,Malah D.Robust identification of motion and out-of-focus blur parameters from blurred and noisy images.Graphical Models and Image Processing,1991,53(5):403~412.
    [141]Ayers G R,Dainty J C.Iterative blind deconvolution method and its applications.Optics Letters,1988,13 (7):547~549.
    [142]Kundur D,Hatzinakos D.A novel blind deconvolution scheme for image restoration using recursive filtering.IEEE Transaction on Signal Processing,1998,46(2):375~390.
    [143]You Y L,Kaveh M.Blind image restoration by anisotropic regularization.IEEE Transaction on Image Processing,1999,8(3):396~407.
    [144]Bar L,Sochen N,Kiryati N.Semi-Blind Image Restoration Via Mumford-Shah Regularization.IEEE Transaction on Image Processing,2006,15(2):483~493.
    [145]Li Chen,Kim-Hui Yap.A soft double regularization approach to parametric blind image deconvolution.IEEE Transactions on Image Processing,2005,14(5):624~633.
    [146]Li Chen,Kim-Hui Yap.Effcient Discrete Spatial Techniques for Blur Support Identification in Blind Image Deconvolution.IEEE Transactions on Signal Processing,2006,54(4):1557-1562.
    [147]Felzenszwalb,P.F,Daniel P.Huttenlocher.Efficient belief propagation for early vision.International Journal of Computer Vision,2006,70(1):41-54.
    [148]S.C.Zhu and D.B.Mumford,Filters,Random Fields and Maximum Entropy (FRAME):Towards a Unified Theory for Texture Modeling.International Journal of Computer Vision,1998,27(2):107~126.
    [149]Aapo Hyvarinen.Estimation of Non-Normalized statistical models by score matching.Journal of Machine Learning Research.2005,6:695~709.
    [150]David J.C.Mackay著.肖明波,席斌,许芳等译.信息论、推理与学习算法.北京:高等教育出版社,2006:416~417.
    [151]I.F.Gorodnitsky,B.D.Rao.Sparse signal reconstruction from limited data using FOCUSS:A re-weighted norm minimization algorithm,IEEE Transaction on Signal Processing,1997,45(3):600~616.
    [152]I.Daubechies,M.Defrise,C.De-Mol.An iterative thresholding algorithm for linear inverse problems with a sparsity constraint.Communications on Pure and Applied Mathematics,LVII:2004,1413-1457.
    [153]Y.Huang,Michael K.NG,You-wei Wen.A fast total variation minimization method for image restoration.SIAM Multiscale model.Simul,2008,7(2):774~795.
    [154]A.Chambolle,An algorithm for total variation minimization and applications.J.Math.Imaging Vision,2004,20:89~97.
    [155]Mingqiang Zhu,Stephen J.Wright, et al.Duality-Based algorithms for total-variation regularized image restoration.appear in SIMA 2008.
    [156]Barzilai.J,Borwein J.M.Two-point step size gradient methods.IMA Journal of Numerical Analysis,1988,8:141~149.
    [157]Tsai R Y,Huang T S.Multiframe image restoration and registration.Advances in Computer Vision and Image Processing, 1984,1: 317-319.
    [158] S.Farsiu, D.Robinson, M.Elad et al. Advance and challenges in super-resolution. International Juounal of imaging Systems and Technology, 2004,14(2): 47-57.
    [159] A.K.Katsagellos, R.Molina, J.Mateos. Super-resolution of Images and Video. San Fafael, CA: Morgan & Claypool, 2007.
    [160] Segall, C.A., Katsaggelos, A.K., Molina, R., et al. Bayesian resolution enhancement of compressed video. IEEE Transaction on Image Processing, 2004,13(7): 898-911.
    [161] Simoncelli, E.P. Statistical modeling of photographic images. In Bovik, A.C., (Eds.) Handbook of Image and Video Processing, Second Edition, Academic Press, 2005,431-441.
    [162] Elad, M., Feuer, A.,. Restoration a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Transactionn on Image processing, 1997, 6(12): 1646-1658.
    [163] Farsiu, S., Robinson, D., Elad, et al. Fast and robust multiframe super-resolution. IEEE Transaction on Image processing, 2004,13(10): 1327-1344.
    [164] Keren, D., Peleg, S., Brada, R. Image sequence enhancement using sub-pixel displacement. IEEE CVPR, Ann Arbor, Mich, USA, 1988,6: 742-746.
    [165] Vandewalle, P., Susstrunk, S., Vetterli, A. A Frequency domain approach to registration of aliased images with application to super-resolution. EURASIP Journal on Applied Signal Processing, 2006, Article ID 71459, pp: 1-14.
    [166] Chung, J., Huber, E., Nagy, J. Numerical methods for coupled super-resolution. Inverse Problems, 2006,22: 1261-1272.
    [167] Robinson, D., Farsiu, S., Milanfar, P. Optimal registration of aliased images using variable projection with applications to super-resolution. The Computer Journal, 2007, Arpil, Invited paper. DOI: 10.1093/comjn1/bxm007.
    
    [168] He, Y., Yap, K-h., Chen, L et al. A nonlinear least square technique for simultaneous image registration and super-resolution. IEEE Transaction on Image Processing, 2007,16(11): 2830-2841.
    [169] Starck, J-L., Elad, M., Donoho, D.L. Image decomposition via the combination of sparse representations and a variational approach. IEEE Transaction on Image Process, 2005,14(10): 1570-1582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700