用户名: 密码: 验证码:
无线传感器网络的资源异构及能效管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是由大量微型传感器节点构成的多跳自组织网络系统,可以将信息世界与真实世界融合,在流域监测、军事侦察、工业控制等许多领域有着广阔的应用前景。随着无线传感器网络应用领域的日益拓展,网络规模的不断扩大,无线传感器网络的资源受限特别是能量受限问题已经成为研究的关键,节能受到了广泛的关注。异构传感器网络是由在电源能量、感知能力、通信能力、计算能力和存储能力等方面不同的传感器节点构成的网络,其中能量异构特征在实际应用的无线传感器网络中普遍存在。本文重点研究了无线传感器网络的复杂网络特性、异构传感器网络的构建与能量效率、传感器网络的成簇算法以及分配型MAC协议的时隙调度策略等内容。
     首先阐述复杂网络的几种基本拓扑模型及其相互不同的统计特征,并设计开发了复杂网络拓扑生成器。传感器网络的节点数多,节点彼此之间存在着紧密的交互影响作用,因而具有复杂网络特征。本文分析综合无线传感器网络的拓扑特性及其复杂网络特征,旨在为部署能量异构节点构建具有小世界效应的异构无线传感器网络,从而提高传感器网络的能量效率提供理论依据。
     从复杂网络的视角研究部署能量异构节点和超级链路对无线传感器网络小世界特征和能量效率的影响。根据网络的偏好连接特性,合理配置少量的能量异构节点承担无线传感器网络的数据中继,可以最大限度地减少传感器节点的能量消耗,延长传感器网络的寿命。本文以网络的平均路径长度最小为优化目标,利用遗传算法研究在传感器网络中部署能量异构节点的优化求解问题。仿真结果表明,能量异构节点的引入和优化部署能够显著改善网络性能并提高了网络的能量效率。
     针对实际流域监测存在区域范围广、地势复杂的特点,提出在节点密集位置适当部署能量可以补充的异构节点,引入超级链路以建立三层结构的多级能量异构传感器网络的构建方案。本文阐述了基于节点相关度并结合地理位置和剩余能量信息的无线传感器网络成簇算法,并且考虑到网络成本和无线覆盖范围,研究了优化计算分簇数和确定异构节点位置与数目的方法。
     由于无线传感器网络的节点能量主要消耗在数据无线通信,为了减少目前根据剩余能量成簇的分布式算法存在簇内的能量信息交换频繁和实施竞选簇头的时机受人为因素影响大的问题,提出了基于节点能量评估的成簇算法。本文建立能量评估函数来表示节点的竞争簇头能力,在每轮的成簇阶段节点自主决定向簇头发送能量信息和竞争簇头能力参数的时机,簇头管理候选簇头集并确定实施重新竞选簇头工作的时机,以避免过早竞选簇头而消耗能量。
     针对传统分配型MAC协议存在一般为各子信道分配等长时隙的问题,在分配型AMAC协议和EATA算法基础上,提出了一种能量有效的自适应时隙调度策略。通过对簇内节点的上轮剩余负载和新产生负载加权求和,动态调度各节点占用的时隙长度,给出了时隙大小和权值的计算方法。本文阐述了时隙调度策略中时隙大小划分、时隙更新频率和时隙分配顺序,从导致能量浪费的节点串音、空闲侦听和算法复杂度等因素分析时隙调度策略的能量效率。
     最后对全文进行总结,并指出今后需要进一步研究的工作。
A wireless sensor network (WSN), consisting of a large number of tiny sensor nodes, is a multi-hop self-organizing network system. As it can fuse the information world with the real world, WSN has a wide spectrum of promising applications in many fields, such as valley monitoring, military reconnaissance and industrial control. With the increasing expanding into other potential application prospects, the network size of WSN is growing, and the issue of resources especially energy in WSN receive increasing attention, many theoretical and technical problems remain open. Heterogeneous sensor network is composed of many wireless sensor nodes which are different in power energy, perception ability, communication ability, computing ability and storage ability. Energy heterogeneity is very common in practical applications of wireless sensor networks. This thesis focuses on the research of complex network characteristics in WSN, energy efficiency and network construction of heterogeneous sensor network, clustering algorithm for WSN and time-slot scheduling for MAC protocol of WSN.
     Firstly, a topology generator is designed based on the analysis of several basic topology models and various statistical characteristics of the complex network. As WSN has a large number of sensor nodes which exists close interaction with each other, there are some characteristics of complex network in WSN. This thesis analyzes the topology characteristics of WSN and its characteristics of complex network in order to provide a theory basis to improve the energy efficiency of WSN by constructing a heterogeneous sensor network with small-world characteristics.
     As the view of complex network, it has influence on WSN in terms of the small-world characteristics and energy efficiency deploying heterogeneous nodes and super links. For the sake of furthest mitigating the energy consumption of sensor nodes and prolonging the network life simultaneously, minor nodes with heterogeneous power capabilities would be deployed appropriately to undertake data relaying in WSN according to the preferential attachment. Accordingly, an optimal scheme of deploying heterogeneous nodes is presented by using genetic algorithm in order to minimize the average path length of WSN. The simulation results show that the performance of network has evidently improved and the energy efficiency has also increased through optimized deployment of heterogeneous nodes.
     Aiming at resolving the issue of complex terrain and wide region in actual valley monitoring, a strategy suitable for node-intensive environment is proposed to deploy proper heterogeneous nodes whose energy could be supplemented and construct a three-layer-structured multilevel energy heterogeneous sensor networks. The clustering algorithm of WSN based on correlation, geographical information and residual energy is described. Considering the network cost and wireless coverage, the thesis gives a solution to calculate the number of clusters and decide how many or where heterogeneous nodes should be deployed in WSN.
     As sensor nodes mainly consume their energy in data wireless communication, a clustering algorithm is proposed based on node energy evaluating (NEE) in order to resolve the problem of the existing distributed clustering algorithm based on residual energy, which usually influenced by man-made factors when run for cluster head, and other reasons such as energy information exchange frequently. NEE algorithm gives an energy evaluation function for sensor nodes to denote the ability parameter of competition for cluster head. At clustering stage, every node decides when it send information including energy and ability parameter to cluster head, and the cluster head manages the set of candidate heads, decides when the new cluster head would be selected for the reason of avoiding energy consumption in premature selection.
     There exists a problem with the traditional multi-channel MAC protocol which assigns equal-length timeslots to each channel. Therefore an energy-efficient adaptive time-slot scheduling strategy is proposed on the basis of analyzing AMAC and EATA. The weight-load adaptive MAC (WAMAC) can variably adjust a corresponding time-slot length for every node according to its weight-load that weighting the new load and the residual load. Simultaneously, WAMAC gives an approach to calculate time-slot length and weight. This thesis also elaborates the time-slot assignment, time-slot renewal and time-slot order. After that, the energy efficiency of WAMAC is also analyzed from the aspects of node overhearing, idle listening and algorithm complexity.
     The last part is the conclusion, which as well suggests the further research that should be done in the future.
引文
[1] Walsh G C, Ye H, Bushnell L. Stability analysis of networked control systems[C]. Proc. Amer. Control Conf, 1999:2876-2880
    [2] 回红,周澎,汪乐宇.网络化手持式测试仪器的研究[J].现代科学仪器.1999,5:13-15
    [3] Delsing J, Isaksson T. The IP-meter, design concept and example implementation of an Internet enabled power line quality meter. Proc. of IEEE Instrum. and Meas. Technical Conf. 2000:657-660
    [4] 卢荣军等.Web型手持式数据采集分析仪[J].仪表技术与传感器,2001(9):8-9
    [5] 梅构春.现代网络测试系统[J].国外电子测试技术.2001(3):2,50
    [6] Weiser M. Some computer science issues in ubiquitious computing[J]. Communications of the ACM, 1993, 36(7): 75-85
    [7] Manges W. It's time for sensors to go wireless[J]. Sensors magazine, 1999:4-5
    [8] Kahn J. Next Century challenges: Mobile networking for "smart dust". Conference on Mobile Computing and Networking, 1999
    [9] Meyer S, Rakotonirainy A. A survey of research on context-aware homes[C]. Proceedings of the Australasian information security workshop conference on Wearable, Invisible, Context-Aware, Ambient, Pervasive and Ubiquitous Computing (WICAPUC), 2003: 159-168
    [10] Schwiebert L, Gupta S K S, Weinmann J, etc. Research challenges in wireless networks of biomedical sensors[C]. Proceeding of International Conference on Mobile Computing and Networking (MOBICOM), 2001: 151-165
    [11] Butler Z, Corke P, Peterson R, Rus D. Networked cows: virtual fences for controlling cows[C]. Proceedings of Workshop on Applications of Mobile Embedded Systems (WAMES), 2004
    [12] Byrne J A. 21 ideas for the 21st century. Business Week, 1999, 8:78-167
    [13] 10 emerging technologies that will change the world. Technology Review, 2003, 106(1): 33-49
    [14] Werner-Allen G, Johnson J, Ruiz M, Lees J, Welsh M. Monitoring volcanic eruptions with a wireless sensor networks. In Second European Workshop on Wireless Sensor Networks, Jan., 2005
    [15] Tolle G, Polastre J, Szewczyk R, Culler D, Turner N, Tu K, Burgess S, Dawson T, Buonadonna P, Gay D, Hong W. A macroscope in the redwoods[C]. 3~(rd) ACM Conference on Embedded Networked Sensor Systems(Sensys), November 2-4, 2005
    [16] 汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006
    [17] Strogatz S H. Exploring complex networks[J]. Nature, 2001, 410:268-276
    [18] Gupta P, Kumar P R. The capacity of wireless networks[J]. IEEE Transactions on Information Theory, 2000, IT-46(2): 388-404
    [19] Stemm M, Katz R H. Measuring and reducing energy consumption of network interfaces in hand-held devices[J]. IEICE Transactions on Communications, 1997, E80-B(8): 1125-1131
    [20] Yarvis M, Kushalnagar N, Singh H, Rangarajan A, Liu Y and Singh S. Exploiting heterogeneity in sensor networks[C]. In IEEE INFOCOM, 2005:878-890
    [21] 卿利,朱清新,王明文.异构传感器网络的分布式能量有效成簇算法[J].软件学报,2006,17(3):481-489
    [22] Duarte-Melo E J, Liu M. Analysis of energy consumption and lifetime of heterogeneous wireless sensor networks[C]. Proc. of the GLOBECOM 2002. New York: IEEE Press, 2002:21-25
    [23] 田慧,裴昌幸.网络拓扑发现综述与展望[J].电信快报,2002,8:26-27
    [24] Callaway E H. Wireless sensor networks: architectures and protocols[M]. Auerbach Publications, 2004
    [25] Deb B, Bhatnagar S, Nath B. A topology discovery algorithm for sensor networks with applications to network management DCS[R]. Technical Report DCS-TR-441, 2001
    [26] 方旭明,何蓉等.短距离无线与移动通信网络[M].北京:人民邮电出版社,2004
    [27] 于海斌,曾鹏,梁(韋華).智能无线传感器网络系统[M].北京:科学出版社,2006
    [28] 蹇强,龚正虎,朱培栋,桂春梅.无线传感器网络MAC协议研究进展[J].软件学报,2008,19(2):389-403
    [29] Bondy J A, and Murty U S R. Graph theory with applications. The MaCmillan Press Itd, London and Basingstoke, 1976
    [30] Erd(?)s P, R(?)ny A. On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Science, 1960, 5:17-60
    [31] Bollob(?)s B. Random graphs[M]. New York: Academic Press, 2~(nd) ed., 2001
    [32] Stanley Milgram. The small world problem. Psychology Today, 1967, 1 (1): 60-67
    [33] Watts D J, Strogatz S H. Collective dynamics of'small-world' networks[J]. Nature, 1998, 393:440-442
    [34] Barab(?)si A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286:509-512
    [35] Albert R, Barab(?)si A L. Statistical mechanics of complex networks[J]. Review of Modern Physics, 2002, 74:47-97
    [36] Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256
    [37] 吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):18-46
    [38] Dorogovtsev S N, Mendes J F F. Evolution of networks. Adv. Phys., 2002, 51: 1079-1187
    [39] Aiello W, Chung F, Lu L. A random graph model for massive graphs[C]. Proceedings of the 32nd ACM Symposium on the Theory of Computing(ACM, NewYork), 2000:171-180
    [40] Cancho R F i, Sol(?) R V. The small-world of human language[C]. Proceedings of the Royal Society of London, 2001:2261-2266
    [41] Newman M E J, Watts D J. Renormalization group analysis of the small-world network model[J]. Physics Letters A, 1999, 263:341-346
    [42] Banavar J R, Maritan A, Rinaldo A. Size and form in efficient transportation networks[J]. Nature, 1999, 399(6731): 130-132
    [43] Barrat A, Weigt M. On the properties of small-world network models[J]. European Physical Journal B, 2000, 13(3): 547-560
    [44] Newman M E J, Moore C, Watts D J. Mean-field solution of the small-world network, model[J]. Physical Review Letters, 2000, 84 (14): 3201-3204
    [45] Liljeros F, Rdling C R, Amaral L A N, et al. The web of human sexual contact[J].Nature, 2001,411: 907-908
    [46] Ebel H, Mielsch L I, Borbholdt S. Scale-free topology of e-mail networks[J]. Physical Review E, 2002, 66: 035103
    [47] Sen P, Dasgupta P, Chatterjee A, et al. Small-world properties of the Indian railway network[J]. Physical Review E, 2003, 67: 036106
    [48] Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationship of the internet topology[J]. Computer Communications Review, 1999,29: 251-262
    [49] Adamic A, Huberman B A. Power-law distribution of the World Wide Web[J]. Science, 2000, 287(24): 2115
    [50] Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks[J]. Nature, 2000,407: 651-654
    [51] Jeong H, Mason S, Barab(?)si A L, et al. Lethality and centrality in protein networks[J]. Nature, 2001,411: 41-42
    [52] Barab(?)si A L. The architecture of complexity: From the diameter of the www to the structure of the cell[Power Point File]. http://www.nd.edu/-networks/peper. htm
    [53] Bollob(?)s B, Riordan O M. Mathematical results on scale-free random graphs[C]. In: Bornholdt, S, Schuster HG (ed.) Handbook of Graphs and Networks: From the Genome to the Internet, Berlin:Wiley-VCH, 2003: 1-34
    [54] Cohen R, Havlin S. Scale-free networks are ultrasmall[J]. Physical Review Letters, 2003, 90: 058701
    [55] Fronczak A, Fronczak P, Holyst J A. Mean-field theory for clustering coefficients in Barab(?)si-Albert networks [J]. Physical Review E, 2003, 68: 046126
    [56] Helmy A. Small worlds in wireless networks[J]. IEEE Communications Letters, 2003, 7(10):490-492
    [57] Garg S, Pamu P, Nahata N, Helmy A. Contact-based architecture for resource discovery (CARD) in large scale MANets", IEEE/ACM IPDPS WMAN, 2003:219-227
    [58] Helmy A, Garg S, Pamu P, Nahata N. CARD: a contact-based architecture for resource discovery in Ad Hoc networks[J]. ACM Baltzer Mobile Networks and Applications (MONET) Journal, Kluwer publications, Special issue on Algorithmic Solutions for Wireless, Mobile, Ad Hoc and Sensor Networks, 2005, 10(1): 99-113
    [59] Tanenbaum A S.计算机网络(第4版).Computer networks,fourth edition(影印版)[M].北京:清华大学出版社,2004
    [60] 苏威积,赵海,张文波,徐野.基于嵌入式技术的传感器网络无尺度路由算法[J].计算机工程,2006,32(14):87-88,100
    [61] Huijun Sun, Jianjun Wu. Evolution of network form node division and generation[J]. Chinese Physics, 2007, 16(6): 1581-1585
    [62] Chitradurga R, Helmy A. Analysis of short cuts in wireless sensor networks[C]. IEEE/ACS International Conference onon Pervasive Services, 2004:167-176
    [63] Sharma G, Mazumdar R. Hybrid sensor networks: a small world[C]. MobiHoc'05, 2005:366-377
    [64] 王忻,权太范.信息融合系统改进型BA模型及网络动力学特性[J].哈尔滨工业大学学报,2007,39(5):737-741
    [65] Brooks R R, Iyengar S S. Multi-sensor fusion: fundamenats and applications with software. Prentice Hall, New Jersey, NJ, 1998
    [66] Qi H, Iyengar S S, Chakrabarty K. Distributed sensor networks-a review of recent research[J]. Journal of The Franklin Institute, 2001, 338:655-668
    [67] Musman S A, Lehner P E, Elsaesser C. Sensor planning for elusive targets[J]. Journal of Computer and Mathematical Modeling, 1997, 25:103-115
    [68] Cardei M, Wu J. Coverage in wirelss sensor networks. Handbook of Sensor Networks, CRC Press, 24
    [69] Romer K, Mattern F. The design space of wireless sensor networks[J]. IEEE Wireless Communications, 2004, 11(6): 54-61
    [70] Akyildiz I F, Su W, Sankarasubramaniam Y. Wireless sensor networks: a survey[J]. Computer Networks, 2002, 8(4): 393.422
    [71] Chen J, Guan Y, Pooch U. A spatial based multi resolution data dissemination scheme for wireless sensor networks[C]. In the 5~(th) IEEE International Workshop on Algorithms for Wireless, Mobile, Ad Hoe and Sensor Networks, April 2005
    [72] Han K H, Ko Y B, Kim J H. A novel gradient approach for efficient data dissemination in wireless sensor networks[C]. In IEEE International Conference on Vehicular Technology Conference, Sept. 2004
    [73] Sibley G, Rahimi M, Sukhatme G. Robomote: a tiny mobile robot platform for large scale Ad-hoc sensor networks[C]. Porceedings of IEEE International Conference on Robotics and Automation(ICRA'02), 2002
    [74] Butler Z, Rus D. Event-based motion control for mobile sensor networks[J]. IEEE Pervasive Computing, 2003, 2(4):34-43
    [75] Howard A, Mataric M J, Sukhatme G S. Mobile sensor network deployment using potential fields: a distributed scalable solution to the area coverage problem[C].Proceedings of the 6~(th) International Conference on Distribuetd Autonomous Robotic Systems(DARS'02), 2002: 299-308
    [76] Howard A, Mataric M J, Sukhatme G S. An incremental self-deployment Algorithm for mobile sensor netwoks[J]. Autonomous Robots, Special Issue on Intelligent Embedded Systems, 2002,13(2): 113-126
    [77] Heo N, Varshney P K. A distributed self spreading algorithm for mobile wireless sensor networks[C]. Proceedings of IEEE Wireless Communications and Networking Conference(WCNC03), 2003 [78] Wang G, Cao G, Porta T La. A bidding protocol of deploying mobile sensor. Proceedings of the 11~(th) IEEE International Conference on Network Protocols (ICNP'03), 2003
    [79] Hwang J, Du D, Kusmierek E. Energy efficient organization of mobile sensor networks[C]. Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW'04), 2004
    [80] Liu B, Brass P, Dousse O, Nain P, Towsley D. Mobility improves coverage of sensor networks[C]. Proceedings of ACM MobiHoc'05, 2005
    [81] Ma Y, Dalai S, Alwan M, Aylor J. Rop: a resource oriented protocol for heterogeneous sensor networks[C]. Proceedings of the 13~(th) VT/MPRG Wireless Personal Comm., 2003: 59-70
    [82] Mhatre V, Rosenberg C, Kofman D, Mazumdar R, Shroff N. A minimum cost heterogeneous sensor network with a lifetime constraint, IEEE Transaction on Mobile Computing, pp. 4-15, January 2004.
    [83] Wang Q, Xu K, Hassanein H, Takahara G. Minimum cost guaranteed lifetime design for heterogeneous wireless sensor networks[C]. Proc. IEEE IPCCC 2005, 2005:599-604
    [84] 刘明,伍燕平,于明远.具有小世界效应的无线传感器网络构造方法研究[J].电子测量技术,2007,30(4):37-39
    [85] Peng Chen, Cheng Wang, Lijun Li, Ming Liu. Heterogeneous sensor networks with effect of small world[C]. Proceedings of the 2006 IET International Conference on Wireless Mobile and Multimedia Networks, CWMMN 2006
    [86] Smaragdakis G, Matta I, Bestavros A. SEP: a stable election protocol for clustered heterogeneous wireless sensor networks[C]. Proc. of the Int'l Workshop on SANPA 2004
    [87] Heinzelman W R, Chandrakasan A, Balakrishnan H. An application-specific protocol architecture, for wireless microsensor networks[J]. IEEE Transactions on Wireless Communications, 2002, 1 (4): 660-670
    [88] 郭彬,李喆.无线传感器网络中基于剩余能量的联合选举动态成簇路由算法[J].电子与信息学报,2007,29(12):3006-3010
    [89] 周杰,朱允民,宋恩彬.传感器网络中信息融合的几个基本问题[J].信息与控制,2006,35(2):206-215
    [90] 孟安波,陈鹏.基于小世界效应的异构传感器网络构造研究[J].计算机与数字工程,2008,36(9):98-101,112
    [91] Alert R, Jeong H, Barabasi A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406:378-382
    [92] Wood A D, Stankovic J A. Denial of service in sensor network[J]. IEEE Computer, 2002, 35(10): 54-62
    [93] Vogt H. Small world and the security of ubiquitous computing[C]. Proceedings of the 6~(th) IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks, 2005:593-597
    [94] 李腊元.动态大型计算机网络的路由通信协议[J].计算机学报,1998.11(2):137-144
    [95] 孙宝林,李腊元,陈华.基于遗传算法的最短路径路由优化算法[J].计算机工程,2005,31(6):142-144,162
    [96] 王小平,曹立明.遗传算法--理论、应用及软件实现[M].西安:西安交通大学出版社,2002
    [97] Munemoto M, Takai Y, Sato Y. A migration scheme for the genetic adaptive routing algorithm[C]. IEEE International Conference on Systems, Man, and Cybernetics, 1998:2774-2779
    [98] Xiawei Z, Changjia C, Gang Z. A genetic algorithm for multicasting routing problem[C]. International Conference Communication Technology Proceedings, WCC-ICCT 2000, 2000:1248-1253
    [99] Zhang Q, Lenug Y W. An orthogonal genetic algorithm for multimedia multicast routing[J]. IEEE Trans Evolutionary Computation, 1999, 3:53-62
    [100] Xiang F, Junzhou L, Jieyi W, Guanqun G. QoS routing based on genetic algorithm[J]. Computer Communications, 1999, 22:1392-1399
    [101] Inagaki J, Haseyama M, Kitajima H. A genetic algorithm for determining multiple routes and its applications[C]. Proceedings of IEEE International Symposium on Circuits and Systems, 1999:137-140
    [102] Ahn C W, Ramakrishna R S. A genetic algorithm for shortest path routing problem and the sizing of populations[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(6): 566-579
    [103] Raghunathan V, Kansal A, Hsu J, Friedman J, Srivastava M B. Design considerations for solar energy harvesting wireless embedded systems[C]. IEEE International Symposium on Information Processing in Sensor Networks (IPSN), 2005:457-462
    [104] Kansal A, Potter D, Srivastava M B. Performance aware tasking for environmentally powered sensor networks[J]. ACM Joint International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), 2004:223-234
    [105] 王向辉,张国印,谢晓芹.多级能量异构传感器网络的负载均衡成簇算法[J].计算机研究与发展,2008,45(3):392-399
    [106] Cerpa A, Elson J, Estrin D, et al. Habitat monitoring: application driver for wireless communications technology[C]. Proceedings of the 2001 ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean, April 2001
    [107] Kumar R, Tsiatsis V, Srivastava M B. Computation hierarchy for in-network processing[C]. Proceedings of the 2nd International Workshop on Wireless Networks and Applications, Sept. 2003
    [108] Mainwaring A, Polastre J, Szewczyk R, et al. Wireless sensor networks for habitat monitoring[C]. Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA '02), Sept. 2002
    [109] Wang H, Estrin D, Girod L. Preprocessing in a tiered sensor network for habitat monitoring[J]. EURASIP Journal on Applied Signal Processing, 2003, 4:392-401
    [110] 俞黎阳,王能,张卫.异构无线传感器网络中异构节点的部署与优化[J].计算机科学,2008,35(19):48-51
    [111] Heinzelman W R, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks[C]. Proceedings of the 33rd Hawaii International Conference on System Sciences, 2000:3005-3014
    [112] Younis O, Fahmy S. Heed: A hybrid, energy-efficient, distributed clustering approach for ad-hoc sensor networks[J]. IEEE Trans on Mobile Computing, 2004, 3(4): 366-379
    [113] Tillapart P, Thumthawatworn T, Pakdeepinit P. Method for cluster heads selection in wireless sensor networks[C]. Proceedings of the 2004 IEEE Aerospace Conference, 2004:3615-3623
    [114] 闫斌,周小佳,王厚军,郎方年,李本亮.一种基于地理位置信息的高能效无线传感器网络[J].自动化学报,2008,34(7):743-751.
    [115] 赵洪钢,史浩山,蒋毅,刘鸿金.一种基于节点相关度的无线传感器网络分簇算法[J].西北工业大学学报,2007,25(4):571-575
    [116] 刘明,伍燕平,郭方铭.无线传感器网中基于时隙轮循的串音控制策略[J].传感技术学报,2008,21(6):1043-1046
    [117] Ming Liu, Juan Ye, Shijue Zheng. An energy balancing mechanism based on additional cluster heads in wireless sensor networks[J]. Journal of Information & Computational Science, 2008, 5(4): 1805-1812
    [118] 束金龙,闻人凯.线性规划理论与模型应用.北京:科学出版社,2005
    [119] Liu J S, Lin C H R. Energy-efficiency clustering protocol in wireless sensor networks[J]. Ad Hoc Networks, 2005, 3(3): 371-388
    [120] Al-Karaki J N, Ul-Mustafa R, Kamal A E. Data aggregation in wireless sensor networks-exact and approximate algorithms[C]. Proceedings of the IEEE Workshop on High Performance Switching and Routing, 2004:241-245
    [121] Handy M J, Haase M, Timmermann D. Low energy adaptive clustering hierarchy with deterministic cluster-head selection[C]. Proceedings of the 4th IEEE International Conference on Mobile and Wireless Communications Network, 2002
    [122] Duarte-Melo E J, Liu M. Analysis of energy consumption and lifetime of heterogeneous wireless sensor networks[C]. Proceedings of IEEE GLOBECOM, 2002:21-25
    [123] 陈闻杰,陈迅,高丽强,陈章龙,涂时亮.无线传感器网络成簇算法研究[J].小型微型计算机系统,2008,129(2):219-225
    [124] 袁林锋,程文青,杜旭,杨平.自适应最小转换代价分簇形成策略[J].计算机工程与科学,2007,29(12):5-6,47
    [125] 李晓维.无线传感器网络技术.北京:北京理工大学出版社,2007
    [126] Matthew S.Gast著.802.11 wireless networks: the definitive guide(802.11无线网络权威指南).北京.清华大学出版社,2005
    [127] Demirkol I, Ersoy C, Alag(o|¨)z F. MAC protocols for wireless sensor networks: a survey[J]. IEEE Communications Magazine, 2006, 44(4): 115-121
    [128] Dam T V, Langendoen K. An adaptive energy-efficient MAC protocol for wireless sensor networks. Los Angeles, California, USA. The 1~(st) ACM Conference on Embedded networked Sensor Systems, 2003:171-180
    [129] Sohrabi K, Gao J, Ailawadhi V, and Pottie G J. Protocols for self-organization of a wireless sensor network[J]. IEEE Personal Communications, 2000: 16-27
    [130] Rajendran V, Obraczka K, Garcia-LunaAceves J J. Energy-efficient, collision-free medium access control for wireless sensor networks[C]. Proc. of the ACM SenSys, 2003:181-192
    [131] Polastre J, Hill J, Culler D. Versatile low power media access for wireless sensor networks[C]. The 2~(nd) International Conference on Embedded Networked Sensor Systems, 2004: 95-107
    [132] Li F, Li Y, Zhao W L, et al. An adaptive coordinated MAC protocol based on dynamic power management for wireless sensor networks[C]. The 2006 International Conference on Communications and Mobile Computing, 2006: 1073-1078
    [133]Rhee I, Warrier A, Aia M, Min J. Z-MAC: a hybrid MAC for wireless sensor networks[C]. Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems, November 2005
    [134]张智广,郭忠文.无线传感器网络中基于分簇的自适应介质访问控制协议[J].计算机应用,2006,26(11):2528-2530
    [135]Basu P, Redi J. Effect of overhearing transmissions on energy efficiency in dense sensor networks[C]. Proceedings of the third International Symposium on Information Processing in Sensor Networks, 2004:196-204
    [136]伍燕平,刘明,叶娟.无线传感器网络中基于加权负载的时隙调度算法[J].计算机应用,2007,27(12):3004-3006
    [137]刘明,伍燕平,郭方铭.无线传感器网中基于时隙轮循的串音控制策略[J].传感技术学报,2008,21(6):1043-1046

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700