用户名: 密码: 验证码:
基于边界积分方程的Galerkin无网格方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无网格方法在近年来得到广泛关注,其基本特点是场函数建立在独立的节点上,节点之间无需网格联接。边界积分方程能使所考虑问题的维数降低一维,是求解线性问题和外部问题的一种有效工具。基于边界积分方程的无网格方法是无网格方法的一个重要分支。
     本文首先回顾了无网格方法的发展历史和研究现状,综述了无网格方法数学理论的研究进展,介绍了无网格方法的基本原理,总结了无网格方法的特点、优越性以及目前无网格方法的难点和存在的问题。然后在大量前人工作的基础上,提出了一种新的基于边界积分方程的Galerkin无网格方法——Galerkin边界点法,并成功地将其应用于位势问题、弹性力学问题和流体力学问题的求解。
     在Galerkin边界点法中,首先将边值问题归结为边界积分方程的弱形式或变分公式,然后利用移动最小二乘近似构造变分公式中的试探函数和检验函数,进而得到近似的有限维逼近空间。Galerkin边界点法利用了移动最小二乘近似的无网格思想和边界积分方程的降维特性,因此它的输入数据只是求解域边界上的离散分布的点。由于引入了变分公式,Galerkin边界点法能保持变分问题的对称性和正定性,该性质使得Galerkin边界点法是耦合有限元方法或者其它已经建立的区域型无网格方法(如无单元Galerkin法)的理想方法,这种耦合技术非常适合求解无限域问题。另外,虽然用移动最小二乘近似构造的形函数不具有插值特性,但是通过把边界函数与检验函数相乘并在边界上积分,Galerkin边界点法中的边界条件仍能容易地精确满足。
     本论文针对Galerkin边界点法进行了理论分析和数值应用,具体研究工作如下:
     首先研究了任意边界上的移动最小二乘近似,给出了移动最小二乘近似的性质。当节点和权函数满足一定条件时,证明了移动最小二乘近似的近似函数在Sobolev空间中的最优误差估计。误差结果表明,移动最小二乘近似的逼近误差与节点间距密切相关。
     其次给出了Galerkin边界点法求解作为拟微分算子方程的边界积分方程的算法。边界积分方程首先被转化为相应的变分形式,然后用移动最小二乘近似的形函数构造解空间。为了计算积分,我们在边界上构造了背景网格。基于移动最小二乘近似的误差公式和拟微分算子理论,推导了用Galerkin边界点法求解边界积分方程的解的误差公式。从误差分析的过程中可以看出,Galerkin边界点法的误差主要来自两个方面:一是用背景网格上的积分去近似边界积分;二是用移动最小二乘近似去逼近边界变量。我们还考虑了边界积分方程的未知量需要满足一定约束条件的情形,此时我们采用Lagrange乘子放松这个约束,并给出了相应的数值实施过程和误差估计。
     第三,用Galerkin边界点法求解了Laplace问题、双调和问题、线弹性问题和Stokes问题。把边值问题归化为等价的第一类边界积分方程,再用Galerkin边界点法进行求解。我们给出了数值求解过程,并就一般情形详细地进行了误差分析,得到了最佳渐进误差估计。当积分用的背景网格和边界重合时,我们进一步得到了近似解的能量模估计。数值算例表明了这种方法的有效性,并且数值结果和理论分析吻合。
The meshless (or meshfree) methods have drawn considerable attention in recent years. The main feature of this type of method is the absence of an explicit mesh, and the approximate solutions are constructed entirely based on a cluster of scattered nodes. Boundary integral equations (BIEs) are attractive computational techniques for linear and exterior problems as they can reduce the dimensionality of the original problem by one. The BIEs-based meshless method is an important branch of meshless methods.
     This dissertation first reviews the recent developments of the meshless methods by means of their discretization scheme, together with some comments on the advantages and also some existing problems to be further studied. The developments of mathematical theory of the meshless methods are introduced in detail, and also the basic theory is expatiated thoroughly. Then, based on the large amount of work by the pioneers, a new BIEs-based meshless Galerkin method----a Galerkin Boundary Node Method (GBNM) is proposed and applied successfully to solve problems in potential theory, linear elasticity and fluid mechanics.
     In the GBNM, an equivalent variational form of a BIE is used for representing the solution of boundary value problems, and the moving least-squares (MLS) approximation is employed to construct the trial and test functions of the variational form by a cluster of scattered boundary nodes instead of boundary elements. With the help of the MLS scheme, the GBNM is a boundary-type meshless method which requires only a nodal data structure on the bounding surface of the domain to be solved. A key advantage with the variational formulation is the GBNM can keep the symmetry and positive definiteness of the variational problems, a property that makes the method an ideal choice for coupling the finite element method or other established domain-type meshless methods such as the element-free Galerkin method for the problems with an unbounded domain. Besides, via multiplying the boundary function by a test function and integrating over the boundary, the boundary conditions of the original problem in the GBNM can be implemented exactly despite the MLS shape function lacking the delta function property.
     The current dissertation concentrates on the theoretical analysis and numerical applications of the GBNM. The main contents of this thesis are as follows.
     The first is the MLS approximation of a function on a generic boundary. The properties of the MLS approximation are studied comprehensively. Error estimates for the MLS approximation are deduced in Sobolev spaces when nodes and weight functions satisfy certain conditions. From the error analysis of the MLS scheme, we show that the error bound is directly related to the nodal spacing.
     The second is the GBNM for a general BIE which can be characterized as pseudo-differential operator equation. The BIE is firstly converted into a variational formulation, and then the MLS shape functions are used to generate the approximate space. A background cell structure is constructed for purposes of numerical integration. Based on the error estimates of the MLS approximation and the pseudo-differential operator theory, error estimates of the solution of the integral equation are established in Sobolev spaces. From the error analysis, it is shown that the error results mainly from the approximation of the boundary by the cell structure, on which the numerical integration to be carried out, and approximation of the boundary variable by the MLS scheme. When the BIE has some constraints, a Lagrangian multiplier can be introduced in the process of numerical approximation. The corresponding numerical implementation and error analysis are also provided.
     The third is the applications of the GBNM for the numerical solution of Laplace problems, biharmonic problems, linear elastic problems and Stokes problems. These boundary value problems are firstly reformulated as BIEs of the first kind, then the GBNM is used for obtaining the approximate solutions. The numerical implementations for these problems are described in depth. Total details of error analysis are given, and optimal asymptotic error estimates are obtained. When the integration cell structure is identical with the boundary, the estimates of the error in energy norms are also established. Numerical examples are presented to show the efficiency of the GBNM, and the numerical results are in consistency with the theoretical analysis.
引文
[1] Atluri SN, Shen S. The Meshless Local Petrov-Galerkin (MLPG) Method [M]. California: Tech. Science Press, 2002.
    [2] Liu GR. Meshfree Methods: Moving Beyond The Finite Method [M]. Singapore: CRC Press, 2002.
    [3] Liu GR, Liu MB. Smoothed Particle Hydrodynamics: A Meshfree Particle Method [M]. Singapore: World Scientific, 2003.
    [4] Li SF, Liu WK. Meshfree Particle Methods [M]. Berlin: Springer, 2004.
    [5] Atluri SN. The Meshless Method (MLPG) for Domain & BIE Discretizations [M]. California: Tech. Science Press, 2004.
    [6]张雄,刘岩.无网格方法[M].北京:清华大学出版社, 2004.
    [7]刘更,刘天祥,谢琴.无网格方法及其应用[M].西安:西北工业大学出版社, 2005.
    [8] Liu GR, Gu YT. An Introduction to Meshfree Methods and Their Programming [M]. Berlin: Springer, 2005.
    [9] Lancaster P, Salkauskas K. Surfaces generated by moving least-squares methods [J]. Math. Comput., 1981, 37: 141-158.
    [10] Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods [J]. Int. J. Numer. Meth. Fluid., 1995, 20: 1081-1106.
    [11] Babu?ka I, Melenk JM. The partition of unity methods [J]. Int. J. Numer. Meth. Eng., 1997, 40: 727-758.
    [12]吴宗敏.散乱数据拟合的模型、方法和理论[M].北京:科学出版社, 2006.
    [13] Liu GR, Gu YT. A point interpolation method for two-dimensional solids [J]. Int. J. Numer. Meth. Eng., 2001, 50: 937-951.
    [14] Nayroles B, Touzot Q, Villon P. Generalizing the finite element method: diffuse approximation and diffuse element [J]. Comput. Mech., 1992, 10: 307-318.
    [15] Belytschko T, Lu YY, Gu L. Element free Galerkin methods [J]. Int. J. Numer. Meth. Eng., 1994, 37: 229-256.
    [16] Mukherjee YX, Mukherjee S. On boundary conditions in the element-free Galerkin method [J]. Comput. Mech., 1997, 19: 264-270.
    [17] Cordes LW, Moran B. Treatment of material discontinuity in the element free Galerkin method [J]. Comput. Meth. Appl. Mech. Eng., 1996, 139: 75-89.
    [18] Alves MK, Rossi R. A modified element-free Galerkin method with essential boundary conditions enforced by an extended partition of unity finite element weight function [J]. Int. J. Numer. Meth. Eng., 2003, 57: 1523-1552.
    [19] Belytschko T, Organ D, Krongauz Y. A coupled finite element and element free Galerkin method [J]. Comput. Mech., 1995, 17: 186-195.
    [20] Liu GR, Gu YT. Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation [J]. Comput. Mech., 2002, 26: 166-173.
    [21] Beissel S, Belytschko T. Nodal integration of the element free Galerkin method [J]. Comput. Meth. Appl. Mech. Eng., 1996, 139: 49-74.
    [22] Liu WK, Chen Y. Wavelet and multiple scales reproducing kernel method [J]. Int. J. Numer. Meth. Fluid., 1995, 21: 901-931.
    [23] Liu WK, Li SF, Belytschko T. Moving least-square reproducing kernel methods, Part I: methodology and convergence [J]. Comput. Meth. Appl. Mech. Eng., 1997, 143: 113-154.
    [24] Li SF, Liu WK, Belytschko T. Moving least-square reproducing kernel methods, Part II: Fourier analysis [J]. Comput. Meth. Appl. Mech. Eng., 1996, 139: 159-193.
    [25] Liu WK, Han WM, Lu HS. Reproducing kernel element method, Part I: theoretical formulation [J]. Comput. Meth. Appl. Mech. Eng., 2004, 193: 933-951.
    [26] Duarte CA, Oden JT. Hp clouds---an h-p meshless method [J]. Numer. Meth. Part. Differ. Equat., 1996, 12: 673-705.
    [27] Oden JT, Duarte CA, Zienkiewicz OC. A new cloud-based hp finite element method [J]. Int. J. Numer. Meth. Eng., 1998, 50: 160-170.
    [28] Melenk JM, Babu?ka I. The partition of unity finite element methods: basic theory and application [J]. Comput. Meth. Appl. Mech. Eng., 1996, 139: 263-288.
    [29] Strouboulis T, Babu?ka I, Copps K. The design and analysis of the generalized finite element method [J]. Comput. Meth. Appl. Mech. Eng., 2000, 181: 43-69.
    [30] Strouboulis T, Copps K, Babu?ka I. The generalized finite element method [J]. Comput. Meth. App1. Mech. Eng., 2001, 190: 4081-4193.
    [31] Duarte CA, Hamzeh ON, Liszka TJ. A generalized finite element method for the simulation of three-dimensional dynamic crack propagation [J]. Comput. Meth. Appl. Mech. Eng., 2001, 190: 2227-2262.
    [32] Dolbow J, Moes N, Belytschko T. Discontinuous enrichment in finite elements with a partition of unity method [J]. Finit. Elem. Anal. Des., 2000, 36: 235-260.
    [33] Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method [J]. Int. J. Numer. Meth. Eng., 2000, 48: 1741-1760.
    [34] Sukumar N, Moes N, Moran B, Belytschko T. Extended finite element method for three-dimensional crack modelling [J]. Int. J. Numer. Meth. Eng., 2000, 48: 1549-1570.
    [35] Li S, Liu WK. Reproducing kernel hierarchical partition of unity, Part I: formulation and theory [J]. Int. J. Numer. Meth. Eng., 1999, 45: 251-288.
    [36] Li S, Liu WK. Reproducing kernel hierarchical partition of unity, Part II: applications [J]. Int. J. Numer. Meth. Eng., 1999, 45: 289-317.
    [37] Wang JG, Liu GR. A point interpolation meshless method based on radial basis functions [J]. Int. J. Numer. Meth. Eng., 2002, 54: 1623-1648.
    [38] De S, Bathe KJ. The method of finite spheres [J]. Comput. Mech., 2000, 25: 329-345.
    [39] Sukumar N, Moran B. Natural neighbour Galerkin methods [J]. Int. J. Numer. Meth. Eng., 2001, 50: 1-27.
    [40] Atluri SN, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach [J]. Comput. Mech., 1998, 22: 117-127.
    [41] Atluri SN, Shen SP. The mesh local Petrov-Galerkin(MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods [J]. Comput. Model. Eng. Sci., 2002, 3: 11-51.
    [42] Liu GR, Gu YT. A local point interpolation method for stress analysis of two-dimensional solids [J]. Struct. Eng. Mech., 2001, 11: 221-236.
    [43] Gu YT, Liu GR. A local point interpolation method for static and dynamic analysis of thin beams [J]. Comput. Meth. Appl. Mech. Eng., 2001, 190: 5515-5528.
    [44] Wu YL, Liu GR. A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation [J]. Comput. Mech., 2003, 30: 355-365.
    [45] Liu GR, Yan L, Wang JG. Point interpolation method based on local residual formulation using radial basis functions [J]. Struct. Eng. Mech., 2002, 14: 713-732.
    [46] Lucy L. A numerical approach to the testing of the fission hypothesis [J]. Astrono. J., 1977, 82: 1013-1021.
    [47] Gingold RA, Moraghan JJ. Smoothed particle hydrodynamics: theory and applications to non-spherical stars [J]. Month. Noti. Roy. Astrono. Soc., 1977, 18: 375-389.
    [48] Sweg1e JW, Hicks DL, Attaway SW. Smoothed particle hydrodynamics stability analysis [J]. J. Comput. Phy., 1995, 116: 123-134.
    [49] Monaghan JJ. An introduction to SPH [J]. Comput. Phy. Commun., 1988, 48: 89-96.
    [50] Monaghan JJ. Smoothed particle hydrodynamics [J]. Annu. Rev. Astrono. Astrophy., 1992, 30: 543-574.
    [51]张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理, 1996, 13: 385-397.
    [52] Liszka TJ, Duarte C, Tworzydlo WW. Hp-meshless cloud method [J]. Comput. Meth. Appl. Mech. Eng., 1996, 139: 263-288.
    [53] Onate E, Idelsohn S, Zienkiewicz OC. A finite point method in computational mechnics: applications to convective transport and fluid flow [J]. Int. J. Numer. Meth. Eng., 1996, 39: 3839-3866.
    [54] Onate E, Idelsohn S, Zienkiewicz OC. A stabilized finite point method for analysis of fluidmechanics problems [J]. Comput. Meth. Appl. Mech. Eng., 1996, 139: 315-346.
    [55] Onate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems [J]. Comput. Mech., 1998, 21: 283-292.
    [56] Onate E, Perazzo F, Miquel J. A finite point method for elasticity problems [J]. Comput. Struct., 2001, 79: 2151-2163.
    [57]刘欣.无网格数值方法研究[D].博士学位论文,南京航空航天大学, 1998.
    [58] Aluru NR, Li G. Finite cloud method: a true rneshless technique based on a fixed reproducing kernel approximation [J]. Int. J. Numer. Meth. Eng., 2001, 50: 2373-2410.
    [59] Li G, Paulino GH, Aluru NR. Coupling of the mesh-free finite cloud method with the boundary element method: a collocation approach [J]. Comput. Meth. Appl. Mech. Eng., 2003, 192: 2355-2375.
    [60] Zhang X, Liu XH, Song KZ. Least-square collocation meshless method [J]. Int. J. Numer. Meth. Eng., 2001, 51: 1089-1100.
    [61]张雄,胡炜,潘小飞.加权最小二乘无网格方法[J].力学学报, 2003, 35: 425-431.
    [62] Park SH, Youn SK. The least-squares meshfree method [J]. Int. J. Numer. Meth. Eng., 2001, 52: 997-1012.
    [63] Mukherjee YX, Mukherjee S. The boundary node method for potential problems [J]. Int. J. Numer. Meth. Eng., 1997, 40: 797-815.
    [64] Chati MK, Mukherjee S. The boundary node method for three-dimensional problems in potential theory [J]. Int. J. Numer. Meth. Eng., 2000, 47: 1523-1547.
    [65] Kothnur VS, Mukherjee S, Mukherjee YX. Two-dimensional linear elasticity by the boundary node method [J]. Int. J. Solid. Struct., 1999, 36: 1129-1147.
    [66] Chati MK, Mukherjee S, Mukherjee YX. The boundary node method for three-dimensional linear elasticity [J]. Int. J. Numer. Meth. Eng., 1999, 46: 1163-1184.
    [67] Chati MK, Paulino GH, Mukherjee S. The meshless standard and hypersingular boundary node methods applications to error estimation and adaptivity in three-dimensional problems [J]. Int. J. Numer. Meth. Eng., 2001, 50: 2233-2269.
    [68] Gowrishanka R, Mukherjee S. A pure boundary node method for potential theory [J]. Commun. Numer. Meth. Eng., 2002, 18: 411-427.
    [69] Xie H, Nogami T, Wang J. A radial boundary node method for two-dimensional elastic analysis [J]. Eng. Anal. Bound. Elem., 2003, 27: 853-862.
    [70] Zhu T, Zhang J, Atluri SN. A local boundary integral equation (LBIE) method in computational mechnics and a meshless discretization approach [J]. Comput. Mech., 1998, 21: 223-235.
    [71] Zhu T, Zhang J, Atluri SN. A meshless local boundary integral equation (LBIE) method for solving nonlinear problems [J]. Comput. Mech., 1998, 22: 174-186.
    [72]张见明,姚振汉,李宏.二维势问题的杂交边界点法[J].重庆建筑大学学报, 2000, 22(6): 105-108.
    [73] Zhang J, Yao Z, Li H. A hybrid boundary node method [J]. Int. J. Numer. Meth. Eng., 2002, 53: 751-763.
    [74] Zhang J, Yao Z. Meshless regular hybrid boundary node method [J]. Comput. Model. Eng. Sci., 2001, 2: 307-318.
    [75] Zhang J, Tanaka M, Matsumoto T. Meshless analysis of potential problems in three dimensions with the hybrid boundary node method [J]. Int. J. Numer. Meth. Eng., 2004, 59: 1147-1168.
    [76] Zhang J, Tanaka M, Endo M. The hybrid boundary node method accelerated by fast multipole expansion technique for 3D potential problems [J]. Int. J. Numer. Meth. Eng., 2005, 63: 660-680.
    [77]张见明.一种新的边界类型无网格方法——杂交边界点法[D].博士学位论文,清华大学, 2002.
    [78]苗雨.奇异杂交边界点法理论研究及应用[D].博士学位论文,华中科技大学大学, 2005.
    [79] Gu YT, Liu GR. A boundary point interpolation method for stress analysis of solids [J]. Comput. Mech., 2004, 28: 475-487.
    [80] Gu YT, Liu GR. A boundary radial point interpolation method (BRPIM) for 2-D structural analyses [J]. Struct. Eng. Mech., 2002, 15: 535-550.
    [81] Gu YT, Liu GR. Hybrid boundary point interpolation methods and their coupling with the element free Galerkin method [J]. Eng. Anal. Bound. Elem., 2003, 27: 905-917.
    [82] Li G, Aluru NR. Boundary cloud method: a combined scattered point/boundary integral approach for boundary-only analysis [J]. Comput. Meth. Appl. Mech. Eng., 2002, 191: 2337-2370.
    [83] Li G, Aluru NR. A boundary cloud method with a cloud-by-cloud polynomial basis [J]. Eng. Anal. Bound. Elem., 2003, 27: 57-71.
    [84] Shrivastava V, Aluru NR. A fast boundary cloud method for exterior 2D electrostatic analysis [J]. Int. J. Numer. Meth. Eng., 2003, 56: 239-260.
    [85] Shrivastava V, Aluru NR. A fast boundary cloud method for 3D exterior electrostatic analysis [J]. Int. J. Numer. Meth. Eng., 2004, 59: 2019-2046.
    [86]程玉民,陈美娟.弹性力学的一种边界无单元法[J].力学学报, 2002, 35: 181-186.
    [87] Liew KM, Cheng Y, Kitipornchai S. Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems [J]. Int. J. Numer. Meth. Eng., 2006, 65: 1310-1332.
    [88]秦义校,程玉民.弹性力学的重构核粒子边界无单元法[J].物理学报, 2006, 7: 3216-3222 .
    [89]秦义校.重构核粒子边界无单元法研究[D].博士学位论文,上海大学, 2007.
    [90] Li X, Zhu J. A Galerkin boundary node method and its convergence analysis [J]. J. Comput. Appl. Math., 2009, doi:10.1016/j.cam.2008.12.003.
    [91] Li X, Zhu J. A Galerkin boundary node method for biharmonic problems [J]. Eng. Anal. Bound. Elem., 2009, 33: 858-865.
    [92] Li X, Zhu J. Meshless Galerkin analysis of Stokes slip flow with boundary integral equations [J]. Int. J. Numer. Meth. Fluid., 2009, doi:10.1002/fld.1991.
    [93] Li X, Zhu J. A meshless Galerkin method for Stokes problems using boundary integral equations [J]. Comput. Meth. Appl. Mech. Eng., doi:10.1016/j.cma.2009.04.009.
    [94] Levin D. The approximation power of moving least-square [J]. Math. Comput., 1998, 67: 1735-1754.
    [95] Wendland H. Local polynomial reproduction and moving least squares approximation [J]. IMA J. Numer. Anal., 2001, 21: 285-300.
    [96] Anmentano MG, Duran RG. Error estimates for moving least square approximations [J]. Appl. Numer. Math., 2001, 37: 397-416.
    [97] Armentano MG. Error estimates in Sobolev spaces for moving least-square approximations [J]. SIAM J. Numer. Anal., 2002, 39: 38-51.
    [98] Zuppa C. Error estimates for moving least-square approximations [J]. Bull. Braz. Math. Soc. (N.S.), 2003, 34: 231-249.
    [99] Zuppa C. Good quality point sets and error estimates for moving least square approximations [J]. Appl. Numer. Math., 2003, 47: 575-585.
    [100] Babu?ka I, Banerjee U, Osborn JE. Survey of meshless and generalized finite element methods: a unified approach [J]. Acta Numer., 2003, 12: 1-125.
    [101] Babu?ka I, Banerjee U, Osborn J. Generalized finite element methods: main ideas, results, and perspective [J]. Int. J. Comput. Meth., 2004, 1: 1-37.
    [102] Strouboulis T, Babu?ka I, Hidajat R. The generalized finite element method for Helmholtz equation: theory, computation, and open problems [J]. Comput. Meth. Appl. Mech. Eng., 2006, 195: 4711-4731.
    [103] Babu?ka I, Banerjee U, Osborn JE. Superconvergence in the generalized finite element method [J]. Numer. Math., 2007, 107: 353-395.
    [104] Babu?ka I, Nistor V, Tarfulea N. Generalized finite element method for second-order elliptic operators with Dirichlet boundary conditions [J]. J. Comput. Appl. Math., 2008, 218: 175-183.
    [105] Barros FB, Proenca SPB, de Barcellos CS. Generalized finite element method in structural nonlinear analysis---a p-adaptive strategy [J]. Comput. Mech., 2004, 33: 95-107.
    [106] Duarte CA, Oden JT. An hp adaptive method using clouds clouds [J]. Comput. Meth. Appl.Mech. Eng., 1996, 139: 237-262.
    [107] Oden JT, Abani P. A parallel adaptive strategy for h-p finite element computations [J]. Comput. Meth. Appl. Mech. Eng., 1995, 121: 449-470.
    [108]刘欣,朱德懋,陆明万,张雄.平面裂纹问题的h, p, hp型自适应无网格方法的研究[J].力学学报, 2000, 32: 308-318.
    [109]刘欣,朱德懋,陆明万,张雄.基于流形覆盖思想的无网格方法的研究[J].计算力学学报. 2001, 18: 21-27.
    [110] Liu X, Zhu DM, Lu MW, Zhang X. H, p, hp adaptive meshless method for plane crack problem [J]. Acta Mech. Sinica, 2000, 32: 308-318.
    [111] Zuppa C. Jachson-type inequalities for h-p clouds and error estimates [J]. Comput. Meth. Appl. Mech. Eng., 2005, 194: 1875-1887.
    [112] Voth TE, Christon MA. Discretization errors associated with reproducing kernel methods: one dimensional domains [J]. Comput. Meth. Appl. Mech. Eng., 2001, 190: 2429-2446.
    [113] Han WM, Meng XP. Error analysis of the reproducing kernel particle method [J]. Comput. Meth. Appl. Mech. Eng., 2001, 190: 6157-6181.
    [114] Chen JS, Zhang XW, Belytschko T. An implicit gradient model by reproducing kernel strain regularization in strain localization problems [J]. Comput. Meth. Appl. Mech. Eng., 2004, 193: 2827-2844.
    [115] You Y, Chen JS, Lu H. Filters, reproducing kernel, and adaptive meshfree method [J]. Comput. Mech., 2003, 31: 316-326.
    [116] Chen JS, Pan C, Wu CT. Large deformation analysis of rubber based on a reproducing kernel particle method [J]. Comput. Mech., 1997, 19: 211- 227.
    [117]张艳芬,周进雄,张智谦,张陵.二维应力集中问题的多尺度RKPM自适应分析[J].强度与环境, 2005, 32: 16-20.
    [118]张智谦,周进雄,王学明,张艳芬,张陵.基于多尺度再生核质点法的h型自适应分析[J].应用数学和力学, 2005, 26: 972-978.
    [119]干年妃.基于RKPM法的无网格自适应方法研究及其在金属成形中的应用[D].博士学位论文,湖南大学, 2007.
    [120]干年妃,李光耀,钟志华,韩利芬.金属体积成形过程的自适应无网格方法[J].中国机械工程, 2006, 17: 2612-2617.
    [121]干年妃,李光耀.一种自适应RKPM方法在动态大变形显示计算中的验证及应用[J].湖南大学学报(自然科学版), 2006, 33: 36-41.
    [122] Krysl P, Belytschko T. Element-free Galerkin method: convergence of the continuous and discontinuous shape functions [J]. Comput. Meth. Appl. Mech. Eng., 1997, 148: 257-277.
    [123] Chung HJ, Belytschko T. An error estimate in the EFG method [J]. Comput. Mech., 1998, 21: 91-100.
    [124] Lee GH, Chung HJ, Choi CK. Adaptive crack propagation analysis with the element-free Galerkin method [J]. Int. J. Numer. Meth. Eng., 2002, 53: 751-763.
    [125] Liu GR, Tu ZH. An adaptive procedure based on background cells for meshless methods [J]. Comput. Meth. Appl. Mech. Eng., 2002, 191: 1923-1943.
    [126] Gavete L, Cuesta JL, Ruiz A. A procedure for approximation of the error in the EFG method [J]. Int. J. Numer. Meth. Eng., 2002, 53: 677-690.
    [127] Gavete L, Gavete ML. A posteriori error approximation in EFG method [J]. Int. J. Numer. Meth. Eng., 2003, 58: 2239-2263.
    [128] Gavete L, Faclon S. An error indicator for the element free Galerkin method [J]. Eur. J. Mech. A/Solid., 2001, 20: 327-341.
    [129] Rynne BP. Convergence of Galerkin method solutions of the integral equation for thin wire antennas [J]. Adv. Comput. Math., 2000, 12: 251-259.
    [130] Rossi R, Alves MK. Recovery based error estimation and adaptivity applied to a modified element-free Galerkin method [J]. Comput. Mech., 2004, 33: 194-205.
    [131] Lu H, Cheng H, Cao J, Liu WK. Adaptive enrichment meshfree simulation and experiment on buckling and post-buckling analysis in sheet metal forming [J]. Comput. Meth. Appl. Mech. Eng., 2005, 194: 2569-2590.
    [132]张征,刘更,刘天祥,曾泉人,佟瑞庭.自适应无网格方法在弹塑性接触中的应用[J].西北工业大学学报, 2008, 26: 265-270.
    [133]张征,刘更,刘天祥.自适应无网格伽辽金方法的研究[J].机械科学与技术, 2008, 27: 1047-1051.
    [134] Dolobow J, Belytschko T. Numerical integration of the Galerkin weaked form in meshfree methods [J]. Comput. Mech., 1999, 23: 219-230.
    [135] Atluri SN, Kim HG, Cho JY. A critical assessment of truly meshless local Petrov-Galerkin (MLPG) and local boundary integral equaton (LBIE) methods [J]. Comput. Mech., 1999, 24: 348-372.
    [136] Kim HG, Atluri SN. Arbitrary placement of secondary nodes, and error control, in the meshless local Petrov-Galerkin (MLPG) method [J]. Comput. Model. Eng. Sci., 2000, 1: 11-32.
    [137] Jin X, Li G, Aluru NR. Positivity conditions in meshless collocation methods [J]. Comput. Meth. Appl. Mech. Eng., 2004, 193: 1171-1202.
    [138] Jin X, Li G. New approximations and collocation schemes in the finite cloud method [J]. Comput. Struct., 2005, 83: 1366-1385.
    [139]程荣军.无网格方法的误差估计和收敛性研究[D].博士学位论文,上海大学, 2007.
    [140] Cheng R, Cheng Y. Error estimates for the finite point method [J]. Appl. Numer. Math. 2008, 58: 884-898.
    [141]程荣军,程玉民.势问题的无单元Galerkin方法的误差估计[J].物理学报, 2008, 57: 6037-6046.
    [142] Micchelli C. Interpolation of scattered data: distance matrix and conditionally positive definite functions [J]. Constr. Approx., 1986, 2: 11-22.
    [143] Narcowich F, Sivakumar N, Ward J. Norm of inverse and condition numbers for matrices associated with scattered data [J]. J. Approx. Theo., 1991, 64: 69-94.
    [144] Schaback R. Error estimates and condition numbers for radial basis function interpolation [J]. Adv. Comput. Math., 1995, 3: 251-264.
    [145] Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree [J]. Adv. Comput. Math., 1995, 4: 389-396.
    [146] Buhmann M. Radial functions on compact support [J]. Proc. Edin. Math. Soc., 1998, 41: 3-46.
    [147] Franke C, Schaback R. Convergence order estimates of meshless collocation methods using radial basis functions [J]. Adv. Comput. Math., 1998, 8: 381-399.
    [148] Franke C, Schaback R. Solving partial differential equations by collocation using radial basis functions [J]. Appl. Math. Comput., 1998, 93: 73-82.
    [149] Wright GB. Radial basis function interpolation: numerical and analytical developments [D]. PhD Dissertation, University of Colorado, 2003.
    [150] Wu Z. On the convergence of the interpolation with radial basis function [J]. Chinese J. Contem. Math., 1993, 14: 269-277.
    [151] Wu Z. Hermite-Birkhoff interpolation of scattered data by radial basis functions [J]. Approx. Theo. Appl., 1992, 23: 189-207.
    [152] Wu Z, Schaback R. Local error estimates for radial basis function interpolation of scattered data [J]. IMA J. Numer. Anal., 1993, 13: 13-27.
    [153] Schaback R, Wu Z. Operators on radial functions [J]. J. Comput. Appl. Math., 1996, 73: 257-270.
    [154] Wu Z. Multivariate compactly supported positive definite radial functions [J]. Adv. Comput. Math., 1995, 4: 283-292.
    [155] Zhang Y, Tan Y. Convergence of general meshless Schwarz method using radial basis functions [J]. Appl. Numer. Math., 2006, 56: 916-936.
    [156] Cai Z. Convergence and error estimates for meshless Galerkin methods [J]. Appl. Math. Comput., 2007, 184: 908-916.
    [157] Zhang Y. Convergence of meshless Petrov-Galerkin method using radial basis functions [J]. Appl. Math. Comput., 2006, 183: 307-321.
    [158]段勇.偏微分方程的无网格区域分解方法[D].博士学位论文,复旦大学, 2005.
    [159]刘天祥,刘更,徐华.二维无网格伽辽金——有限元耦合方法的研究[J].机械强度, 2002, 24: 602-607.
    [160] Hegen D. Element-free Galerkin methods in combination with finite element approaches [J]. Comput. Meth. Appl. Mech. Eng., 1996, 135: 143-166.
    [161] Xiao QZ, Dhanasekar M. Coupling of FE and EFG using collocation approach [J]. Adv. Eng. Soft., 2002, 33: 507-515.
    [162] Huerta A, Fernández-Méndez S. Enrichment and coupling of the finite element and meshless methods [J]. Int. J. Numer. Meth. Eng., 2000, 48: 1615-1636.
    [163] Zhang Z, Liew KM, Cheng Y. Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems [J]. Eng. Anal. Bound. Elem., 2008, 32: 100-107.
    [164]张赞,程玉民.无单元Galerkin法和边界元耦合法[J].力学季刊, 2007, 2: 333-339.
    [165] Gu YT, Liu GR. A coupled element-free Galerkin/boundary element method for stress analysis of two-dimension solid [J]. Comput. Meth. Appl. Mech. Eng., 2001, 190: 4405-4419.
    [166] Lee CK, Lie ST, Shuai YY. On coupling of reproducing kernel particle method and boundary element method [J]. Comput. Mech., 2004, 34: 282-297.
    [167] Liu GR, Gu YT. Meshless local petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches [J]. Comput. Mech. 2000, 26: 536-546.
    [168] Chen T, Raju IS. A coupled finite element and meshless local Petrov-Galerkin method for two-dimensional potential problems [J]. Comput. Meth. Appl. Mech. Eng., 2003, 192: 4533-4550.
    [169] Sellountos EJ, Polyzos D. A MLPG (LBIE) approach in combination with BEM [J]. Comput. Meth. Appl. Mech. Eng., 2005, 194: 859-875.
    [170] Mendez SF, Diez P. Convergence of finite elements enriched with mesh-less methods [J]. Numer. Math., 2003, 96: 43-59.
    [171] Liu GR, Gu YT. A matrix triangularization algorithm for point interpolation method [J]. Comput. Meth. Appl. Mech. Eng., 2003, 192: 2269-2295.
    [172] Song K, Zhang X, Lu M. Meshless method based on collocation with consistent compactly supported radial basis functions [J]. Acta Mech. Sinica, 2004, 20: 551-557.
    [173]庞作会,葛修润,王水林,郑宏.对无网格伽辽金法(EFGM)的两点补充[J].岩石力学与工程学报, 1999, 18: 497-502.
    [174] Lu YY, Belytschko T, Gu L. A new implementation of the element free Galerkin [J]. Comput. Meth. Appl. Mech., 1994, 113: 397-414.
    [175] Fernandez-Mendez S, Huerta A. Imposing essential boundary conditions in mesh-free methods [J]. Comput. Meth. Appl. Mech., 2004, 193: 1257-1275.
    [176] Zhu T, Atluri SN. A modified collocation method and a penalty formulation enforcing the essential boundary conditions in the element free Galerkin method [J]. Comput. Mech., 1998, 21: 211-222.
    [177] Gunther FC, Liu WK. Implementation of boundary conditions for meshless methods [J]. Comput. Meth. Appl. Mech., 1998, 163: 205-230.
    [178] Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements [J]. Comput. Meth. Appl. Mech., 1996, 131: 133-145.
    [179] Brenner SC, Scott LR. The Mathematical Theory of Finite Element Methods [M]. New York: Springer, 1996.
    [180] Stephen E, Wendland WL. Remarks to Galerkin and least square methods [J]. Lect. Notes Math., 1976, 564: 461-471.
    [181] Le Roux MN. Methode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2 [J]. RAIRO Anal. Numer., 1977, 11: 27-60.
    [182]祝家麟.椭圆边值问题的边界元分析[M].北京:科学出版社, 1991.
    [183]祝家麟,袁政强.边界元分析[M].北京:科学出版社, 2009.
    [184] Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers [J]. RAIRO Anal. Numer., 1974, R2: 129-151.
    [185] Girault V, Raviart PA. Finite Element Approximation of The Navier-Stokes Equations [M]. Berlin: Springer, 1979.
    [186] Giroire J, Nedelec JC. Numerical solution of an exterior Neumann problem using a double layer potential [J]. Math. Comput., 1978, 32: 973-990.
    [187]余德浩.自然边界元法的数学[M].北京:科学出版社, 1993.
    [188] Yu D. The Natural Boundary Integral Method and Its Applications [M]. Beijing: Science Press, 2002.
    [189] Tanaka M, Sladek V, Sladek J. Regularization techniques applied to boundary element methods [J]. Appl. Mech. Rev., 1994, 47: 457-499.
    [190] Aimi A, Diligenti M. Hypersingular kernel integration in 3D Galerkin boundary element method [J].J. Comput. Appl. Math., 2002, 138: 51-72.
    [191] Nicolazzi LC, Barcellos CS, Fancello EA, Duarte CAM. Generalized boundary element method for Galerkin boundary integrals [J]. Eng. Anal. Bound. Elem., 2005, 29: 494-510.
    [192] Dautray R, Lious JL, Artola M, Benilan P. Mathematical Analysis and Numerical Methods for Science and Technology. Volume 4: Integral Equations and Numerical Methods [M]. Berlin: Springer, 2000.
    [193] Nedelec JC. Finite element for the exterior problems using integral equations [J]. Int. J. Numer. Meth. Fluid., 1987, 7: 1229-1234.
    [194] Nedelec JC. Integral equations with non-integrable kernels [J]. Integr. Equat. Oper. Theo., 1982, 5: 562-572.
    [195] Zhu J, Zhang S. Galerkin boundary element method for solving the boundary integral equation with hypersingularity [J]. J. Univer. Sci. Tech. China, 2007, 37: 1357-1362.
    [196]张守贵.用双层位势求解二维Laplace方程的Neumann问题的Galerkin边界元[D].硕士学位论文,重庆大学, 2005.
    [197] Nedelec JC. Approximation deséquations intégrales en mécanique et en physique [M]. CEA-IRIA-EDF: Cours de l’Ecole d’été, 1977.
    [198]祝家麟.用边界积分方程法解平面双调和方程的Dirichlet问题[J].计算数学, 1984, 6: 278-288.
    [199] Hsiao GC, Wendland WL. Boundary Integral Equations [M]. Berlin: Springer, 2008.
    [200]祝家麟.定常Stokes问题的边界积分方程法[J].计算数学, 1986, 8: 281-289.
    [201] Ladyzhenskaya OA. The Mathematical Theory of Viscous Incompressible Flow [M]. New York: Gordon and Breach, 1969.
    [202] Young DL, Jane SJ, Fan CM, Murugesan K, Tsai CC. The method of fundamental solutions for 2D and 3D Stokes problems [J]. J. Comput. Phy., 2006, 211: 1-8.
    [203] Yu D. The coupling of natural BEM and FEM for the Stokes problem on unbounded domain [J]. Chinese J. Numer. Math. Appl., 1992, 14: 111-120.
    [204] Li K, He Y. Coupling method for the exterior stationary Navier-Stokes equations [J]. Numer. Meth. Part. Differ. Equat., 1993, 9: 35-49.
    [205] Li K, He Y. The coupling of boundary integral and finite element methods for the Navier-Stokes equations in an exterior domain [J]. J. Comput. Math., 1989, 7: 157-173.
    [206] He Y, Li K. The coupling of boundary element and finite element methods for the exterior nonstationary Navier-Stokes equations in an domain [J]. Acta Math. Scientia, 1991, 2: 190-207.
    [207]何银年,李开泰.外部非定常Navier-Stokes方程的非线性Galerkin算法[J].应用数学和力学, 2002, 11: 1141-1149.
    [208]何银年. Navier-Stokes方程的有限元边界元耦合方法[J].计算物理, 2002, 19: 217-220.
    [209]申光宪,刘德义,于春肖.多极边界元法和轧制工程[M].北京:科学出版社, 2005.
    [210] Of G, Steinbach O, Wendland WL. Applications of a fast multipole Galerkin in boundary element method in linear elastostatics [J]. Comput. Visual. Sci., 2005, 8: 201-209.
    [211]吕涛,石济民,林振宝.区域分解算法[M].北京:科学出版社, 1992.
    [212] Carstensen1 C, Kuhn M, Langer U. Fast parallel solvers for symmetric boundary element domain decomposition equations [J]. Numer. Math., 1998, 79: 321-347. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700