用户名: 密码: 验证码:
鄂尔多斯盆地长北气田山西组二段高分辨率层序地层和储集砂体综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地是中国天然气勘探最有潜力的盆地之一,其上古生界具有巨大的天然气勘探潜力。长北气田位于盆地东部,属于西倾单斜构造背景上的河道岩性-地层圈闭气藏,具有薄层、低孔、低渗、低压、低产和非均质性强等特点,开发难度大,尤其是利用水平井开发如此薄层的非均质性严重的河道砂岩气藏难度更大。随着该气田水平开发井的逐步实施,其含气砂体规模及砂体边界的不确定性以及由于各井块开发程度的不均一性而导致的地层压力不均衡等地质难题都日益显现出来,这些都给该气田的全面评价、水平开发井部署和井轨迹的调整带来困难,并可能引起更大的勘探开发风险。
     针对目前所存在的地质问题,本论文以63口钻井的岩矿资料和测井资料为主要分析对象,运用储层沉积学、层序地层学、测井地质学等多学科交叉的综合研究方法,对长北气田上古生界二叠系山西组2段进行沉积体系、层序地层、岩相古地理、砂体展布三维可视化、储层特征以及储集砂体综合评价和有利区预测等方面进行系统和深入的研究,为更有效地勘探开发长北气田提供科学依据。
     通过上述研究,本论文在以下方面取得了一些进展和创新:
     1.对长北气田山2段开展了精细沉积相研究,确定该地区山2段属于海相辫状河三角洲沉积体系,并对该三角洲沉积体系的各亚相、微相和砂体展布特征与演化规律进行了详细研究,建立了自北向南延伸的辫状河三角洲沉积模式。
     2.应用高分辨率层序地层学原理及其技术方法,对研究区山2段进行了高分辨率层序地层分析,划分出1个长期、2个中期、4个短期和9个超短期基准面旋回层序,详细描述了各级次基准面旋回层序的结构类型、叠加样式、沉积序列与分布模式,讨论了中期、短期和超短期基准面旋回结构与储层发育的关系。同时在高分辨率层序地层等时对比的基础上,建立了长北地区山2段高时间精度分辨率的等时地层格架,并在地层格架中对砂层、小层砂体、单砂体进行了劈分和等时追踪对比,提出了分别相当中期、短期、超短期半旋回的砂层(大尺度)、小层砂体(中尺度)、单砂体(小尺度)的地层单元划分方案。
     3.以高分辨率层序分析和地层等时追踪对比为基础,采用层序-岩相古地理编图技术,选择分别相当砂层和小层砂体级别的中期、短期半旋回为等时地层单元,编制了长北气田山2段短时间尺度的沉积微相分布图,并以相控建模为指导思想,结合序贯指示数学方法,依次选择分别相当短期和超短期半旋回级别的小层砂体和单砂体为等时地层单元,建立长北气田山2段短时间尺度的砂体三维可视化模型。在深入讨论中期、短期半旋回沉积微相分布特征的基础上,总结了砂体的成因类型、几何形态、平面展布和演化特点,深入分析了基准面旋回与储层发育和储层品质的关系,为进一步的高渗带预测和评价奠定了基础。
     4.深入细致地研究了长北气田山2段储层特征,在砂岩储层孔隙结构和物性分析基础上,确定储集空间以剩余原生孔隙和次生粒间溶孔为主,部分为破裂缝及粒缘缝,总体上属于低孔-低渗孔隙型储层;
     5.在总结成藏基本地质条件的基础上,选择砂体累计厚度、砂岩密度、钻遇率、物性和砂体空间展布特点等因素为综合定量评价指标,对长北气田山2段小层砂体和单砂层有利发育层位与相对高渗区带进行了定量评价,从山2段中评价出3个最有利小层砂体发育层位、5个最有利和4个较有利单砂体发育的层位,并在此9个单砂体发育的层位中预测了9个具备优越岩性-地层圈闭条件的相对高渗区带和单砂体连续叠置有利预测区。
Ordos basin is one of the most potential gas reservoir region in China and the Upper Paleozoic is the important exploration target. Changbei gas field is a river lothology-stratigraphic trap gas pool on the west trend monocline background, it is located in the east of the basin, it has thin bed, low-porosity, low-permeability, low-pressure, low-deliverability character and develop difficulty(HeGuang-huai, 2002), especially to develop this thin bed and unhomogeneity seriously river sandbody gas pool is much difficulty. Along with horizon development well to implement, some problem became more and more gravity, such as sandbody’scale and sandbody’boundary was uncertainty and layer pressure was uneqilibrium for different well area development degree is not community. These taked a few difficulty of comprehensive evaluaterating, deploying horizon development well, adjusting well trackway for the gas field, and it might take any geologic risk.
     Aimed at these problem, this paper taked 63 well drilling’s rock mineral document and logging document as main analysis object, combined reservoir sedimentology, sequence stratigraphy, logging geology together to research sedimentary system, sequence stratigraphy, lithofacies paleographic, sandbody distribution three dimensional visualization, reservoir character and reservoir sandbody comprehensive evaluation, it offers reference and criterion for Changbei gas field gas reservoir’s exploration and development.
     Based on the above researching, this paper has been gained some progesses and innovations:
     1. We have taked sedimentary facies research on the second member of Shanxi formation of Changbei gas field, this area pertained to marine facies braid river delta sedimentary system, we have gived a detailed discriiption on different subfacies, microfacies, sandbody’s sedimentary character and distribution for the braid river delta sedimentary system. Based on it, we have been constructed fluvial dominated delta sedimentary model from north to south.
     2. Using high-resolution sequence stratigraphy theory and technique method to analyse sequence on Changbei gas field, we divided it to one long-term, two middle-term, four short-term, nine super short-term basal level cycle sequence and discrpited its structure model, sedimentary series, distribution model, discussed the relation between middle-term, short-term, super-term basal level cycle structure and resevoir growth. And then based on the high-resolution sequence stratigraphy equitime comparison, constructed high-resolution of accuracy degree’s equitime stratigraphy framework, choped and equitime traced on sand layer, small sandbody, single sandbody, putted forward a Stratigraphy dividing scheme to sand layer(big scale), small sandbody(middle scale), single sandbody(small scale).
     3. Based on high-resolution sequence analysis and stratigraphy equitime trace comparison, taked sequence-lithofacies palaeogeographical technique, choosed middle-term and short-term hemiscycle which equivalented to sand layer and small sandbody as stratigraphy unit, compiled a few short time scale sediment microfacies picture. And then taked phase control construction model as direction, combined sequential indication mathematics method, choosed middle-term and short-term hemiscycle which equivalented to sand layer and small sandbody as equitime stratigraphy unit, constructed short time scale’s sandbody three dimensional model. Based on the middle-time and short-time hemicycle sediment microfacies distribution foundation, sumed sandbody’s genetic type, geometric shape, flat distribution and evolution character, analyzed the relations between reservoir quality and base level cycle, this offers to futher forecast and evaluate for high permeability zone.
     4. After researched on the reservoir character of changbei gas field, based on the sand stone reservoir pore structure and physical property, we have certained accumulation space was remainder primary pore and secondary intergranular dissolved pore, break seam and grain boundary seam forms fragmental rock accumulation space. Accumulation type is mained as low pore and low permeability reservoir.
     5 Based on the basic geology condition foundation, choosed sandbody total thickness, sand stone density, drilling encounter rate, physical property, reservoir growing situtation and sandbody space distribution character as ration evaluation indicator, we have constructed small layer sandbody and single sandbody comprensive indication system and have taked quantitative evaluation to small layer sandbody and single sandbody’s beneficial growth layer and high permeability zone of the two member of Shanxi formation. From these evaluation, we have got five best beneficial single sandbody layer and four relative beneficial single sandbody layer and have forecasted nine high permeability zone of advantageous litho stratigraphic trap condition and two sandbody continuous overriding beneficial prediction zone.
     .
引文
[1]. Allen P A,Allen J R.Basin analysis:principles and application.Oxford:Black-well Scientific Publication,1990.
    [2]. Anderson E J,Goodwin P W.The significance of meterscale allocycles in the quest for a fundamental stratigraphic unit.Journal of the Geological society,1990,147:507~518.
    [3]. Braithwaite C J R.Cement sequence stratigraphy in carbonated:Journal of sedimentary petrology,1993,63(2):295~303.
    [4]. Brett C E,Goodman W M,Luduca S T.Sequences、cycles and basin dynamics in the silurian of the appalachian foreland basin.Sedimentary Geology,1990,69(3~4):191~244.
    [5]. Brown L F, Fisher W L. Seismic stratigraphic interpretation of depositional systems:example from Brazil rift and pull-apart basins[A],in:Payton C E,et al.Seismic stratigraphy applications to hydrocarbon exploration[M].AAPG,1977,26(2):213~248.
    [6]. Brown R, LSeifert D. Velocity dispersion: A tool for characterizing reservoir rocks[J]. Geophysics,1997,62(2):477~486.
    [7]. Busch R M,Rollins H B,Correlation of carboniferous strata using a hierarchy of transgressive-regressive units.Geology,1984,12(3):471~474.
    [8]. C.K.威尔格斯等(编),徐怀大等(译).层序地层学原理(海平面变化综合分析)[M].北京:石油工业出版社,1992.
    [9]. Chiocci F L.Effect of sea-level variation on upper-slope depositional processes offshore of Tiber delta,Italy.Marine Geology,1992,104(2):109~122.
    [10]. Copper M R.Tectonic cycles in southern Africa.Earth Scienle Review,1990,28(4):321~364
    [11]. Cross T A.and Lessenger M A.Sediment volume partitioning:rationale for stratigraphic model evolution and high-resolution stratigraphic correlation.Gradstein F M,Sandvik K O,Milton N J.Sequence Stratigraphic Concepts and Applications.NPF Special Publication,1998,12(8):171~195.
    [12]. Cross T A.and Lessenger,Sediment Volume Partitioning:Rationale for Stratigraphic Model Evaluation and High-Resolution Stratigraphic Correlation,Accepred for publication in Norwegian Petroleums Forening Conference Volume,1996.
    [13]. Dickinson W R. The Dynamics of Sedimentary Basins,USGC,1997.
    [14]. Douglas W. Jordan and Wayne A. Pryor. Hierarchical levels of Heterogeneity in a MississippiRiver Meander Belt and Application to Reservoir Systems AAPG,1992, 76(10):1601~1624.
    [15]. Drummond C N,Wilkinson B H,Carbonate cycle stacking patterns and hierarchies of orbitally force eustatic sea level change.Journal of Sedimentary Petrology,1993,63(3):639~377.
    [16]. Eaton T.T. On the importance of geological heterogeneity for flow simulation. Sedimentary Geology, 2006,184:187~201.
    [17]. Fischer A G,Arthur M A.Secular variations in the pelagic realm.SEPM Spec Pub,1977,25:19~50.
    [18]. Fischer A G.The lofter cyclothems of the alpine Triassic、Kansas Geological Survey Bulletin,1964,169:107~149.
    [19]. Galloway W E. Genetic stratigraphyic sequences in basin analysis.AAPG,1989,73(2):125~154
    [20]. Ginsburg R N.Land movement of carbonate mud:new model for regression cycles in carbonates.AAPG,1971,55(4):340~354.
    [21]. Goldhammer R K,Dun D A.Depositional cycles,composite sea-level changes,cycles stacking patterns,and the hierachy of stratigraphic forcing:example from Alpine Triassic platform cartonates in northern Italy.Geological society America Bulletin,1990,102(5):535~562.
    [22]. Goldhammer R K,Lehmarn P J,Dunn P A.The origin of high-frequency platform carbonate cycles and third-order sequences(Lower Ordovician EL PASQGP.West Texas):constraints from outcrop date and stratigraphic modelling.Journal of Sedimentary Petrology,1993,63(3):318~359.
    [23]. Growley T J,Baum S K,Estimating Carboniferous sea-level fluctuation from Gondwanan ice extent.Geology,1991,19:975~977.
    [24]. Haq B V,Hardenbol J,Vail P L.Mesozoic and Cenozoic chronostratigraphy and eustatic cycles.In: wilgus C K,Hastings B S,Posamentir M,et al,eds.Sea-level change: an integrated approoch.SEPM Spec Pub. 1988,42:71~108.
    [25]. Heckel P H.Sea-level cure for pennsylvanian eustatic marine transgressive-regressive depositional cycles along midcontinent outcrop belt.North America:Geology. 1986,14:330~334.
    [26]. Johnson W.A. Sedimengation of the Fraser river delta. Canada Geol.Surv. Mem, 1921,125,1~16.
    [27]. Johoson J G, Klapper G, Sandlberg C A. Devonian. Eustatic fluctuation in Eurameria.Geological Society of America Bulletin, 1985,96:567~587.
    [28]. Johoson M E.Silurian eustasy.Geol Soc London Spec Pap Paleont,1990,44:145~163.
    [29]. Kartanegara L,et al.Sequence stratigraphy and unconformities of the Mesozoic:Implication for hydrocarbon exploration in the eastern part of Indonesia.AAPG,1996,80(8):4~13.
    [30]. Klein G,Kupperman J B.Pennsylvanian cyclothems:Methods of distinguishing tectonically induced changes in sea level from climatically induced changes.Geological Society of America Bulletin,1992,104:166~175.
    [31]. Klett T. R.. Total Petroleum Systems of the Trias/Ghadames Province, Algeria, Tunisia, and Libya—The Tanezzuft-Oued Mya, Tanezzuft-Melrhir, and Tanezzuft-Ghadames. U.S.Geological Survey Bulletin 2202-C, 2000,1~12.
    [32]. Krapez B.Sequence stratigraphic concepts applied to the identification of basin-filling rhythems in Precambrian successions.Australian Journal of Earth Sciences,1996,43(3):355~380.
    [33]. Krapez B.Sequence-stratigraphic concepts applied to the identification of deopositional basins and global tectonic cycles.Austrialian Journal of Earth Sciences,1997,44(1):1~36.
    [34]. Macdonald A S D.Sedimentation and Tectonics and Eustacy Within Active Continental Magine Berlin:Springer-Verlag,1991,13~231.
    [35]. Madeleine P. H.,Timothy R. G., Brian A. Z.Heterogeneity modeling and geopseudo upscaling applied to waterf1ood performance prediction of an incised valley reservoir:Countess YY poo1.Southern Alberta,Canade[J].AAPG Bulleitin,1998,82(12):2220~2245.
    [36]. Miall A D. Architectural elements and bounding surface in fluvial deposits of kayenta formation (lower Jurassic), Southwest Colorado .Sedimentary Geology,1998,(55):233~262.
    [37]. Miall A D. Architecture-element analysis:a new method of facies analysis applied to fluvial deposits.Earth Science Review.1985,22(4):261~308.
    [38]. Miall A D.Reservoir heterogeneity in fluvial sandstone lessons from outcrops studies.AAPG.1988,72(6):682~697.
    [39]. Miall A D.Sequence stratigraphy and their chronostratigraphical correlation.Jour sediment petrol,1991,61(4):497~505.
    [40]. Miall A D.Sequence stratigrphy and chronostratigraphy,problems of definition and precision of correlation and their implications for global eustasy.Geosci Can,1994,21(1):1~26.
    [41]. Miall A.D.Stratigraphic sequences and their chronostratigraphy correlation[J].Journal of Sedimentary Petrology,1991,61(4):497~505.
    [42]. Mitchum R M,Van Wagoner J C.High frequency sequences and their stacking patterns:sequence-stratigraphic evidence of high frequency eustatic cycles. Sediment Geol,1991,70(2):131~160.
    [43]. O’Mara P.T.and Turner B.R. Sequences stratigraphy of coastal alluvial plain:Westphalian B coal measures in Northumberland and the Southern North Sea[J].1991.61(4):33~62.
    [44]. Ruppel S.C., Barnaby R.J.Contrasting styles of reservoir development in proximal and distal chert facies: Devonian Thirtyone Formation, Texas.AAPG Bulletin,2001,85(1):7~33.
    [45]. Tipper J.C. Patterns of stratigraphic cyclicity[J].JOURNAL OF SEDIMENTARY RESEARCH,2000,VOL.70,NO.6,P.1262~1279.
    [46]. Tucker M.E.Sedimentary petrology.Blackwell Scientific Publication,1991.
    [47]. Vail P R.Seismic stratigraphy interpretation using sequence stratigraphy: Part 1: seismic stratigraphy interpretation procedure. In: Bally A W ed. Atlas of seismic stratigraphy. AAPG,Studies in Geology,1987,27:11~22.
    [48]. Walker R G. et al.Fancies models[C].Geoscience Canada,1982.20~35.
    [49].安作相.含油气盆地陆相沉积模式探讨[J].沉积学报,1983,1(4):124~130.
    [50].安作相.浅析陆相沉积盆地的演化模式[J].石油勘探与开发,1983,10(3):17~22.
    [51].安作相.中国含油气区陆相沉积几个理论问题[J].新疆石油地质,1995,16(1):73~79.
    [52].白海强.鄂尔多斯盆地靖安油田上三叠统延长组长2储层三维地质建模研究.硕士学位论文,西北大学,2008.6.
    [53].操应长,姜在兴,夏斌,等.利用测井资料识别层序地层界面的几种方法[J].石油大学学报:自然科学版,2003,27(2):23~26.
    [54].操应长,姜在兴,夏斌,等.声波时差测井资料识别层序地层单元界面的方法、原理及实例[J].沉积学报,2003,21(2):318~323.
    [55].陈洪德,刘文均,郑荣才等.层序地层学理论和研究方法[M].1995.
    [56].陈立官.油气测井地质[M].成都科技大学出版社,1990.
    [57].邓宏文,王洪亮,李熙吉吉,等.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质, 1996,17(3):177~184.
    [58].邓宏文,王洪亮,李小孟.高分辨率层序地层对比在河流相中的应用[J].石油与天然气地质,1997,18(2):90~95.
    [59].邓宏文.美国层序地层研究中的新学派—高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89~97.
    [60].高红灿,郑荣才,柯光明等.川东北前陆盆地须家河组层序-岩相古地理特征[J].沉积与特提斯地质,2005,25(3):38~45.
    [61].高红灿,郑荣才,柯光明等.海相三角洲高分辨率层序地层学特征[J].矿物岩,2004,24(2):88~94.
    [62].何文祥,吴胜和.地下点坝砂体内部构型分析-以孤岛油田为例[J].矿物岩石,2005,25(2).
    [63].何自新等著.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003.
    [64].河北省地矿局编.河北省北京市天津市区域地质志[M].北京:地质出版社,1989.
    [65].河南省地矿局编.河南省区域地质志[M].北京:地质出版社,1989.
    [66].侯洪斌,牟泽辉,朱宏权等.鄂尔多斯盆地北部上古生界天然气成藏条件与勘探方向[M].北京:石油工业出版社,2004.
    [67].侯加根.河流和三角洲储层随机建模[M].东营:石油大学出版社,1999:35~45.
    [68].黄忠.地质三维建模与可视化技术的研究与应用[D].硕士学位论文,合肥工业大学,2008.3
    [69].蒋建平,康贤,邓李正.储层物性参数展布的相控模型[J].成都理工学院学报,1995,22(1):12~17.
    [70].金玉轩,王向东,尚庆华,曹长群.二叠纪地层研究评述[J].地层学杂志,2000,24(2):99~108.
    [71].金玉轩,王向东,尚庆华等.中国二叠纪年代地层划分与对比[J].地质学报,1999,73(2):97~108.
    [72].金玉轩等.中国二叠系年代地层划分与对比[J].地质学报,1997,73(2).
    [73].瞿辉,赵文智.层序地层格架在油气勘探中的作用[J].石油勘探与开发,2000,27(5):40~43.
    [74].柯保嘉.一种新的河流沉积分析法一结构要素分析法[J].国外地质,1986,(31).
    [75].柯林森J D、卢恩J,裘怿楠等译.现代和古代河流沉积体系[M].石油工业出版社,1991,10:60~80.
    [76].雷怀彦等.定量描述储层的新途径—成因法[J].沉积学报,1996,14(增刊):181~185.
    [77].李思田,陈守田,杨士恭等.鄂尔多斯盆地东北部层序地层及沉积体系分析[M].北京:地质出版社,1992.
    [78].李思田,林畅松.大型陆相盆地层序学研究-以鄂尔多斯盆地为例[J].地学前缘,1995,2(3-4):133~136.
    [79].李阳,李双应,岳书仓,等.胜利油田孤岛油区馆陶组上段沉积结构单元.地质科学,2002,37(2) 219~230.
    [80].林克湘等.青海油砂山分流河道砂体储层骨架模型[J].江汉石油学院学报,1994(16)2:8~13.
    [81].林壬子等.陆相储层沉积学进展[M].北京:石油工业出版社,1996,2:128~162.
    [82].刘宝珺,曾允孚.岩相古地理基础和工作方法[M].地质出版社,1985.
    [83].刘宝珺,张锦泉.沉积成岩作用[M].北京:科学出版社,1992.
    [84].刘孟慧,赵澄林等编译.第二届国际储层表征技术研讨会译文集.北京:石油大学出版社,1990:1~35.
    [85].刘伟.新场气田沙溪庙组JS2气藏储层建模研究[D].硕士学位论文,成都理工大学,2007.5.
    [86].刘泽容等.油藏描述原理与方法技术[M].北京:石油工业出版社,1993,9:68~70.
    [87].马立祥.油田内5级界面层序沉积微相制图的意义及其实现途径[J].石油试验地质,1997,19(3):268-272.
    [88].马正.应用自然电位测井曲线解释沉积环境[J].石油与天然气地质,1982,3(1):25~38.
    [89].煤炭科学研究院地质勘探分院,山西省煤田地质勘探公司著.太原西山含煤地层沉积环境[M].煤炭工业出版社,1987.
    [90].闵琪.深盆气藏与鄂尔多斯盆地[J].低渗透油气田,1998,3(2):1~6.
    [91].穆龙新,贾爱林,陈亮,黄石岩编著.储层精细研究方法[M].石油工业出版社,2000:78~92.
    [92].庞军刚,李文厚,郭艳琴,王起琮,陈全红,梁积伟.陕北子洲地区二叠纪山西组沉积环境[J].煤田地质与勘探,2006,34(5):5~8
    [93].秦志保.苏里格气田苏6井区地质建模研究[D].硕士学位论文,西北大学,2006.6.
    [94].裘亦楠.储层沉积学工作流程[J].石油勘探与开发,1990,17(1):85~90.
    [95].裘亦楠.储层地质模型[J].石油学报,1991,第4期.
    [96].裘亦楠.中国陆相储层沉积学进展[J].沉积学报,1992,10(3):16~24.
    [97].裘亦楠.中国陆相碎屑岩储层沉积学[J].沉积学报,1992,10(3):16~24.
    [98].裘怿楠.裘怿楠石油开发地质文集[M].北京:石油工业出版社,1997,12:201~207.
    [99].裘怿楠等.油气储层评价技术[M].北京:石油工业出版社,1997,5:224~283.
    [100].任纪舜.论中国大陆岩石圈构造的基本特征.中国区域地质[M].1991,4.
    [101].陕西地质矿产局.陕西省区域地质志[M].北京:地质出版社,1986.
    [102].沈平平,宋新民,曹宏著.现代油藏描述新方法[M].北京:石油工业出版社,2003.
    [103].沈树忠,王玥,金玉轩.二叠系全球界线层型和点位(GSSP)研究进展[J].地层学杂志,2005,29(2):138~146.
    [104].寿铉成,何光怀,Nick Fest.榆林气田长北区块山西组下段主力储集层建模及水平井地质设计[J].石油勘探与开发,2003.30(4):117~121.
    [105].苏进昌,张岚,马新福.河流相储层开发初期地质建模[J].岩性油气,2008,20(3):114~118.
    [106].孙致学,张玉修.随机建模技术在低渗透砂岩储层早期油藏描述中的应用[J].矿产与地质,2008,22(2):164~169.
    [107].汪正江,张锦泉,陈洪德.鄂尔多斯盆地晚古生代陆源碎屑沉积源区分析[J].成都理工学院学报, 2001,28(1):7~12.
    [108].王明华,白云.三维地质建模研究现状与发展趋势[J].土工基础,2006,20(4):68~70.
    [109].王同和,王喜双,韩宇春,李心宁著.华北克拉通构造演化与油气聚集[M].北京:石油工业出版社,1999.
    [110].王卫红,姜在兴,操应长,等.测井曲线识别层序边界的方法探讨[J].西南石油学院学报,2003,25(3):1~4.
    [111].王允诚.油气储层评价[M].北京:石油工业出版社,1999.
    [112].吴崇筠,薛叔浩等著.含油气盆地沉积学[M].北京:石油工业出版社,1992.
    [113].吴崇筠,薛叔浩等著.中国含油气盆地沉积学[M].石油工业出版社,1992:35~60.
    [114].吴官茂,黄明,李刚,邹时林.三维地质模型与可视化研究的现状分析[J].测绘工程,2008,17(2):1~5.
    [115].吴胜和,李宇鹏.储层地质建模的现状与展望[J].海相油气地质,2007,12(3):53~60.
    [116].吴胜和,熊琦华等编著.油气储层地质学[M].北京:石油工业出版社,1998:50~85.
    [117].吴胜和等.储层建模[M].北京:石油工业出版社,1999.
    [118].武法东,陈钟惠,张守良,葛立刚.华北石炭二叠的海侵作用[J].现代地质,1995,9(3):284~291.
    [119].席胜利,王怀厂,秦伯平.鄂尔多斯盆地北部山西组、下石盒子组物源分析[J].天然气工业,2002,22(2):21~24.
    [120].向芳.鄂尔多斯盆地东北部二叠系层序地层和砂体展布规律研究[D].博士后研究工作报告,成都理工大学,2006.3
    [121].徐怀大.层序地层学理论用于我国断陷盆地分析中的问题[J].石油与天然气地质,1991,12(1):52~57.
    [122].徐美社,董娜.三维可视化建模的研究现状[J].中国水运,2008,8(9):105~107.
    [123].薛培华编著.河流点坝相储层模式概论[M].石油工业出版社,1991.
    [124].杨俊杰,李克芹,张东生等.中国石油地质志[M].北京:石油工业出版社,1992.
    [125].杨俊杰,裴锡古主编.中国天然气地质学(卷四)[M].北京:石油工业出版社,1996.
    [126].杨耀红.三维地质模型可视化分析技术研究与应用[D].硕士学位论文,中国地质大学,2007.5
    [127].尹太举,张昌民.双阳油田井下地质知识库的建立[J].石油勘探与开发,1997,24(6):95~98.
    [128].尹燕义.曲流河点坝储集层侧积体类型研究[J].石油勘探与开发,1998,25(2):37~40.
    [129].应凤祥.碎屑岩成阶段划分规范[M].北京:石油工业出版社,1993.
    [130].于均民,李红哲,刘震华,魏东涛,陈涛.应用测井资料识别层序地层界面的方法[J].天然气地球科学,2006,17(5):736~739.
    [131].于兴河,李剑峰.碎屑岩系储层地质建模及计算机模拟[M].北京:地质出版社,1996:40
    [132].于兴河.碎屑岩系油气储层沉积学[M].北京:石油工业出版社,2002.
    [133].曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1985.
    [134].张昌民,林克湘,徐龙,等.储层砂体建筑结构分析[J].江汉石油学院学报,1994,16(2):l~7
    [135].张昌民,张尚锋等.中国河流沉积学研究20年[J].沉积学报,2004,22(2):184~192.
    [136].张尚峰,洪秀娥,郑荣才,等.应用高分辨率层序地层学对储层流动单元层次性进行分析.成都理工学院学报,2002,29(2):147~151.
    [137].张伟.精细油藏地质模型的建立及其应用[D].硕士学位论文,中国石油大学,2007.5.
    [138].张一伟,熊琦华,王志章等.陆相油藏描述[M].北京:石油工业出版社,1997.5:41~61.
    [139].赵翰卿,付志国,吕晓光,等.大型河流—三角洲沉积储层精细描述方法[M].石油学报,2000,21(4):109~113.
    [140].郑荣才,彭军,吴朝容.陆相盆地基准面旋回的级次划分和研究意义[J].沉积学报,2001, 19(2):249~245.
    [141].郑荣才,文华国,梁西文.鄂尔多斯盆地上古生界高分辨率层序地层分析[J].矿物岩石,2002,22(4):66~74.
    [142].郑荣才,周祺,王华,李凤杰.长北气田辫状河三角洲单砂体时空建模[J].大庆石油地质与开发,2008,27(3):10~14.
    [143].郑荣才,周祺,王华,李凤杰.鄂尔多斯盆地长北气田山西组2段高分辨率层序构型和砂预测[J].高校地质学报,2009,15(1):69~80.
    [144].郑荣才,周祺,王华,赵正文等.测井曲线在陆相层序地层界面中的应用-以鄂尔多斯盆地榆林气田山西组2段为例[J].大庆石油地质与开发,2008,27(4):135~139.
    [145].郑荣才等.高分辨率层序分析在油藏开发工程中的应用[J].沉积学,2003,21(4):654~662.
    [146].周金应.长庆西峰油田合水区长81储层建模研究[D].硕士学位论文,中国地质大学,2007.5.
    [147].朱国华,等.岩石薄片鉴定方法—砂岩[M].北京:石油工业出版社,1989.
    [148].朱国华.碎屑岩储集层孔隙的形成、演化和预测[J].沉积学报,1992,10(3):114~123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700