用户名: 密码: 验证码:
金属氧化物纳米材料的湿法制备及其气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物气体传感器由于结构简单、廉价、反应迅速等优点,因而成为应用最广、发展最快的气敏传感器之一。同时,金属氧化物气体传感器能够检测气体的种类也在逐渐增加,目前已经广泛应用于气体检测仪、报警仪以及食品鉴别。但是,金属氧化物气体传感器普遍存在着工作温度高、热稳定性差、可靠性、选择性和抗干扰性不够强等缺点与不足,因而限制了金属氧化物气体传感器的进一步的广泛应用。本文以ZnO与WO_3为基本体系,从提高灵敏度、改善选择性以及降低工作温度的角度出发,着重研究了稀土掺杂ZnO、ZnO与WO_3纳米复合材料的制备以及纳米材料的形态控制等对湿法制备的金属氧化物气体传感器气敏性能的影响。
     首先,本文介绍了半导体金属氧化物气敏元件的缺陷与不足,以及气敏材料与器件的发展方向。随后阐述了半导体金属氧化物的气敏机理,分析和研究了影响气敏性能的因素,并论述了当前国内外所报道的改善气敏传感器的气敏性能的方法。最后详细介绍了纳米ZnO颗粒与薄膜的各种湿法制备方法,并全面综述了当前国内外围绕纳米ZnO形态的可控制备与气敏性能的改善两大方面进行的大量的研究工作。
     其次,本文采用sol-gel方法制备了稀土掺杂的ZnO基纳米颗粒与纳米薄膜,并讨论了掺杂浓度、工作温度以及光激发等因素对ZnO基元件的气敏性能的影响。在稀土La掺杂的ZnO纳米颗粒与Ce掺杂的纳米薄膜中,随着掺La或Ce浓度的逐渐上升,元件对乙醇与苯的敏感度也增大;但是过多的La或Ce掺杂又会导致敏感度下降。随着工作温度的上升,元件对乙醇与苯等挥发性有机物的敏感度先逐渐增大,随后又迅速降低;光激发能提高ZnO基纳米材料对挥发性有机物(VOCs)的灵敏度并降低工作温度。X射线衍射(XRD)结果表明,稀土La与Ce的掺入,产物中分别出现了La2O_2CO_3相与CeO_2相。场发射扫描电镜(FESEM)结果表明,ZnO大多呈颗粒形,晶粒尺寸处于20-75nm之间,并且随着掺La浓度的增加,晶粒大小逐渐减小。在采用浸渍-提拉法制备的稀土Ce掺杂的ZnO纳米薄膜中,薄膜的厚度达到5μm左右,并且组成薄膜的圆形颗粒尺寸多数处于40-65nm之间。新相CeO_2的产生对其气敏性能的改善具有一定的积极作用,同时建立了掺杂剂浓度对气敏性能影响机制的理论模型。
     第三,分别采用水热法与蒸发自组装法制备了两种具有特殊形态的纳米ZnO,并研究了气敏性能。在水热反应制备ZnO的过程中,在较低的反应温度下得到六方长柱状的ZnO,而在较高的反应温度下得到六方棱锥形的ZnO。较低的反应温度使得溶液具有较强的碱性,因而在溶液中形成具有负电特征的[Zn(OH)_4]~(2-)配位离子基团作为生长基元,此生长基元容易在氧化锌晶体的正极面叠合,且生长速度最快,而在负极面、柱面上生长则比较困难,最终结晶的纳米ZnO晶粒呈六方棱柱形貌,而在较高的温度下生长成六方棱锥形的ZnO。在蒸发自组装法制备中,由于嵌段共聚物F_(127)的的两亲性能,ZnCl_2发生醇解反应而形成的醇盐Zn(Cl)_(2-x)(OEt)_x互相结合而形成胶束。在蒸发过程中溶胶中的醇盐与F_(127)浓度的增加,导致溶胶中的Zn(Cl)_(2-x)(OEt)_x沿着嵌段共聚物的长链方向单向排列并逐渐形成无定形的纳米棒簇单元。F_(127)的加入使得ZnO的尺寸更加细小,因而能够提高灵敏度。
     第四,本文分别采用sol-gel方法与表面修饰技术制备了Zn-W-O体系纳米复合材料并讨论了气敏性能。X射线衍射(XRD)、场发射扫描电镜(FESEM)以及气敏测试结果表明,采用这两种方法制备的Zn-W-O体系纳米复合材料中,均出现了具有白钨矿结构的高电阻的ZnWO_4相。由于这种具有白钨矿结构的ZnWO_4相能够产生更多的新的Lewis酸中心,因而能够加速碳氢氧化物的脱氢而提高ZnO的灵敏度。但是,过量的高电阻的ZnWO_4相也会恶化其气敏性能。
     最后,本文采用水热法以PEG-400为模板剂制备了长方体形的WO_3薄片,并讨论了其对NO_2等有毒气体的气敏性能。X射线衍射(XRD)、场发射扫描电镜(FESEM)以及透射电镜(TEM)结果表明,在水热条件以及PEG的作用下,短时间内首先快速形成WO_3·H_2O,随着时间的延长,WO_3·H_2O逐渐脱水形成WO_3;随后时间的延长,WO_3沿二维方向生长成长方体形的WO_3薄片。气敏测试表明,这种长方体形的WO_3薄片能够实现对ppb浓度水平的NO_2进行检测,并且具有较高的灵敏度。WO_3在气敏元件的工作范围内发生相变的特性使得其气敏性能对温度的反应曲线与其它氧化物的反应曲线存在很大的不同。
Metal oxide gas sensors are one of the most widely researched and used metal oxide semiconductor sensors due to their advantageous features, such as high sensitivity under ambient conditions, low power consumption, low price, prompt response and simple structure. At the same time, fathomable gas types have been increasing by metal oxide gas sensors. At present, metal oxide gas sensors have been widely used in some fields, such as gas detectors, annunciators, food discriminators, etc. However, metal oxide gas sensors have the same defects and deficiency as other metal oxide semiconductor sensors, for example, poor thermal stability, reliability, selectivity, anti-interference, high operating temperature, which limit the further development and widely application of metal oxide gas sensors. In allusion to these defects and deficiency, the effect of rare earth-dopant, the fabrication of nano-composite materials, shape controls of nano-materials on wet-fabricated metal oxide gas sensors were discussed in this paper, on the basis of ZnO and WO_3 systems.
     Firstly, defects or deficiency of metal oxide semiconductor sensors and development trend of gas-sensing materials and sensors were introduced in this paper. Gas-sensing mechanism metal oxide semiconductor sensors was expatiated, and factors to affect gas-sensing property were analyzed and researched. In addition, ways, reported in the world, to improve gas-sensing property were reviewed. At last, all kinds of wet-chemical ways to prepare ZnO nano-materials and films were introduced in detail, moreover, the current research evolvements on the controllable fabrication and gas-sensing property improvements of ZnO nano-materials were summarized across-the-board.
     Secondly, Re-doped ZnO nano-materials and films were prepared by sol-gel method, and the effect of the dopant concentration, operating temperature, UV- irritation, etc. on gas-sening property were discussed. The results show that the appropriate concentration of La and Ce dopant could improve gas-sensing property. Sensitivities, to VOCs, have been increasing with the increase of La and Ce dopant concentration, but the superabundant dopant concentration will worsen gas-sensing property. At the same time, sensitivities, to VOCs, will increase and then decrease with the increase of the operating temperature. UV-irritation could enhance sensitivity and reduce the operating temperature. XRD results show that the addition of La and Ce lead to new La_2O_2CO_3与CeO_2 phase. FESEM results show almost uniform spherical grains are about 20–75 nm in diameter, and the grain size tends to decrease with the increase of the concentration of the additives. The cross-section SEM image show the surface of the films, with the thickness of about 5 um, is rough. A new physical model of the CeO_2 dopant influence on the gas-sensing properties of ZnO thin films is proposed.
     Thirdly, two kinds of special-shape ZnO nano-materials were prepared by the hydrothermal method and evaporation-induced self-assembly (EISA), respectively, and their gas-sensing property were also discussed. In view of hydrothermal fabrication of nano-ZnO, hexagonal pillar nano-ZnO was formed at lower temperature, but hexagonal pyramidal nano-ZnO was formed at higher temperature. Higher temperature results in stronger alkalescent in solution, which induces the solution produce [Zn(OH)4]2--groups with electronegative characteristic. These [Zn(OH)_4]~(2-)-groups as growth units could easily superpose on anodic plane of ZnO single crystals, but difficultly grow on cathodal plane of ZnO single crystals. Therefore, nano-ZnO formed finally is hexagonal and pyramidal shape. In EISA, due to the amphipathic property and the superfluous addition of F_(127), the chloro-alkoxide Zn(Cl)_(2-x)(OEt)_x nano-entities connected each other via a hydroxy-bonding interaction to form arrays of amorphous nano-entities surrounded by the F_(127) molecules. After heattreatment, the surfactant removal causes the formation of ZnO nanorod-bundle structures. In addition, the addition of F_(127) could improve their gas-sensing property.
     Fourthly, Zn-W-O nano-composite materials were fabricated by sol-gel and surface-coated methods, respectively, and their gas-sensing property to VOCs was discussed. XRD, FESEM and gas-sensing test results show that ZnWO_4 phase with a monoclinic structure appears in the whole concentration range (1–99 at. %) by two methods. The ZnWO_4 phase with high resistance almost did not respond to PVOCS. The ZnWO_4 phase with a scheelite structure can increase the number of Lewis acid centers on the surface of ZnO and WO_3. Therefore, their ability of oxidizing dehydrogenation can be strengthened, and thus the gas-sensing properties can be improved further. But the superabundant ZnWO_4 phase can congregate on the limited Lewis acid centers on the surface of ZnO and WO_3 and decrease the number of available acid sites, and thus worsen the gas-sensing properties.
     Finally, Rectangular WO_3 nanosheets were fabricated by a facile hydrothermal process employing PEG400 as the structure-directing agent, and their gas-sensing property to NO_2 was discussed. XRD, FESEM, TEM and HRTEM results reveal the whole production process of WO_3 phase, namely, WO_3·H2O phase forms quickly and is subsequently dehydrated to yield WO_3 phase under the hydrothermal condition. Rectangular WO_3 nanosheets continue to grow along 2-dimension with the increase of reaction time. Gas sensing tests show that rectangular WO_3 nanosheets could promptly response to NO_2 at ppb level.
引文
[1]席胜伟.大气污染危害性分析及治理途径[J].科技情报开发与经济,2006,16(12):153-154
    [2]瑞语.又见瓦斯,又见瓦斯[J].百科知识,2005,(1):26~27
    [3]李平,余萍,肖定全.气体传感器的近期进展[J].功能材料,1999,30 (2):126~128
    [4] Ho.Kuo-Chuan, Tsou.Yi-Ham. Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films [J]. Sensors and Actuators B, 2001, (1-2):253~259
    [5] Xie Dan, Jiang Yadong, Jiang Jianzhuang, et al. Gas sensitive Langmuir–Blodgett films based on erbium bisoctakis (octyloxy) phthalocyaninato complex[J]. Sensors and Actuators B , 2001, (1-2) 260~263
    [6] Hung-Bin Lin, Jeng-Shong Shih. Fullerene C60-cryptand coated surface acoustic wave quartz crystal sensor for organic vapors [J]. Sensors and Actuators B,2003, (92):243~254
    [7] Alexander Gurlo,Ralf Riedel. In Situ and Operando Spectroscopy for Assessing Mechanisms of Gas Sensing[J]. Angew. Chem. Int. Ed., 2007, (46):3826~3848
    [8]田敬民,李守智.金属氧化物半导体气敏机理探析.西安理工大学学报,2002,18 (2) :144~147
    [9] Jong Hyun Park, Kwang Ho Kim. Improvement of long-term stability in SnO2-based gas sensor for monitoring offensive odor[J]. Sensors and Actuators B, 1999, (56):50~58
    [10] A.Galdikas, V.Jasutis, S.Kaciulis. Peculiarities of surface doping with Cu in SnO2 thin film gas sensors [J]. Sensors and Actuators B, 1997, (43):140~146
    [11]葛春桥.溶胶-凝胶法制备AZO透明导电薄膜的研究[硕士学位论文].武汉理工大学,2005:56~58
    [12]康昌鹤,唐省吾.半导体敏感器件及其应用丛书[M].北京:科学出版社,1988:146~148
    [13] M.A. Valenzuela, P. Bosch, J. Jiménez-Becerrill, et al. Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4 [J]。Journal of Photochemistry and Photobiology A: Chemistry,2002, (148):177~182
    [14] Zeshan Hu, Gerko Oskam, Peter C. Searson. Influence of solvent on the growth of ZnO nanoparticles [J]. Journal of Colloid and Interface Science,2003, (263):454~460
    [15] Eric A. Meulenkamp. Synthesis and Growth of ZnO Nanoparticles [J]. J. Phys. Chem. B, 1998, (102):5566~5572.
    [16]斯琴高娃,照日格图,姚红霞等.直接沉淀法纳米氧化锌的制备及表征[J].内蒙古师范大学学报(自然科学汉文版),2006,(1):70~73
    [17] S.C. Zhang, X.G. Li. Preparation of ZnO particles by precipitation transformation method and its inherent formation mechanisms [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, (226): 35~44
    [18] Z.M. Dang, L.Z. Fan, S.J. Zhao, et al. Preparation of nanosized ZnO and dielectric properties of composites filled with nanosized ZnO [J]. Materials Science and Engineering B,2003,(99):386~389
    [19]印万忠,丁亚卓,韩跃新等.以二水合草酸锌为前驱物制备纳米氧化锌[J].2005,26,(6):586-588
    [20] Xiaofang Wang, Fuli Zhao, Pingbo Xie, et al. Surface emission characteristics of ZnO nanoparticles [J]. Chemical Physics Letters,2006, (423):361~365
    [21]龚海燕,赵清岚,李小红等.均匀沉淀法制备氧化锌纳米棒[J].化学研究,2006,17(1):28~30
    [22] T. H. Matsuoka, T. Shishido, D. Li, et al.Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation[J]. Applied Catalysis A: General, 2006,(308): 82~90
    [23]许律,邓建成,周燕等.配位均匀沉淀法制备纳米氧化锌[J].济南大学学报(自然科学版),2005,(3):219~222
    [24] Miriam S. Tokumoto, Sandra H. Pulcinelli, et al. Catalysis and Temperature Dependence on the Formation of ZnO Nanoparticles and of Zinc Acetate Derivatives Prepared by the Sol-Gel Route[J]. J. Phys. Chem. B, 2003, (107):568~574
    [25] Kang xue Ya, Wang TianDiao, Han Yin, et al. Sol-gel process doped ZnO nanopowders and their grain growth [J]. Materails Research Bulletin,1997,(9):1165~1171
    [26] Jincang Zhang, Shixun Cao, Ruiying Zhang, et al. Effect of fabrication conditions on I–V properties for ZnO varistor with high concentration additives by sol–gel technique[J].Current Applied Physics, 2005, (5): 381~386
    [27] Jin Joo, Soon G.Kwon, Jung H.Yu, et al. Sythesis of ZnO nanocrystals with cone, hexagonal Cone, and rod shape via non-hydrolytic ester elimination sol-gel reactions [J]. Adv.Mater., 2005, (17):1873~1877
    [28] Yongjun He. Preparation and modification of ZnO microspheres using a Pickering emulsion as template[J]. Materials Letters,2005, (59):114~117
    [29] Yongjun He. A novel surfactant-free emulsion approach to ZnO microspheres[J]. Materials Chemistry and Physics,2005, (92):609~612
    [30] Victor Khrenov, Markus Klapper, Mathias Koch, et al. Surface Functionalized ZnO Particles Designed for the Use in Transparent Nanocomposites [J]. Macromol. Chem. Phys., 2005, (206): 95~101
    [31]周富荣,郭晓洁,匡亚琴.反胶束微乳液法制备纳米ZnO[J].应用化工,2005,34(11):690~692
    [32]牛新书,杜卫平,杜卫民等.微乳液法制备ZnO纳米粉体及其气敏性能研究[J].电子元件与材料,2003,22(8):12~14
    [33] Hui Zhang, Deren Yang, Dongshen Li, et al. Controllable Growth of ZnOMicrocrystals by a Capping-Molecule-Assisted Hydrothermal Process[J]. Crystal growth and design,2005,5(2):547~550
    [34] Yongjun He. A novel surfactant-free emulsion approach to ZnO microspheres with nanostructured surfaces[J]. Materials Chemistry and Physics,2005, (92): 609~612
    [35] Xiangdong Gao, Xiaomin Li, Weidong Yu. Flowerlike ZnO Nanostructures via Hexamethylenetetramine-Assisted Thermolysis of Zinc-Ethylenediamine Complex[J]. J. Phys. Chem. B, 2005, (109):1155~1161
    [36] Geonel Rodr?′guez-Gattorno, Patricia Santiago-Jacinto, L. Rendon-Va′zquez, et al. Novel Synthesis Pathway of ZnO Nanoparticles from the Spontaneous Hydrolysis of Zinc Carboxylate Salts[J]. J. Phys. Chem. B, 2003, (107):12597~12604
    [37]徐甲强,王焕新,张建荣等.微波水解法制备纳米ZnO及其气敏性能研究[J].无机材料学报,2004,19(6):1441~1443
    [38]李轶,沈国柱,徐政.水浴加热水解和微波加热水解法合成不同形貌的ZnO亚纳米粒子[J].硅酸盐学报,2005,33(9):1142~1144
    [39] Seung Bin Park, Yun Chan Kang. Photocatalytic activity of nanometersize ZnO particles prepared by spary pyrolysis[J].J.Aerosol Sci., 1997, (28): 473~474
    [40] Di Li, Hajime Haneda. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, (155):171~178
    [41] Di Li a, Hajime Haneda, Naoki Ohashi, et al. Synthesis of nanosized nitrogen-containing MOx–ZnO (M = W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition[J]. Catalysis Today, 2004, (93–95):895~901
    [42] R. Ghosh, B. Mallik, S. Fujihara, D. Basak. Photoluminescence and photoconductance in annealed ZnO thin films[J].Chemical Physics Letters,2005, (403):415~419
    [43] Lei Z. Zhang, Guo-Qing Tang.Preparation, characterization and optical properties of nanostructured ZnO thin films[J].Optical Materials, 2004, (27): 217~220
    [44] L. Znaidi, G.J.A.A. Soler Illia, S. Benyahia, C. Sanchez, A.V. Kanaev. Oriented ZnO thin films synthesis by sol–gel process for laser application[J]. Thin Solid Films,2003, (428):257~262
    [45] Parmod Sagar, Manoj Kumar, R.M. Mehra.Influence of hydrogen incorporation in sol-gel derived aluminum doped ZnO thin films[J]. Thin Solid Films,2005, (489):94~98
    [46] Jin-Hong Lee, Byung-Ok Park. Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method[J]. Thin Solid Films, 2003,(426):94~99
    [47] K.Y. Cheong, Norani Muti, S. Roy Ramanan. Electrical and optical studies of ZnO: Ga thin films fabricated via the sol–gel technique[J]. Thin Solid Films,2002, (410):142~146
    [48] G.G. Valle, P. Hammer, S.H. Pulcinelli, et al. Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating[J]. Journal of the European Ceramic Society, 2004, (240):1009~1013
    [49] V. Musat, B. Teixeira, E. Fortunato, et al. Effect of post-heat treatment on the electrical and optical properties of ZnO: Al thin films[J]. Thin Solid Films,2006, (502):219~222
    [50] Xu Zi-qiang, Deng Hong, Li Yan, et al. Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films[J]. Materials Science in Semiconductor Processing, 2006, (9):132~135
    [51] A.E. Jime, Nez Gonza lez, J.A. Soto Urueta. Optical transmittance and photoconductivity studies on ZnO: Al thin films prepared by the sol-gel technique[J]. Solar Energy Materials and Solar Cells,1998, (52): 345~353
    [52] Shinobu Fujihara, Chikako Sasaki, Toshio Kimura. Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films[J]. Journal of the EuropeanCeramic Society,2001, (21): 2109~2112
    [53] V. Musat, B. Teixeira, E. Fortunato, et al. Al-doped ZnO thin films by sol-gel method[J]. Surface and Coatings Technology,2004, (180–181):659~662
    [54] Bonamali Pal, Maheshwar Sharon. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol–gel process[J].Materials Chemistry and Physics,2002, (76):82~87
    [55] Weon-Pil Tai, Jun-Gyu Kim, Jae-Hee Oh. Humidity sensitive properties of nanostructured Al-doped ZnO:TiO2 thin films[J]. Sensors and Actuators B,2003, (96):477~481
    [56] Hong Youl Bae, Gyeong Man Choi. Electrical and reducing gas sensing properties of ZnO and ZnO–CuO thin films fabricated by spin coating method [J]. Sensors and Actuators B,1999, (55):47~54
    [57] X.L. Cheng, H. Zhao, L.H. Huo, et al. ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property[J]. Sensors and Actuators B,2004, (102):248~252
    [58] Y.H. Cheng, L.K. Teh, Y.Y. Tay, et al. Coating process of ZnO thin film on macroporous silica periodic array[J].Thin Solid Films,2006, (504):41~44
    [59] Zhai Jiwei, Zhang Liangying, Yao Xi. The dielectric properties and optical propagation loss of c-axis oriented ZnO thin films deposited by sol—gel process[J]. Ceramics International,2000, (26):883~885
    [60] R. Maity, S. Kundoo, K.K. Chattopadhyay. Electrical characterization and Poole–Frenkel effect in sol–gel derived ZnO:Al thin films[J]. Solar Energy Materials & Solar Cells,2005, (86):217~227
    [61] Zhifeng Liu, Zhengguo Jin, Wei Li, Jijun Qiu, Juan Zhao, Xiaoxin Liu. Synthesis of PS colloidal crystal templates and ordered ZnO porous thin films by dip-drawing method[J]. Applied Surface Science,2006, (252):5002~5009
    [62]黄剑峰.溶胶—凝胶原理与技术.北京:化学工业出版社,2005:15-18
    [63] A. Maldonado, A. Guille′n-Santiago, M. de la L. Olvera, et al. The role of the fluorine concentration and substrate temperature on the electrical, optical, morphological and structural properties of chemically sprayed ZnO:F thin films[J]. Materials Letters,2005, (59):1146~1151
    [64] A. El Hichou, M. Addou, J. Eboth, et al. Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysis[J]. Journal of Luminescence, 2005, (113):183–190.
    [65] M.A. Lucio-Lopez, A. Maldonado, R. Castanedo-Pe rez, et al. Thickness dependence of ZnO: In thin films doped with different indium compounds and deposited by chemical spray[J]. Solar Energy Materials & Solar Cells,2006, (90):2362~2376
    [66] S. Tirado-Guerra, M. de la L. Olverab, A. Maldonado, et al. Chemically sprayed ZnO:F thin films deposited from diluted solutions: Effect of the time of aging on physical characteristics[J]. Solar Energy Materials & Solar Cells,2006, (90):2346~2355
    [67] M.A. Lucio-Lopez, M.A. Luna-Arias, A. Maldonado, et al. Preparation of conducting and transparent indium-doped ZnO thin films by chemical spray [J]. Solar Energy Materials & Solar Cells,2006, (90):733~741
    [68] H. Gomez, A. Maldonado, M. delaL. Olvera, et al. Gallium-doped ZnO thin films deposited by chemical spray[J]. Solar Energy Materials & Solar Cells,2005, (87):107~116
    [69] Benny Joseph, P.K. Manoj, V.K. Vaidyan. Studies on the structural, electrical and optical properties of Al-doped ZnO thin films prepared by chemical spray deposition[J]. Ceramics International,2006, (32):487~493
    [70] P. Nunes, E. Fortunato, P. Vilarinho, et al. Effect of different dopants on the properties of ZnO thin films [J]. International Journal of Inorganic Materials,2001,(3):1211~1213
    [71] P. Nunes, E. Fortunato, R. Martins. Influence of the annealing conditions on the properties of ZnO thin films [J]. International Journal of Inorganic Materials,2001, (3):1125~1128
    [72] P. Nunes, E. Fortunato, R. Martins. Influence of the post-treatment on the properties of ZnO thin films [J]. Thin Solid Films,2001,(383):277~280
    [73] Jin-Hong Lee, Byung-Ok Park. Characteristics of Al-doped ZnO thin films obtained by ultrasonic spray pyrolysis: effects of Al doping and an annealing treatment [J]. Materials Science and Engineering B,2004, (106):242~245
    [74] A.S. Riad, S.A. Mahmoud, A.A. Ibrahim. Structural and DC electrical investigations of ZnO thin films prepared by spray pyrolysis technique [J]. Physica B,2001, (296):319~325
    [75] A. Mosbah, S. Abed, N. Bouhssira, et al. Preparation of highly textured surface ZnO thin films [J]. Materials Science and Engineering B,2006, (129):144~149
    [76] P.M. Ratheesh Kumar, C. Sudha Kartha, K.P. Vijayakumar, et al. Effect of fluorine doping on structural, electrical and optical properties of ZnO thin films[J]. Materials Science and Engineering B, 2005, (117):307~312
    [77] M. Miki-Yoshida, V. Collins-Martnez, P. Amezaga-Madrid, et al. Thin films of photocatalytic TiO and ZnO deposited inside a tubing by spray pyrolysis[J]. Thin Solid Films,2002, (419):60~64
    [78] R. Ayouchi, F. Martin, D. Leinen, et al. Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon[J]. Journal of Crystal Growth,2003, (247):497~504
    [79] R. Ayouchi, D. Leinen, F. Mart?n, et al. Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis [J]. Thin Solid Films,2003,(426): 68~77
    [80] A. Bougrine, A. El Hichou, M. Addou, et al. Structural, optical andcathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis[J]. Materials Chemistry and Physics,2003, (80):438~445.
    [81] A. El Hichou, M. Addou, A. Bougrine, et al. Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis [J]. Materials Chemistry and Physics,2004, (83):43~47
    [82] F. Paraguay, M. Miki-Yoshida, J. Morales, et al. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour [J]. Thin Solid Films,2000,(373):137~140
    [83] I. Stambolova, K. Konstantinov, S. Vassilev, et al. Lanthanum doped SnO2 and ZnO thin films sensitive to ethanol and humidity [J]. Materials Chemistry and Physics,2000, (63):104~108
    [84] Mauricio Ortega-Lopez, Alejandro Avila-Garc?a, M.L. Albor-Aguilera, et al. Improved efficiency of the chemical bath deposition method during growth of ZnO thin films[J]. Materials Research Bulletin,2003, (38):1241~1248
    [85] Huihu Wang, Changsheng Xie. Controlled fabrication of nanostructured ZnO particles and porous thin films via a modified chemical bath deposition method [J]. Journal of Crystal Growth,2006, (291):187~195
    [86] A.M. Chaparro, C. Maffiotte, M.T. Gutierrez, et al. Study of the spontaneous growth of ZnO thin films from aqueous Solutions [J]. Thin Solid Films, 2003, (431–432):373~377
    [87] Sun Y, Fuge G M, Fox N, A.et al. Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film [J]. Adv. Mater., 2005,(17):2477~2450
    [88] Ye Sun, D. Jason Riley, Michael N. R. Ashfold. Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates [J]. J. Phys. Chem. B,2006, (110):15186~15192
    [89] Lionel Vayssieres, Karin Keis, Anders Hagfeldt, et al. Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes [J]. Chem. Mater., 2001, (13):4395~4398
    [90] Quanchang Li, Vageesh Kumar, Yan Li, et al. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions [J]. Chem. Mater., 2005, (17):1001~1006.
    [91] Lori E. Greene, Matt Law, Dawud H. Tan, et al. General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds[J]. Nano Letters,2005, (5):1231~1236
    [92] Quanchang Li, Vageesh Kumar, Yan Li, et al. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions [J]. Chem. Mater., 2005, (17):1001~1006
    [93] Haidong Yu, Zhongping Zhang, Mingyong Han, et al. A General Low-Temperature Route for Large-Scale Fabrication of Highly Oriented ZnO Nanorod/Nanotube Arrays [J]. J. AM. CHEM. SOC., 2005, (127):2378~2379
    [94] Apurba Dev, Subhendu K. Panda, Soumitra Kar, et al. Surfactant-Assisted Route to Synthesize Well-Aligned ZnO Nanorod Arrays on Sol-Gel-Derived ZnO Thin Films[J]. J. Phys. Chem. B, 2006, (110):14266~14272
    [95] Punniamoorthy Ravirajan, Ana M. Peiro, Mohammad K. Nazeeruddin, et al. Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer [J]. J. Phys. Chem. B, 2006, (110):7635~7639
    [96] Min Guo, Peng Diao, Shengmin C. Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties [J]. Applied Surface Science, 2005,(249): 71~75
    [97] Min Guo, PengDiao, Shengmin Cai. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions[J]. Journal of Solid State Chemistry, 2005, (178):1864–1873
    [98] Min Guo, Peng Diao, Xindong Wang, et al. The effect of hydrothermal growthtemperature on preparation and photoelectrochemical performance of ZnO nanorod array films [J]. Journal of Solid State Chemistry,2005, (178):3210~3215
    [99] Le Hong Quang, Soo Jin Chua, Kian Ping Loh, et al. The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis [J]. Journal of Crystal Growth,2006, (287):157~161
    [100] Ting-Yu Liu, Hung-Chou Liao, Chin-Ching Lin, et al. Biofunctional ZnO Nanorod Arrays Grown on Flexible Substrates [J]. Langmuir, 2006, (22):5804~5809
    [101] Yueping Fang, Qi Pang, Xiaogang Wen, et al. Synthesis of Ultrathin ZnO Nanofibers Aligned on a Zinc Substrate [J]. Small, 2006, 2, (5)612~615
    [102] Aiwu Zhao, Tao Luo, Luyang Chen, et al. Synthesis of ordered ZnO nanorods film on zinc-coated Si substrate and their photoluminescence property [J]. Materials Chemistry and Physics, 2006,(99):50~53
    [103] Z. P. Zhang, H. D. Yu, X. Q. Shao, et al. Near-Room-Temperature Production of Diameter-Tunable ZnO Nanorod Arrays through Natural Oxidation of Zinc Metal [J]. Chem. Eur. J., 2005, (11):3149~3154
    [104] Yueping Fang, Xiaogang Wen, Shihe Yang. Hydrothermal Synthesis and Optical Properties of ZnO Nanostructured Films Directly Grown from/on Zinc Substrates [J]. Journal of Sol-Gel Science and Technology, 2005, (36):227~234
    [105] Anup Mondal, Nillohit Mukherjee, Sanjib Kumar Bhar. Galvanic deposition of hexagonal ZnO thin films on TCO glass substrate [J]. Materials Letters,2006, (60):1748~1752.
    [106] Changsong Liu, Yoshitake Masuda , Yunying Wu, et al. A simple route for growing thin films of uniform ZnO nanorod arrays on functionalized Si surfaces [J]. Thin Solid Films,2006, (503):110~114.
    [107] W. F. Shen, Y. Z. Zhao, C. B. Zhang. The preparation of ZnO based gas-sensing thin films by ink-jet printing method [J]. Thin Solid Films,2005, (483):382~387
    [108] Hey-Jin Lim, Deuk Yong Lee , Young-Jei Oh. Gas sensing properties of ZnO thinfilms prepared by microcontact printing [J]. Sensors and Actuators A,2006, (125):405~410
    [109] P. Mitra, H.S. Maiti. A wet-chemical process to form palladium oxide sensitizer. layer on thin film zinc oxide based LPG sensor[J]. Sensors and Actuators B,2004, (97):49~58
    [110]薛天锋,胡季帆,秦宏伟等.掺铝ZnO纳米粉的制备与气敏特性研究[J].金属功能材料,2003,10(4):20~23
    [111] J.F. Chang, H.H. Kuo, I.C. Leu, et al. The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor[J].Sensors and Actuators B,2002,(84):258~264
    [112]李健,白素杰,通拉嘎.稀土Nd掺杂纳米ZnO薄膜气敏特性[J].传感器技术,2004,23(5):9~14
    [113] G.S. Trivikrama Rao, D. Tarakarama Rao.Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature[J]. Sensors and Actuators B,1999, (55):166~169.
    [114] F. Paraguay D, M. Miki-Yoshida,J. Morales, et al. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour [J].Thin Solid Films,2000,(373):137~140
    [115] B.L. Zhu, C.S. Xie, D.W. Zeng, et al. Investigation of gas sensitivity of Sb-doped ZnO nanoparticles [J]. Materials Chemistry and Physics,2005, (89):148~153
    [116] Naoto Koshizaki, Toshie Oyama. Sensing characteristics of ZnO-based NO sensor [J]. Sensors and Actuators B,2000,(66):119~121
    [117] M. Aslam, V.A. Chaudhary, I.S. Mulla, et al. A highly selective ammonia gas sensor using surface-ruthenated zinc oxide [J]. Sensors and Actuators B, 1999, (75):162~167.
    [118]李健,李海兰,田野等.掺杂和热处理对纳米ZnO薄膜气敏特性影响[J].传感器技术,2002,21(3):61~65
    [119]伦宁,徐红燕,李梅等.掺杂Al2O3纳米粉对ZnO厚膜气敏传感器性能的影响[J].功能材料与器件学报,2006,12(4):329~334
    [120] Huixiang Tang. A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature[J].Sensors and Actuators B,2006,(114):910~915
    [121]祝柏林,谢长生,曾大文等.ZnO—Bi2O3混合氧化物厚膜的结构和气敏能[J].无机材料学报,2005,20(3):706~711
    [122]牛新书,杜卫平,杜卫民等.掺杂稀土氧化物的ZnO材料的制备及气敏性能[J].稀土,2003,24(6):44~48
    [123]李登峰,张覃轶,王爱华等.ZnO-WO3纳米复合氧化物的气敏性能研究[J].传感器与微系统,2006,25(3):22~24
    [124] Won Jae Moon, Ji Haeng Yu, Gyeong Man Choi. The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor [J]. Sensors and Actuators B,2002, (87):464~470
    [125] Tae-Ha Kwon, Sung-Hyun Park, Jee-Youl Ryu, et al. Zinc oxide thin film doped with Al2O3, TiO2 and V2O5 as sensitive sensor for trimethylamine gas[J]. Sensors and Actuators B,1998, (46):75~79
    [126] Won Jae Moon, Ji Haeng Yu, Gyeong Man Choi. The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor [J]. Sensors and Actuators B,2002,(87):464~470
    [127] Tae-Ha Kwon, Sung-Hyun Park, Jee-Youl Ry. Zinc oxide thin film doped with Al2O3, TiO2 and V2O5 as sensitive sensor for trimethylamine gas [J]. Sensors and Actuators B, 1998,(46):75~79
    [128] B.Bhooloka Rao. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour [J]. Material Chemistry and Physics, 2000, (64):62~65
    [129]王英莲,孙汪典. ZnO薄膜在传感器方面的最新应用进展[J].传感器世界,2004,(6):15~20
    [130] B.L. Zhu, C.S. Xie, W.Y. Wang, et al. Improvement in gas sensitivity of ZnO thickfilm to volatile organic compounds (VOCs) by adding TiO2[J]. Materials Letters,2004,(58):624~629
    [131] Hong Youl Bae, Gyeong Man Choi. Electrical and reducing gas sensing properties of ZnO and ZnO–CuO thin films fabricated by spin coating method[J].Sensors and Actuators B,1999, (55):47~54
    [132]祝柏林,谢长生,曾大文等.ZnO—Sb2O3烧结体系的电导和气敏性能[J].无机材料学报,2004,19(2):313~318
    [133] H.Gong. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO[J]. Sensors and Actuators B,2006, (115):247~251.
    [134]薛天锋,胡季帆,秦宏伟等. (Al, Sb)/ZnO复合氧化物对乙醇气体气敏功能特性的影响[J].稀有金属材料与工程,2004,33(9):1006~1008
    [135]刘元隆,吴跃辉,吴小琴等.Sn2Zn2Cu复合氧化物气敏元件的制备与性能[J].传感器技术,2005,24(9):40~41
    [136]黄晓东,白守礼,李殿卿等.ZnO-SnO2纳米复合氧化物的制备、表征及其气敏性质的研究[J].无机化学学报,2005,21(8):1143~1148
    [137] J.H. Yu, G.M. Choi. Current-voltage characteristics and selective CO detection of Zn2SnO4 and ZnO/Zn2SnO4, SnO2/Zn2SnO4 layered-type sensors[J]. Sensors and Actuators B,2001, (72):141~148
    [138] Ji Haeng Yu, Gyeong Man Choi. Electrical and CO gas-sensing properties of ZnO-SnO2 hetero-contact[J]. Sensors and Actuators B,1999, (61):59~67
    [139] Ji Haeng Yu, Gyeong Man Choi. Electrical and CO gas sensing properties of ZnO–SnO2 composites [J]. Sensors and Actuators B,1998, (52): 251~256
    [140] Sergiu T. Shishiyanu, Teodor S. Shishiyanu, Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sensors and Actuators B,2005,(107): 379~386
    [141] Ji Haeng Yu, Gyeong, Man Choi. Selective CO gas detection of CuO-and ZnO-doped SnO2 gas sensor [J]. Sensors and Actuators B,2001,(75):56~61
    [142]牛新书,杜卫平,杜卫民等.掺杂稀土氧化物的ZnO材料的制备及气敏性能[J].稀土,2003,24(6):44~48
    [143] J Saura. Gas-sensing properties of SnO2 pyrolytic films subjected to ultraviolet radiation [J]. Sensors and Actuators B, 1994, (17): 211-214
    [144] P O Vaccaro, J Saura. Photoconductivity in stannic oxide films prepared by spray pyrolysis [J]. J. Mater. Sci. Lett. , 1990, (9): 389-390
    [145] P Camagni, G Faglia, P Galinetto, et al. Photosensitivity activation of SnO2 thin film gas sensors at room temperature [J]. Sensors and Actuators B, 1996, 31(1-2): 99-103
    [146]刘宏伟,孙建平,惠春等.紫外光照下ZnO基薄膜的光电和气敏特性研究[J].电子元件与材料,2005,(4):13~15
    [147] Nguyen Van Hieu, Nguyen Duc Chien. Low-temperature growth and ethanol-sensing characteristics of quasi-one-dimensional ZnO nanostructures [J]. Physica B, 2008, (403): 50–56
    [148] Chu Xiangfeng, Jiang Dongli, Aleksandra B. Djurisic, et al. Gas-sensing properties of thick film based on ZnO nano-tetrapods[J]. Chemical Physics Letters, 2005, (401):426–429
    [149] T. Jinkawa, G.Sakai, J. Tamaki, et al. Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides [J]. J. Mol. Catal. A-Chem., 2000, (155):193~200
    [150] L. Ge, Q. H.Huang, Y.F. Zhang, et al. Ring-opening polymerization of styrene oxide with rare earth coordination catalysts[J]. Eur. Polym. J., 2000, (36):2699~2705
    [151] B.A.Watson, M.T.Klein, R.H.Harding. Catalyst cracking of alkyl benzenes: Modeling the reaction pathways and mechanism [J]. Appl. Catal. A, 1997, (160): 13~39
    [152] X.L.Zhang, A.M. Zhu, X.H.Li. Oxidative dehydrogenation of ethane with CO2 over catalyst under pulse corona plasma [J]. Catal. Today, 2004, (89):97~102
    [153] Y.Takita, K. Sano, T. Muraya, et al. Oxidative dehydrogenation of iso-butane to iso-butene II. Rare earth phosphate catalysts [J]. Appl. Catal. A, 1998, (170):23~31
    [154] G. Neri, A. Bonavita, G. Rizzo, et al. A study of the catalytic activity and sensitivity to different alcohols of CeO2–Fe2O3 thin films[J]. Sens. Actuators B, 2005, (111–112):78~83.
    [155]宋世谟,庄公惠,王正烈.物理化学[M].北京:高等教育出版社,1993:256~257
    [156] Guangjin Li, Sibudjing Kawi. MCM-41 modified SnO2 gas sensors: sensitivity and selectivity properties [J]. Sens Actuators B, 1999, (59):1~8
    [157] M. K. Li, D. Z. Wang, Y. W. Ding, et al. Morphology and field emission from ZnO nanowire arrays synthesized at different temperature[J]. Mat Sci Eng A-Struct, 2007, (452-453):417~421
    [158] X. Q. Meng, D. X. Zhao, D. Z. Shen, et al. ZnO nanorod arrays grown under different pressures and their photoluminescence properties[J]. J Lumin., 2007, (122-123):766~769
    [159] Z. T. Chen, L. Gao. A facile route to ZnO nanorod arrays using wet chemical method [J]. J Cryst Growth, 2006, (293):522~527
    [160] X .Wen, Y. Fang, Q. Pang, et al. ZnO nanobelts arrays growth directly from anf on Zinc substrate: synthesis, characterization, nad applications [J]. J Phys Chem B, 2005, (109): 15303~15308
    [161] X. H. Sun, S. Lam, T. K. Sham, et al. Synthesis and synchrotron light-induced luminescene of ZnO nanostructure: nanowire, nanoneedle, nanoflower, and tubulsr whiskers [J]. J Phys Chem B, 2005, (109):3120~3125.
    [162] S. Kar, A. Dev, S. Chaudhuri. Simple solvothermal route to synrhesis ZnO nanosheets, nanonail, and well-aligned nanorod arrays [J]. J Phys Chem B, 2006, (110):17848~17853.
    [163] G. Z. Shen, Y. S. Bando, B. D. Liu, et al. Characterization and Field-EmissionProperties of Vertically Aligned ZnO Nanonails and Nanopencils Fabricated by a Modified Thermal-Evaporation Process[J]. Adv Funct Mater., 2006, (16):410~416.
    [164] H. H. Wang, C. S. Xie. Controlled fabrication of nanostructured ZnO particles and porous thin films via a modified chemical bath deposition method [J]. J Cryst Growth, 2006, (291):187~195.
    [165] H. H Wang, C. S. Xie, D. W. Zeng, et al. Controlled organization of ZnO building blocks into complex nanostructures[J]. J Colloid Interf Sci., 2006, (297):570~577.
    [166] H. H Wang, C. S. Xie, D. W. Zeng. ZnO Microspheres Self-assembled by Hexagonal Nanoplates [J]. Chem Lett., 2005, (34):260~261.
    [167]王步国,施尔畏,仲维卓等.水热条件下ZnO微晶的结晶习性及其形成机理[J].硅酸盐学报,1997,25 (2):223~229
    [168] Chen Al Fan, Huang Xiao Dong, Bai Shou Li. Preparation, properties of SnO2-In2O3 nanocomposite oxides [J]. Sensors and Actuators B, 2006, 115(1): 316~321
    [169] Yong-Gyu Choi, Go Sakai, Kengo Shimanoe, et al. Noboru Yamazoe. Wet process-based fabrication of WO3 thin film for NO2 detection [J]. Sensors and Actuators B, 2004, (101) :107~111
    [170] Zhifu Liu, Toshinai Yamazaki, Yanbai Shen, et al. Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films[J]. Sensors and Actuators B, 2007, (128) :173~178
    [171] V. Khatko, E. Llobet, X. Vilanova, et al. Gas sensing properties of nanoparticle indium-doped WO3 thick films [J]. Sensors and Actuators B, 2005, (111–112): 45~51
    [172] Wei-Han Tao, Ching-Hsiang Tsai. H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining[J]. Sensors and Actuators B, 2002, (81): 237~247
    [173] R. Ionescu , A. Hoel, C.G. Granqvist , et al. Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors[J]. Sensors and Actuators B, 2005, (104):132~139
    [174] P. Ivanov, J. Hubalek, K. Malysz, et al. A route toward more selective and less humidity sensitive screen-printed SnO2 and WO3 gas sensitive layers [J]. Sensors and Actuators B, 2004, (100):221~227
    [175] Z. Ling, C. Leach. Effect of relative humidity on the NO2 sensitivity of a SnO2/WO3 heterojunction gas sensor [J]. Sensors and Actuators B, 2004, (102 ): 102~106
    [176] Mu Sun, Ning Xu, Y.W. Cao, et al. Nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior [J]. J. Mater. Res, 2000, (15):927~933
    [177] S. Kuba, P. Lukinskas, R. Ahmad, et al.‘Reaction Pathways in n-Pentane Conversion Catalyzed by Tungstated Zirconia: Effects of Platinum in the Catalyst and Hydrogen in the Feed [J]. J. Catal., 2003, (219):376~88
    [178] K. M. Parida, M. Acharya, T. Mishra. Tungstate-Modified Aluminium Phosphate 1. Preparation, Characterization and Catalytic Activity Towards Alcohol and Cumene Conversion Reactions [J]. J. Mol. Catal. A-Chem., 2000, (164):217~223
    [179] C. Martin, P. Malet, V. Rives, et al. Structure and Properties of Tungstates Formed in W–Mg–O Systems [J]. J. Mol. Catal. A-Chem., 1997, (169):516~526
    [180] J. Guerin, M. Bendahan, K. Aguir. A dynamic response model for the WO3-based ozone sensors [J]. Sensors and Actuators B, 2008,(128):462~467
    [181] Zhifu Liu, Toshinai Yamazaki, Yanbai Shen, et al. Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films [J]. Sensors and Actuators B, 2007, (128):173~178
    [182] F. Morazzoni, R. Scotti, L. Origoni, et al. Mechanism of NH3 interaction with transition metal-added nanosized WO3 for gas sensing: In situ electronparamagnetic resonance study [J]. Catalysis Today, 2007, (126):169~176
    [183] Shijun Luo, Gang Fu, Huan Chen, et al. Gas-sensing properties and complex impedance analysis of Ce-added WO3 nanoparticles to VOC gases [J]. Solid-State Electronics, 2007, (51): 913~919
    [184] A. Labidi, E. Gillet, R. Delamare, et al.。Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd [J]. Sensors and Actuators B, 2006, (120):338~345
    [185] R. Ionescu, A. Hoel, C.G. Granqvist, et al. Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors [J]. Sensors and Actuators B, 2005, (104):132~139
    [186]全宝富,周生玉,孙良彦.WO3中的掺杂及其气敏特性[J].功能材料,1997,28(2):177~181
    [187]王旭升,薛丽君,周晓华等.气敏材料Au-WO3催化特性的物理解释[J].功能材料,2001,32(3):287~289
    [188]魏少红,牛新书,成战胜等.溶胶-凝胶法WO3纳米粉体的气敏性能研究[J].电子元件与材料,2004,23(10):12~16
    [189] P. Ivanov, J. Hubalek, K. Malysz, et al. A route toward more selective and less humidity sensitive screen-printed SnO2 and WO3 gas sensitive layers [J]. Sensors and Actuators B, 2004, (100):221–227
    [190] Abraham Wolcott, Tev R. Kuykendall, Wei Chen, et al. Synthesis and Characterization of Ultrathin WO3 Nanodisks Utilizing Long-Chain Poly(ethylene glycol) [J].J. Phys. Chem. B, 2006, (110):25288~25296
    [191] Guan Wang, Yuan Ji, Xianrong Huang, et al. Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing [J]. J. Phys. Chem. B, 2006, (110): 23777~23782
    [192] S. V. Pol, V. G. Pol, V. G. Kessler, et al. Synthesis of WO3 Nanorods by Reacting WO(OMe)4 under Autogenic Pressure at Elevated Temperature Followed byAnnealing[J]. Inorganic Chemistry, 2005, (26): 44~49
    [193] Jyothish Thangala, Sreeram Vaddiraju, Rahel Bogale, et al. Large-Scale, Hot-Filament-Assisted Synthesis of Tungsten Oxide and Related Transition Metal Oxide Nanowires [J]. Small, 2007, (3): 890~896
    [194] Klinke, C, Hannon, J. B, Gignac, L et al. Tungsten Oxide Nanowire Growth by Chemically Induced Strain [J]. J. Phys. Chem. B, 2005, (109):17787~17790
    [195] Yunho Baek, Kijung Yong. Controlled Growth and Characterization of Tungsten Oxide Nanowires Using Thermal Evaporation of WO3 Powder [J]. J. Phys. Chem. C, 2007, (111):1213~1218
    [196] Zhanjun Gu, Tianyou Zhai, Bifen Gao, et al. Controllable Assembly of WO3 Nanorods/Nanowires into Hierarchical Nanostructures [J]. J. Phys. Chem. B, 2006, (110):23829~23836
    [197] C.S. Rout, K. Ganesh, A. Govindaraj, et al. Sensors for the nitrogen oxides, NO2, NO and N2O, based on In2O3 andWO3 nanowires [J]. Appl. Phys. A, 2006, (85): 241~246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700