用户名: 密码: 验证码:
碳酸盐岩岩溶型储层地质模型及储层预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸盐岩岩溶型储集层分布广泛,正成为国内增储上产的主要勘探目标。但由于这种储集层在纵向和横向上非均质性强,储层发育受多种因素的控制,储层地质模型难以建立,储层预测也成为世界性难题。研究表明轮古西地区奥陶系碳酸盐岩油气的分布与碳酸盐岩顶部的风化壳和内幕的溶蚀缝洞有关。奥陶系碳酸盐岩岩溶型储层的地质模型建立、岩溶型储层的地震识别与预测,以及影响储层发育的构造裂缝的预测,是制约高效勘探和开发碳酸盐岩油藏的主要问题。
     本文通过对轮古西地区奥陶系岩溶型储集层地质特征的描述,认为岩溶型储层的储集空间主要由溶蚀孔洞、溶蚀扩大缝、大型溶蚀洞穴和构造裂缝等组成;岩溶型储层的类型主要有裂缝型、裂缝孔洞型、孔洞型、洞穴型四大类。在对岩溶型储层特征分析的基础上,认为岩溶作用程度、古地貌的控制、断裂和构造裂缝的发育程度、岩性以及沉积成岩、充填作用是控制岩溶发育的主要控制因素。其中岩溶作用以及构造运动引发的破裂作用,是储集空间得以改善的主要因素,而胶结充填作用、压实作用是导致储集岩致密化程度增加、孔隙减小的主要因素。古地貌则是影响岩溶型储集层发育规模、储层好坏的主要影响因素。通过对这些主要控制因素的分析,首次建立了轮古西地区岩溶型储层发育的地质模型,并在其它地区研究的基础上,对岩溶型储层的发育规律进行了总结。认为潜山岩溶型储集层在纵向上可以分为表层岩溶带、渗流岩溶带和潜流岩溶带,这三个岩溶带呈准层状分布。其中表层岩溶带位于潜山顶部,厚度小于50m,裂缝、溶蚀孔洞是最主要的储集空间,横向连通性较好,储集性能最好。渗流岩溶带厚度约30-120m左右,溶蚀裂缝、溶蚀孔洞及洞穴是主要的储集空间,沉积充填作用较弱,有效储集空间发育,断裂、裂缝是控制这个带储层发育的主要因素。潜流岩溶带位于渗流岩溶带下部,厚度约50-80m左右。溶蚀裂缝、溶蚀孔洞及大型洞穴是主要的储集空间,但容易被砂泥质所充填,造成有效储集空间的减少,溶蚀和充填作用是控制这个带储层发育的主要因素。岩溶型储集层的发育主要受古地貌的控制,在古地貌上可以分为岩溶高地、岩溶斜坡和岩溶洼地三个古地貌单元。其中岩溶高地主要遭受大气降水、风化和剥蚀等作用,岩溶型储集层欠发育;岩溶斜坡是岩溶型储层最发育的古地貌单元,它主要遭受大气降水、风化剥蚀、地表径流的侵蚀、溶蚀等作用,易于形成溶蚀裂缝、孔洞、大型洞穴等储集体;岩溶洼地位于古地貌的缓坡或洼地,是水流汇集的地方,岩溶型储层欠发育,也易于被砂泥所充填。
     根据控制岩溶发育的主要控制因素,以及岩溶型储层的发育特征,通过正演的方法对各种岩溶型储集层进行了正演分析,并根据钻井资料,对岩溶型储层在地震上进行了精细的标定,证实了利用地震资料对岩溶型储集层的可预测性,并对敏感的地震属性参数进行了筛选和分析,认为地震的振幅属性、能量属性和频率属性对岩溶型储集层较为敏感。表层岩溶带的岩溶型储层在地震上表现为弱振幅、高相干(低相关)、低阻抗、低频率等特征,内幕岩溶则表现为强振幅、高能量、低频率、低阻抗等特征。内幕岩溶储层的发育,是引起地震绕射波振幅变化的主要原因。碳酸盐岩岩溶洞穴型油气藏具有强振幅、调谐性和低速度的特点。其中洞穴宽度是影响地震波振幅的主要因素,洞穴高度是影响调谐性的主要因素。“串珠状”现象的出现一是需要溶洞散射波有一定的能量,二是需要有形成强烈多次波的条件。一般情况下,有一定宽度且上、下分布的多个洞容易形成“串珠状”现象,单个大洞难以产生“串珠状”现象。
     通过对轮古西地区岩溶型储层的研究,总结出了一套针对岩溶型储集层的储层预测的技术系列:地震属性分析(振幅、能量、频率、相干等)、波阻抗反演、三维可视化、古地貌恢复与分析、构造裂缝预测以及多资料融合的储层综合评价技术。并对各个单项技术的优缺点和适用性进行了论述和评价,指出利用某一个单一的技术很难对岩溶储集层进行很好的预测,必须利用多种技术进行综合才能对岩溶型储集层进行较为精确的预测,多种技术的融合才能对岩溶型储集层进行客观合理的评价。
     利用在轮古西地区总结出的岩溶型储层的地质模型和多种资料相结合的储层预测技术系列,在湛江涠西南、二连的赛汉塔拉凹陷等区块进行了实际应用,均取得了良好的应用效果,证实了岩溶型储层的地质模型和多种技术相结合的储层预测技术系列具有较好的适用性、可行性和有效性,能够在其它地区推广和应用。
Carbonate karstic reservoir was distributed very widely and was becoming the main exploration target for increasing products in our nation. But the reservoir had the features of high heterogeneity in longitudinal and lateral, multiple reservoir controlling factors and hard geological model to build, so the reservoir prediction was the difficulty problem in worldwide. The research showed that the Ordovician carbonate prolific zone of the western LunGu area had relation to the weathered crust on the top of carbonate and dissolution cave inside carbonate. The geological model building of Ordovician carbonate karstic reservoir, reservoir identification from seismic and prediction, and the prediction of tectonic fracture controlling reservoir, were the key problems of efficient exploration and development of carbonate oil pool.
     In the paper, by the geological characteristics description of Ordovician karstic reservoir in the western LunGu area, the storage spaces of karstic reservoir were considered as solution pore, dissolution enlarged fracture, large solution cave and structural fracture. The karstic reservoir mainly contains four types, which were fracture, fracture-pore, pore, and cave. By the analysis of karstic reservoir development, the extent of karstification, palaeogeomorphology, the developing extent of faults and tectonic fracture, lithology, sedimentary and diagenesis, and packing action were considered as the main controlling factors of the reservoir. The karstification and regmagenesis due to tectonic movements were the main controlling factors to improve the storage space. The cementation, packing action and compaction were the main factors to increase the reservoir tightness and decrease the porosity. The palaeogeomorphology mainly had influence on the reservoir development scale and quality. The geological model was build for the first time by the analysis of these factors, and the rules of karstic reservoir development were summarized according to the study on other areas. The results showed that the reservoir can be divided into superficial karst zone, vadose karst zone, and underflow karst zone in longitudinal, and these three zones showed para-laminar distribution. The superficial karst zone was on the top of buried hill, with the thickness less than 50m. The main storage spaces were fracture and dissolution cave, and had good connectedness in lateral and storage capability. The vadose karst zone had the thickness about 30-120m. The main storage spaces were dissolution fracture, dissolution cave and hole. The sedimentary packing action was weak, and the effective storage spaces developed. The faults and fractures were the main controlling factors of reservoir in the zone. Below the vadose karst zone was the underflow karst zone, with the thickness about 50-80m. The dissolution fracture, dissolution cave and large hole were the main storage spaces. But the spaces were filled with arenaceous-pelitic matter frequently, which decreased the effective storage spaces. The main controlling factors of reservoir were dissolution and packing action. The development of karstic reservoir was mainly controlled by palaeogeomorphology, which can be divided into karstic highland, slope and depression. The karstic highland were suffered from atmospheric water, weathering and denudation, and lack of karstic reservoir. The karstic slope was the most developing unit of karstic reservoir, which suffered from the erosion and dissolution of atmospheric water, weathering and denudation, and surface runoff, and was easy to form storage spaces of dissolution fracture, cave and large holes. The karstic depression was on the gentle slope or depression of palaeogeomorphology, and was the location of current converging. The karstic reservoir were lack and also easy to be filled with arenaceous-pelitic matter.
     The different kinds of karstic reservoir were analyzed by forward method according to controlling factors and features. The reservoir was demarcated in seismic by well data, which proved the reservoir predictability by seismic data. The sensitive seismic attributes were filtered and analyzed, which showed that seismic amplitude, energy and frequency attributes were the sensitive to karstic reservoir.The reservoir of superficial karstic zone showed weak amplitude, high coherency (low correlation), low impedance and low frequency. The insider karstic reservoir showed strong amplitude, high energy, low frequency, and low impedance. The development of insider karstic reservoir caused amplitude change of seismic diffraction wave. The karstic cave reservoir had the characteristics of high amplitude, low tune and low velocity. The cave width mainly affected the seismic amplitude, and its height mainly affected the tune. The appearance of string beads depended on two factors: one was the scattered wave of cave had certain energy, and the other was the condition to form intense multiple. On general condition, multiple caves with certain width and distribution upper and lower were easy to form string beads, but the single large cave was hard.
     According to the study on the karstic reservoir of the western LunGu area, a set of reservoir comprehensive prediction and assessment techniques was summarized, which contained seismic attributes analysis (amplitude, energy, frequency and coherence), impedance inversion, palaeogeomorphology and tectonic fractures prediction, and multiple data combination. The relative merits and applicability of each single technique was summarized and evaluated, which showed using the single technique was hard to predict the reservoir precisely. So the combination of multiple techniques should be used to predict the reservoir more accurately and evaluate it more reasonably.
     Applying the geological model and the comprehensive prediction techniques for karstic reservoir summarized by the western LunGu area to the block of Weixinan in Zhanjiang and Saihantala depression in Erlian showed good application effect, which proved its good applicability, feasibility and validity, and can be spread and applied in other area.
引文
[1]Bakulin A,Grechka V,Tsvankin I.Estimation of fracture parameters from reflection seismic data-Part I:HTI model due to a single fracture set[J].Geophysics, 2000,65(6):1788-1802.
    [2]Choquette,P.W.,and L.C.Pray,Geologic nomenelature and classification of porosity in sedimentary carbonates[J].AAPG Bulletin,1970,54(2):207-250.
    [3]Gray D,Roberts G,Head K.Recent advaneces in determination of fraeture strike and craek density from P-wave seismic data[J].The Leading Edge,2002,21(3):280-285.
    [4]Lorenz J C,Warpinski N R.Natural fracture charaeter-istiesand effects[J].The Leading Edge,1996,15(8):909-911.
    [5]Carles K. Karst-controlled reservoir heterogeneity in Ellenburger Croup Carbonates of WestTaxas[J].AAPG Bulletin,1988, 72: 1160-1183.
    [6]James N J,Choquette P W.成都地质学院沉积所和长庆勘探开发研究院合译.古岩溶与油气储层[M].成都:成都科技大学出版社,1991.
    [7]Saller A H. Uncomformities and porosity development in carbonate strata: ideas from a Heidelberg conference[J].AAPG Bulletin,1994, 6(78):857- 862.
    [8]Brita R, Graham W, Radu G,Agim M,Atilla A. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt[J].AAPG Bulletin, 2006,90(8):1227-1249.
    [9]Davies G R,Smith L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J].AAPG Bulletin, 2006,90 (11):1641 -1690.
    [10]Mylroie J E, Carew J L. Karst development on Carbonate Islands[J].American Association of Petroleum Geologists, 1995,(63):55-76.
    [11]Isabel M B, Kyger C L, Ramon M. 2005. Late Jurassic Paleogeography and Paleoclimate in the Northern Iberian Basin of Spain: Constraints from Diagenetic Records in Reefal and Continental Carbonates[J].Journal of Sedimentary Research,75: 82-96.
    [12]Mandefro B, Sebastian G. Numerical simulation of water injection into layered fractured carbonate reservoir analogs. AAPG Bulletin, 2006,90: 1473-1493.
    [13]Major R P,Mark H H. Identifying fracture orientation in a mature carbonate platform reservoir[J].AAPG Bulletin, 1997,81: 1063-1069.
    [14]Robert G L Paleocave Carbonate Reservoir: Origins, Burial-Depth Modifications,Spatial Complexity,and Reservoir Implications[J].AAPG Bulletin,1999,83(11):1795-1834
    [15]Sean A G, Mark G R, Daniel G C, Andrew M G, Steven L BKarst and Early Fracture Networks in Carbonates, Turks and Caicos Islands, British West Indies[J].Journal of Sedimentary Research, .2007,77(6): 508-524.
    [16]Whitaker F, Smart P L. Groundwater circulation and geochemistry of a karstified fracture system, South Andros Island, Bahamas[J].Journal of Hydrology, 1997,97:293-315.
    [17]Yaacov A. Fractures and karst in hard carbonates in northern Israel[J].Geological Survey of Israel, 1996,10:90-94.
    [18]Chen Guangpo, Pan Wenqing,ect. Application of Prediction Techniques in Carbonate Karst Reservoir in Tarim Basin[J].Applied Geophysics,2005.2(2):111-118.
    [19]YaoYao,ect.Research seismic wave field of karst cavern reserveoirs nears deep carbonate weathered crusts[J].Applied Geophysics,2005,2(2):94-102.
    [20]Ibrahim Palaz、Kurt j.Marfurt主编.碳酸盐岩地震学[M].涿州:中国石油学会物探专业委员会,1998.
    [21]李庆中.走向精确勘探的道路[M].北京:石油工业出版社,1994.
    [22]魏建新,狄帮让.裂隙张开度对地震波特性影响的模型研究[J].中国科学D辑:地球科学,2008,38(增刊I):211-218.
    [23]N.P詹姆斯.P.W.肖凯,胡文海,胡征钦,等译.古岩溶[M].北京:石油工业出版社,1992.
    [24]陈广坡,等.轮古西地区奥陶系潜山古水系分布与岩溶特征[J].江汉石油学院学报,2004,26(4):36-38.
    [25]陈广坡,等.碳酸盐岩潜山中火成岩体的地震识别与预测[J].石油地球物理勘探,2007,42(1):87-93.
    [26]陈广坡,等.碳酸盐岩岩溶型储层综合预测评价技术的应用及效果分析[J].石油物探,2005,44:33-36.
    [27]陈广坡,等.灰岩潜山储集层的油气检测方法研究[J].石油地球物理勘探,2007,42(2):170-173.
    [28]陈广坡,等.碳酸盐岩岩溶型储层的地球物理响应特征分析[J].天然气勘探与开发,2005,28(3):43-46.
    [29]陈广坡,等.中国南海某盆地A凹陷灰岩潜山有效裂缝预测[J].石油勘探与开发,2008,35(3):313-317.
    [30]陈广坡,徐国盛,等.二连盆地赛汉塔拉凹陷三维区古生界潜山储层特征及其影响因素[J].石油地球物理勘探,2009,44(2):64-69.
    [31]陈广坡,徐国盛,等.南海石炭系潜山储层特征及地震识别[J].天然气工业,2007,27(10):42-45.
    [32]陶云光,郑多明,张联盟,陈广坡.一种新型相干分析技术在火成岩复杂地区的应用[J].石油天然气学报(江汉石油学院学报),2006,28(1):58-61.
    [33]郑荣才,彭军,高红灿.渝东黄龙组碳酸盐岩储层的古岩溶特征和岩溶旋回[J].地质地球化学,2003,31(1):28-35.
    [34]郭建华.塔里木盆地轮南地区奥陶系潜山古岩溶及其所控制的储层非均质性[J].沉积学报,1993,11(4):56-64.
    [35]顾乔元,韩剑发,张耀堂.轮南地区奥陶系断裂及储集层裂缝分形特征[J].新疆石油地质, 1998, 19( 4) : 287- 289.
    [36]艾合买提江·阿不都热和曼,等.碳酸盐岩裂缝与岩溶作用研究[J].地质论评,2008,54(4):485-493.
    [37]钱一雄,等.碳酸盐岩表生岩溶与埋藏溶蚀比较—以塔北和塔中地区为例[J].海相油气地质,2007,12(2):1-7.
    [38]陈洪德,张锦泉,叶德胜.新疆塔里木盆地北部古岩溶储集体特征及控油作用[M].成都:成都科技大学出版社,1994.
    [39]钱一雄,邹远荣,陈跃.塔里木盆地塔中西北部多期、多成因岩溶作用地质-地球化学表征:以中1井为例[J].沉积学报,2005,23(4):42-49.
    [40]黄继新,彭仕宓,宋来明.车镇地区下古生界碳酸盐岩潜山岩溶模式初探[J].煤田地质与勘探,2006,34(2):1-4.
    [41]隋少强.胜利油田义和庄区块碳酸盐岩古潜山储层特征研究与预测[D].成都:成都理工大学能源学院,2001.
    [42]雍自权,等.济阳坳陷孤岛潜山下古生界碳酸盐岩缝洞系统[J].油气地质与采收率,2008,15(2):9-12.
    [43]贺振华,杜正聪,文晓涛.碳酸盐岩喀斯特溶洞和裂缝系统的地震模拟与预测[J].2004,19(3):399-402.
    [44]王光付.碳酸盐岩溶洞型储层综合识别及预测方法[J].石油学报,2008,29(1):47-51.
    [45]庄金银,黄永亮.影响岩溶发育因素的几点探讨[J].西部探矿工程,2008,1:127-130.
    [46]王振宇,李凌,谭秀,等.塔里木盆地奥陶系碳酸盐岩古岩溶类型识别[J].西南石油大学学报(自然科学版),2008,30(5):11-16.
    [47]夏义平,柴桂林,汪昌贵.塔里木盆地轮南地区下奥陶统碳酸盐岩储层的控制因素分析[J].现代地质,2000,14(2):185-190.
    [48]康志宏,吴铭东.利用层序地层学恢复岩溶古地貌技术[J].新疆地质,2003,21(3):290~292.
    [49]舒志国,等.塔中隆起奥陶系3个构造带中古岩溶发育模式[J].西北大学学报(自然科学版),2008,38(5):790-794.
    [50]马立桥,等.渤海湾盆地南北两侧奥陶系古风壳储层的不同发育模式[J].高校地质学报,2007,13(1):96-104.
    [51]周宁,吴慈华,刘波.鄂西南表层岩溶带岩溶个体形态特征及分布规律[J].资源环境与工程,2008,22(5):519-523.
    [52]刘忠宝,等.裂缝对塔中奥陶系碳酸盐岩储集层岩溶发育的控制[J].2007,28(3):289-291.
    [53]袁道先,章程.岩溶动力学的理论探索与实践[J].地球学报,2008,29,(3):355-365.
    [54]齐振琴,等.千米桥古潜山岩溶地貌演化及古岩溶洞穴发育特征[J].海相油气地质,2008,13(4):37-42.
    [55]陈新军,等.塔中奥陶系大型不整合面与风化壳岩溶发育[J].同济大学学报(自然科学版),2007,35(8):2211-7211.
    [56]陆正元,罗平.四川盆地下二叠统断层与缝洞发育关系研究[J].成都理工大学学报(自然科学版),2003,30(1):64-68.
    [57]马永生,等编著.1999,碳酸盐岩储层沉积学〔M].北京:地质出版社.
    [58]成都地质学院沉积地质矿产研究所,长庆石油勘探局勘探开发研究院译编.古岩溶与油气储层[M].成都:科技大学出版社,1991.
    [59]综合裂缝预测与建模软件(ReFract),GSS,2006.
    [60]苟量,彭真明.小波多尺度边缘检测及其在裂缝预测中的应用[J].石油地球物理勘探.2005,40(3):309-313.
    [61]李宗杰,王勤聪.塔北超深层碳酸盐岩储层预测方法和技术[J].石油与天然气地质,2002,23(1):35-44.
    [62]李军,郝天珧,赵百民.地震与测井数据综合预测裂缝发育带[J].地球物理学进展. 2006,21(1):179-183.
    [63]陈钢花,王学军,王永刚,等.古潜山裂缝性油藏储层参数横向预测[J].石油大学学报(自然科学版).2005,29(4):27-34.
    [64]顾家裕,周兴熙.塔里木盆地轮南潜山岩溶及油气分布规律[M].北京:石油工业出版社,2001.
    [65]龚福华,刘小平.塔里木盆地轮古西断裂对奥陶系古岩溶的控制作用[J].中国岩溶,2003,22(4):313-317.
    [66]贺振华,胡光岷,黄德济.致密储层裂缝发育带的地震识别及相应策略[J].石油地球物理勘探. 2005,40(2):190-195.
    [67]张昕,郑晓东.裂缝发育带地震识别预测技术研究进展[J].石油地球物理勘探.2005,40(6):724-729.
    [68]朱筱敏,顾家裕,贾进华,等.塔里木盆地重点层系储盖层评价(贾承造主编:塔里木盆地石油地质与勘探丛书).石油工业出版社,2003.
    [69]王招明,田军,王清华,等.塔里木盆地油气勘探与实践(贾承造主编:塔里木盆地石油地质与勘探丛书).石油工业出版社,2004.
    [70]肖玉茹,王敦则等.新疆塔里木盆地塔河油田奥陶系洞穴型碳酸盐岩储层特征及其受控因素[J].现代地质,2003,17(1):92-98.
    [71]朱伟林,江文荣.北部湾盆地涠西南凹陷断裂与油气藏[J].石油学报,1998,19(3):6-10.
    [72]周新桂,张利容,张明利,袁加音,等.欢喜岭油田中潜山带成藏期应力场及裂缝分布[J].新疆石油地质,2003,24(1):50-54.
    [73]赵重远主编.石油地质学进展.北京:地质出版社,1988.
    [74]胡见义,等主编.非构造油气藏.北京:石油工业出版社,1986.
    [75]邬光辉,等.塔里木盆地中部地区奥陶纪碳酸盐岩裂缝与断裂的分形特征[J].地质科学,2002,37(增刊):51-56.
    [76]王捷主编.油藏描述技术.北京:石油工业出版社,1996.
    [77]张一伟,等.油气藏多学科综合研究.北京:石油工业出版社,1995.
    [78]吴胜和,熊琦华,等编著.油气储层地质学.石油工业出版社,1998.
    [79]裘怿楠,等主编.国外储层描述技术.北京:中国石油天然气总公司信息研究所,1993.
    [80]信荃麟,等.油藏描述与油藏模型.山东:石油大学出版社,1990.
    [81]许化策,等译.油藏描述译文集.北京:石油工业出版社,1994.
    [82]裘怿楠,薜叔浩,等编著.油气储层评价技术.北京:石油工业出版社,1997.
    [83]刘泽容,等著.油藏描述原理与方法技术.北京:石油工业出版社,1993.
    [84]刘泽容,张晋红主编.油藏评价和预测.北京:石油工业出版社,1993.
    [85]吴元燕,徐龙,张昌明,等编.油气储层地质.北京:石油工业出版社,1996.
    [86]熊琦华,王志章,纪发华.1994.现代油藏描述及应用.石油学报.15(增刊).
    [87]颞凯轩,等.地震测井资料综合储层预测方法概述.石油地球物理勘探.32(增刊).
    [88]许效松,杜佰伟.碳酸盐岩地区古风化壳岩溶储层[J].沉积与特提斯地质,2005,25(3):1-7.
    [89]苏立萍,罗平,胡社荣.苏桥潜山带奥陶系碳酸盐岩储集层研究[J].石油勘探与开发,2003,30(6):54-57.
    [90]钱一雄,陈跃,马宏强,陈强路.新疆塔河油田奥陶系碳酸盐岩溶洞、裂隙中方解石胶结物元素分析与成因[J].沉积学报,2004,22(1):6-11.
    [91]张德林.地震储层预测及影响因素分析[J].石油地球物理勘探.1996.31(增刊).
    [92]吕希学,等.根据地震勘查信息预测火成岩储集体[J].浙江大学学报.2003,37(2).249-253.
    [93]刘传虎,等.时频分析方法及在储层预测中的应用[J].石油地球物理勘探.1996,31(增刊).
    [94]张树林,等.三维地震储层横向预测方法及效果[J].石油地球物理勘探.1994,29(增刊2).
    [95]周兴熙.再论网络状油气藏与轮南潜山勘探对策[J].石油勘探与开发,2002,9(4):4-7.
    [96]赖生华,余谦,周文,孙来喜.楚雄盆地北部上三叠统-侏罗系裂缝发育期次[J].石油勘探与开发,2004,31(5):25-29.
    [97]何樵登,梁高源.利用地震资料和测井约束反演地层参数.石油物探. 1995.34(2).
    [98]蔡正旗,等.碳酸盐岩裂缝-孔隙型储集层综合预测方法研究[J].石油勘探与开发,2005,32(5):65-68.
    [99]杨凤丽,张善文.多场信息预测基岩潜山裂缝性油气储层[J].石油地球物理勘探,2001,36(3):319-325.
    [100]王志章,等.1999.裂缝性油藏描述及预测.石油工业出版社.
    [101]王益清,朱忠德.油气勘探与石油地质综合研究[M].北京,中国地质大学出版社,1998.
    [102]吴时国,等.3Dmove构造裂缝预测技术在古潜山的应用研究[J].中国科学D辑地球科学,2004,34(9):795-806.
    [103]王志鹏,陆正元.岩溶在四川盆地下二叠统储集层中的重要作用[J].石油勘探与开发,2006,33(2):141-144.
    [104]周贤斌,姚美兰,闪俊梅.电导率异常检测识别裂缝在BL油田低孔低渗油藏中的应用[J].石油天然气学报,2005,27(1):70-71.
    [105]袁道先.中国岩溶学[M].北京:地质出版社,1994.
    [106]袁静.埕北30区块潜山油气藏下古生界储层特征[J].天然气工业,2004,24(11):22-25.
    [107]祁兴中,等.轮古碳酸盐岩储层测井解释评价技术[J].天然气工业,2006,26(1):49-25.
    [108]龙建东,等.缝洞型碳酸盐岩内部局域振幅横向差异性储层预测法[J].石油地球物理勘探,2003,38(1):58-61.
    [109]蔡瑞.基于谱分解技术的缝洞型碳酸盐岩溶洞识别方法[J].石油勘探与开发,2005,32(2):82-85.
    [110]黄凯,等.地震波能量的衰减及其影响因素[J].新疆石油地质,1997,18(3):212-216.
    [111]刘企英.利用地震信息进行油气预测[M].北京:石油工业出版社,1994.
    [112]任美锷,刘振中.岩溶学概论[M].上海:商务印书馆,1989.
    [113]庞雯,史鸿祥.轮南地区奥陶系碳酸盐岩古岩溶特征[J].新疆石油地质,2008,29(1):37-40.
    [114]肖玉茹,何峰煜,孙义梅.古洞穴型碳酸盐岩储层特征研究[J].石油与天然气地质, 2003,24(1):75-81.
    [115]刘传虎,徐国盛著.碳酸盐岩储层特征与油气成藏-以济阳坳陷和川东地区为例[M].北京:石油工业出版社,2006.
    [116]王永刚,乐友喜,张军华著.地震属性分析技术[M].北京:中国石油大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700