用户名: 密码: 验证码:
铂—酸性离子液体双功能催化剂及催化合成对氨基苯酚研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对氨基苯酚( PAP)是一种重要有机合成中间体,被广泛应用于医药、染料、橡胶、照相等领域。本文针对以硝基苯为原料催化加氢合成对氨基苯酚工艺中存在的使用硫酸溶液等问题,通过设计由金属铂和酸性离子液体构成的新型催化剂,开发出了环境友好的合成对氨基苯酚新工艺。
     采用两步法合成了一种新型季铵型Brφnsted酸性离子液体N,N,N-三甲基-N-磺丁基硫酸氢铵([HSO_3-b-N(CH_3)_3]HSO_4),通过FTIR、NMR、ESI-MS及元素分析等方法确定了该离子液体的结构,并发现其对苯基羟胺重排反应具有良好的催化活性;在此基础上,利用溶胶-凝胶法制备出了固载化的离子液体催化剂[HSO_3-b-N(CH_3)_3]HSO_4-SiO_2,在适宜反应条件下,苯基羟胺转化率为100%,对氨基苯酚选择性为60.5%。
     设计并制备了由负载型铂催化剂(加氢活性位)和酸性离子液体(重排活性位)构成的新型高效双功能固-液相催化剂体系Pt/SiO_2+[HSO_3-b-N(CH_3)_3]HSO_4;研究了Pt/SiO_2催化剂用量、离子液体浓度、反应介质、助剂及反应条件等对其催化硝基苯加氢合成对氨基苯酚反应性能的影响规律。确定了铂催化剂用量与离子液体浓度的最佳匹配值:Pt/SiO_2用量5wt%,离子液体浓度为22.5wt%;在优化条件下,硝基苯转化率为96.6%,对氨基苯酚选择性为81.4%,高于硫酸体系;离子液体特有的季胺盐性质增加了硝基苯的溶解度,进而提高了反应性能;对反应后回收的离子液体结构进行了表征,证明其具有良好的稳定性。回收后的Pt/SiO_2催化剂和酸性离子液体构成的催化体系循环使用三次,活性无明显下降。
     采用酸性离子液体[HSO_3-b-N(CH_3)_3]HSO_4,建立了同时获得均匀分散的Pt纳米粒子和具有金属和酸活性中心双功能催化剂的新方法;并采用TEM、UV-Vis、FTIR、XPS、XRD等对其结构进行了表征。所制备的Pt纳米粒子均匀分散在离子液体中,粒径约为3nm,具有面心立方相结构,并可长期(4个月以上)保持稳定分散状态。
     采用直接法制备出了由铂纳米粒子和酸性离子液体构成的Pt-[HSO_3-b-N(CH_3)_3]HSO_4拟均相双功能催化剂;考察了醇/水比、回流时间及不同醇类等制备条件,以及铂纳米粒子含量、离子液体浓度、温度、氢分压等反应条件对硝基苯加氢合成对氨基苯酚反应性能的影响。优化确定了适宜的制备条件和反应条件,硝基苯转化率为99.3%,对氨基苯酚收率为77.5%;发现该酸性离子液体不仅起到酸催化剂的作用,而且还作为保护剂、稳定剂、分散剂能有效阻止Pt纳米粒子的团聚。
     采用溶胶-凝胶法、浸渍法及化学键合法对铂-离子液体催化剂的固定化进行了研究,制备了Pt-离子液体/SiO_2固载型双功能催化剂。
     利用溶胶-凝胶法将离子液体包埋在硅胶中,得到Pt-[HSO_3-b-N(CH_3)_3]HSO_4/SiO_2双功能催化剂,考察了铂固载量、制备温度、乙醇用量及凝胶老化时间等制备条件对催化反应性能的影响,在优化条件下,硝基苯转化率为66.7%,对氨基苯酚收率28.8%。
     针对铂和离子液体的负载过程,分别利用顺序浸渍法和同时浸渍法制备了Pt-[HSO_3-bmim]HSO_4/SiO_2双功能催化剂。考察了负载量、干燥方式、还原方法等制备条件等对催化反应性能的影响。优化条件下,硝基苯转化率为68.6%,对氨基苯酚收率为41.4%。
     合成并表征了一种新型Brφnsted酸性离子液体1-乙烯基-3-磺丁基咪唑硫酸氢盐([HSO_3-bvim]HSO_4),并通过自由基链转移反应将该酸性离子液体用化学键固定于氢硫基官能团化的硅胶表面,制备出了[HSO_3-bvim]HSO_4/SiO_2固体酸催化剂,再利用化学还原方法在该固体酸催化剂上负载金属铂,得到Pt-[HSO_3-bvim]HSO_4/SiO_2双功能催化剂。该双功能催化剂的反应性能较低,主要原因是键合在硅胶表面的离子液体数量较少和空间位阻作用造成的。但由于化学键合作用,使其稳定性明显高于溶胶-凝胶法和浸渍法制备的催化剂。
p-Aminophenol (PAP) is an important intermediate for organic synthesis and is widely used for the production of medicine, dyestuff, rubber and photographic chemicals, etc.. In this study, to settle the problems, such as the use of sulfuric acid, in the production of PAP through catalytic hydrogenation of nitrobenzene, a novel catalyst system, composed of metallic Pt and acidic ionic liquid, was designed and prepared to develop the environmentally benign technology for PAP synthesis.
     A novel quaternary ammonium type of Brφnsted acidic ionic liquid, N,N,N-trimethyl-N- sulfobutyl hydrogen sulfate ([HSO_3-b-N(CH_3)_3]HSO_4), was synthesized through a two-step method. FTIR, NMR, ESI-MS and elementary analysis were used to characterize its structure. The ionic liquid showed a high catalytic activity for the rearrangement of phenylhydroxylamine. A supported ionic liquid catalyst, [HSO_3-b-N(CH_3)_3]HSO_4-SiO_2, was prepared using sol-gel method. Under the optimized conditions, the phenylhydroxylamine conversion and PAP selectivity over the supported catalyst were 100% and 60.5%, respectively.
     A novel highly efficient bifunctional catalyst system, Pt/SiO_2+[HSO_3-b-N(CH_3)_3]HSO_4, composed of hydrogenation sites in solid state and rearrangement active sites in liquid state was designed and prepared for the nitrobenzene hydrogenation to PAP. The effects of the amount of Pt/SiO_2 catalyst, ionic liquid concentration, reaction medium, promoter, and reaction conditions on the nitrobenzene hydrogenation were investigated. The best amount of Pt/SiO_2 catalyst and suitable ionic liquid concentration were determined, and were 5wt% and 22.5wt%, respectively. Under the suitable conditions, the nitrobenzene conversion and PAP selectivity over the bifunctional catalyst were 96.6% and 81.4%, respectively. The catalytic activity was higher than that of sulfuric acid system, which was attributed to the solubility enhancement of nitrobenzene due to the nature of quaternary ammonium type of acidic ionic liquid. The structure of the recovered ionic liquid showed a good stability, and the catalytic activity of the bifunctional catalytic system was no obvious deactivation after recycled 3 times.
     Using the acidic ionic liquid [HSO_3-b-N(CH_3)_3]HSO_4,a novel method for simultaneously preparing of the uniformly dispersed Pt nanoparticles without using polymer as protecting agent, and a novel bifunctional catalyst with metallic and acidic active sites was developed. TEM, UV-Vis, FTIR, XPS, and XRD were used to characterize its structure. The Pt nanoparticles had a face-centered cubic structure with diameters about 3nm, and could be maintained in good dispersed state for more than 4 months.
     The pseudo homogenous bifunctional catalyst Pt-[HSO_3-b-N(CH_3)_3]HSO_4 was prepared by direct method. The effects of the preparation conditions, such as alcohol/H_2O ratio, reflux time and different alcohol, and the reaction conditions, including content of Pt nanoparticles, ionic liquid concentration, temperature, and H_2 pressure, on the nitrobenzene hydrogenation to PAP were investigated. Under the suitable conditions, the nitrobenzene conversion was 99.3%, and the PAP yield was 77.5%. In addition, it was found that the ionic liquid served not only as the acidic catalyst, but also the stabilizing agent to inhibit the aggregation of Pt nanoparticles.
     The immobilization of Pt-ionic liquid catalyst was studied through sol-gel, impregnation and chemically bonded method.
     The bifunctional catalyst, Pt-[HSO_3-b-N(CH_3)_3]HSO_4/SiO_2, was obtained by embedding ionic liquid into silica particles though sol-gel method. The effects of amount of Pt, preparation temperature, ethanol amount and aging time on the catalyst performance for nitrobenzene hydrogenation to PAP were investigated. Under the optimized conditions, the nitrobenzene conversion and the PAP yield were 66.7% and 28.8%, respectively.
     Pt-[HSO_3-bmim]HSO_4/SiO_2 bifunctional catalysts were prepared by successive impregnation and co-impregnation methods. The effects of loadings, dry, and reduction on its catalytic activity were investigated. Under the optimized conditions, the nitrobenzene conversion and the PAP yield were 68.6% and 41.4%, respectively.
     A novel Br?nsted type of acidic ionic liquid 1-vinyl-3-sulfobutyl imidazolium hydrogen sulfate, [HSO_3-bvim]HSO_4, was synthesized, and immobilized on silica gel, functionalized by sulphydryl, via free radical chain transfer reaction to obtain [HSO_3-bvim]HSO_4/SiO_2 solid acid catalyst. Then metallic Pt was supported on it using chemical reduction method to obtain the bifunctional catalyst Pt-[HSO_3-bvim]HSO_4/SiO_2. The catalyst showed a relative lower activity for nitrobenzene hydrogenation to PAP due to the less amount of ionic liquid bonded on the silica and the space hindrance effect. However, with the chemical bond, catalytic stability of it was better than those of the catalysts prepared by sol-gel and impregnation methods.
引文
[1]林彬,王艳华,董中宁.对氨基苯酚的合成及其应用.沈阳化工, 1997, 26(4): 35-38
    [2]陈学梅.对氨基苯酚的合成工艺.化学工业与工程技术, 1997, 18(1): 35-37
    [3]李好管.对氨基苯酚的技术、应用及市场.上海化工, 2001, 18: 33-36
    [4]张家杰.对氨基苯酚产需现状及发展趋势.化工科技市场, 2006, 29(12): 11-14
    [5]章芳.对氨基苯酚发展建议.精细化工原料及中间体, 2007, (4): 33-35
    [6]高洪,袁华,喻宗沅.对氨基苯酚的合成及应用述评.湖北化工, 2000, (2): 1-2
    [7]刘竹青,胡爱琳,周宗仁,等.硝基苯加氢制对氨基苯酚Pt/C催化性能研究.天然气化工, 1998, (6): 37-40
    [8]范薇.对氨基苯酚的合成方法及应用前景.开封大学学报, 2003, 116 (3): 58-60
    [9]Caskey C C, Chapman D W. Process for preparing p-aminophenol and alkyl substituted p-aminophenol[P]. US, 4571437. 1986
    [10]Rylander P N, Karpenko I M, Pond G R. Process for preparing para-aminophenol[P]. US, 3715397. 1970
    [11]Lee L T, Ch M H, Yao Ch N. Process for manufacturing p-aminophenol[P]. US, 4885389. 1989
    [12]梁诚.浅析硝基苯催化加氢制备对氨基酚.南化科技信息, 1998, (3): 1-8
    [13]尹春凯,王幸宜,卢冠忠. Pt/C催化剂催化硝基苯加氢制对氨基苯酚工艺过程剖析.工业催化, 2000, 8(5): 13-17
    [14]Kao J, Tzu F. Improved hydrogenation process for preparing 4-aminophenol[P]. EP, 0289297. 1988
    [15]Nicholas P, Pittsburgh. Hydrogenation of nitrobenzene to p-aminophenol[P]. US, 3953509. 1976
    [16]王莲鸳,程振兴,薛勇,等.硝基苯加氢合成对氨基酚用负载铂催化剂的制备.催化学报, 2002, 23 (1): 19-23
    [17]刘志东,陈冒藻.硝基苯催化加氢合成对氨基苯酚的研究概况.燃料工业, 1996, l33(4): 27-31
    [18]Chandrashekhar V R, Manisha J V, Raghunath V C. Single step hydrogenation of nitrobenzene to p-aminophenol[P]. US, 6403833. 2002
    [19]崔咏梅.硝基苯加氢催化合成对氨基苯酚的工艺研究: [硕士学位论文].保存地点:河北工业大学, 2005
    [20]Eugene M, Sommerville. Method of producing aminophenol using a rhodium/carbon catalyst with synergistic quantities of rhodium trichloride or rhodium tribromide[P]. US, 4051187. 1977
    [21]武森涛,储伟,崔名全.助剂改性活性炭担载Pt催化剂催化硝基苯加氢制对氨基苯酚[J].合成化学, 2003, 11(3): 257-259
    [22]Chaudhari R V, Diveher S S, Vaidya M J, et al. Single step process for the prepration of p-aminophenol[P].US, 6028227. 2000
    [23]Takayuki K, Tatsuo H. Gas phase synthesis of para-aminophenol from nitrobenzene on Pt/zeolite catalysts. Applied Catalysis A: General, 2004, 276(1-2): 95-102
    [24]马原辉.金属/固体酸催化剂上合成对氨基苯酚反应研究: [硕士学位论文].保存地点:河北工业大学, 2007
    [25]李汝雄.绿色溶剂-离子液体的合成与应用.北京:化学工业出版社, 2004.10
    [26]顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料.科学通报, 2004, 49(6): 515-521
    [27]邓友全.离子液体介质与材料研究进展.成果与应用, 2005, 20 (4): 297-300
    [28]Holbrey J D, Seddon K R. Ionic liquids. Clean Prod Process, 1999, 1: 223-236
    [29]Welton T. Room-temperature ionic liquids. Solvents for synthesisand catalysis. Chem Rev, 1999, 99(8): 2071-2083
    [30]Wilkes J S, Zaworotko M J. Air and water stable 1-Ethyl-3-methylimjdazolium based ionic Liquids.Chem Commun, 1992, (13): 965-967
    [31]张锁江,吕兴梅,等.离子液体-从基础研究到工业应用.科学出版社, 2006, 2
    [32]Seddon K R. Ionic Liquids for clean technology. J Chem Technol Biotech, 1997, 68(4): 351-356
    [33]Wilkes J S, Levisky J A, Wilson R A, et al. Dialkylimidazolium choroaluminate melts: A new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg Chem, 1982, 21(3): 1263-1264
    [34]Stegemann H, Rhode A, Fullbier H, et al. Room temperature molten polyiodides. Electrochimica Acta.1992, 37(3): 379-383
    [35]Larsen A S, Holbrey J D,Reed C A. One of the most inert anions of modern chemistry. J Am Chem Soc, 2000, 122(14): 7264-7268
    [36]张英峰,李长江,张永安,等.离子液体的分类、合成与应用.化学教育, 2005, (2): 7-12
    [37]Wasserscheid P, Keim W. Ionic liquids-new“solutions”for transition metal catalysis. Angew Chem Int Ed Engl, 2000, 39(21): 3772-3789
    [38]Dymek C J, Stewart J P. Calculation of hydrogen-bonding interactions between ions in room-temperature molten salts. Inorg Chem, 1989, 28: 1472-1476
    [39]Bonhǒte P, Dias A P, Papageorgious N, et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem, 1996, 35(5): 1168-1178
    [40]顾彦龙,彭家建,乔琨,等.室温离子液体及其在催化和有机合成中的应用.化学进展, 2003, 15(3): 222-241
    [41]胡德荣,张新位,赵景芝.离子液体简介.首都师范大学学报(自然科学版), 2005, 26 (2): 40-44
    [42]唐培堃.有机化学中的溶剂效应.化学工业出版社, 1987: 47
    [43]Anthony J L, Maginn E J, Brennecke J F. Solution thermodynamics of imidazolium-based ionic liquids and water. J Phys chem. B, 2001, 105(44): 10942-10949
    [44]Appleby D, Husse C L, Sedden K R.et al. Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. Nature, 1986, 323(16): 614-616
    [45]Hussey C L. Room temperature haloaluminate ionic liquids.Novel solvents for transition metal solution chemistry. Pure Appl Chem, 1988, 60(12): 1763-1772
    [46]Tait S, Osteryoung R A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorg. Chem, 1984, 23(25): 4352-4360.
    [47]Quarmby I C, Mantz R A, Goldenberg L M. Stoichiometry of latent acidity in buffered chloroaluminate ionic liquids. Anal Chem, 1994, 66(21): 3558-3561
    [48]Quarmby I C, Osteryoung R A. Latent acidity in buffered chloroaluminate ionic liquids. J Am Chem Soc, 1994, 116(6): 2649-2650
    [49]Howarth J, Hanlon K, Fayne D, et al. Moisture stable dialkylimidazolium salts as heterogeneous and homogeneous lewis acids in the Diels-Alder reaction. Tetrahedron Lett, 1997, 38(17): 3097-3100
    [50]Yang J G, Yu X Y, Wu H H, et al. The synthesis of 2,4,6-triisopropyl-1,3,5-trioxane catalyzed by ionic liquids. Chinese Chemical Letters, 2005, 16(3): 299-302
    [51]Zhu H P, Yang F, Tang J, et al. Bronsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification. Green Chem, 2003, 5(11): 38-39
    [52]Wu H H, Yang F, Cui P, et al. An efficient procedure for protection of carbonyls in Br?nsted acidic ionic liquid [Hmim]BF4. Tetrahedron Lett, 2004, 45(25): 4963-4965
    [53]Chiappe C, Pieraccini D. Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem, 2005, 18(4): 275-297
    [54]George L, Watson P R. Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir, 2001, 17(20): 6138-6141
    [55]Charmichael A J, Seddon K R. Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye. J Phys Org Chem, 2000, 13: 591-595.
    [56]Dzyuba S V, Bartsch R A. Expanding the polarity range of ionic liquids. Tetrahedron Lett, 2002, 43(26): 4657-4659.
    [57]Wilkes J S. Properties of ionic liquid solvents for catalysis. Journal of Molecular Catalysis A:Chemical, 2004, 214: 11-17
    [58]Swatloski R P, Holbrey J D, Memon S B, et al. Using caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids. Chem Commun, 2004, (6): 668-669.
    [59]Teresa Garcia M, Gathergood N, Scammells P J. Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem, 2005, 7(1): 9-14
    [60]Gathergood N, Garica M T, Scammells P J. The first readily biodegradable ionic liquids. Green Chem,2004, 6(3): 166-175
    [61]Sugden S, Wilkins H. The parachor and chemical constitution PartⅦfused metals and salts. J Chem Soc, 1929, (26): 1291-1298
    [62]Dupont J, Souza R F, Suarez P A. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev, 2002, 102(10): 3667-3692
    [63]Cole A C, Jensen J L, Ntai I, et al. Novel Br?nsted acidic ionic liquids and their use as dual solvent- catalysts. J Am Chem Soc, 2002, 124(21): 5962-5963
    [64]Christian P M, Raymond A C, Nicholas C D, et al. Supported ionic liquid catalysis - a new concept for homogeneous hydroformylationcatalysis. J Am Chem Soc, 2002,124(44): 12932-12933
    [65]Dai L Y, Yu S Y, Shan Y K, et al. Novel Room Temperature Inorganic Ionic Liquids. Eur J Inorg Chem, 2004, 2: 237-241.
    [66]Chan B K M, Chang N, Grimmett R M. The synthesis and thermolysis of imidazole quaternary salts. Australian Journal of Chemistry, 1977, 30(9): 2005-2013
    [67]Hurley F H, Wier T P. Electrodeposition of metals fromfused quaternary ammonium salts. J Electro chem Soc, 1951, 98(5): 203-206
    [68]Dyson P J, Welton T, Williams D J, et al. Organometallic synthesis in ambient temperature chloroaluminate(III) ionic liquids.Ligand exchange reactions of ferrocene. J Chem Soc., Dalton Trans, 1997, 3465-3469
    [69]Deetlefs M, Seddon K R. Improved preparations of ionic liquids using microwave irradiation. Green Chem, 2003, 5: 181-186
    [70]Namboodiri V V, Varma R S. Solvent-Free Sonochemical Preparation of Ionic Liquids. Organic Letters, 2002, 4 (18): 3161-3163
    [71]Fuller J, Carlin R T, Osteryoung R A. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J Electrochem Soc, 1997, 144(11): 3881-3885
    [72]McCamley K, Warner N A, Singer R D, et al. Quantification of chloride ion impurities in ionic liquids using ICP-MS analysis. Green chem, 2004, 6: 341-344
    [73]Fuller J, Carlin R T, Haworth D, et al. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate : model for room temperature molten salts. J Chem Soc,.Chem Commun, 1994, (3): 299-300.
    [74]Poole C F, Kersten B R, Coddens M. E, et al. Organic salts, liquid at room temperature, as mobile phases in liquid chromatography. J Chromatography A, 1986, 352(c): 407-425
    [75]Koch V R, Dominey L A, Nanjundiah C, et al. The intrinsic anodic stability of several anions comprising solvent-free ionic liquids [J ]. J Electrochem Soc, 1996, 143 (3): 798-803
    [76]Bonhote P, Dias A P, Papageorgiou N, et al. Hydrophobic,highly conductive ambient-temperature molten salts. Inorg Chem, 1996, 35(5): 1168-1178
    [77]Wasserscheid P, Hal R V, Bosmann A. 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even‘greener’ionic liquid. Green Chemistry, 2002, 4(4): 400-404
    [78]Yoshida Y, Muroi K, Otsuka A, et al. 1-ethyl-3-methylimidazolium based ionic liquids containing cyano groups: synthesis, characterization, and crystal structure. Inorganic Chemistry, 2004, 43(4): 1458-1462
    [79]MacFarlane D R, Forsyth S A, Deacon G B, et al. Ionic liquids based on imidazolium.ammonium.and pyrrolidinium salts of the dicyanamide ion. Green Chemistry, 2002, 4: 444-448
    [80]Zhou Z B, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids:1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem Eur J, 2004, 10(24): 6581-6591
    [81]Golding J, Forsyth S, MacFarlane D R, et al. Methanesulfonate and p-toluenesulfonate salts of the N-methyl-N-alkylpyrrolidinium and quaternary ammonium cations: novel low cost ionic liquids. Green Chemistry, 2002, 4: 223-229
    [82]Ford W T, Hauri R J, Hart D J. Syntheses and properties of molten tetraalkylammonium etraalkylborides. J Org Chem, 1973, 38(22): 3916-3918
    [83]Michiko H, Hiromi S, Hiroyuki O. Preparation of novel room-temperature molten salts by neutralization of amines. J Electrochem Soc, 2000, 147 (11): 4168-4172
    [84]Ohno H, Yoshizawa M. Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles. Solid State Ionics, 2002, 154-155(c): 303-309
    [85]Poole S K, Shetty P H, Poole C F. Chromatographic and spectroscopic studies of the solvent properties of a new series of room-temperature liquid tetraalkylammonium sulfonates. Analytica Chimica Acta, 1989, 218(2): 241-264
    [86]Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc, 2005, 127(8): 2398-2399
    [87]Zhang J, Martin G R, DesMarteau D D. Direct methylation and trifluoroethylation of imidazole and pyridine derivatives. Chem Commun, 2003, (18): 2334-2335
    [88]Wasserscheid P, Hal R V, Steffens H C, et al. New, functionalised ionic liquids from michael-type reactions-a chance for combinatorial ionic liquid development. Chem Commun, 2003, (16): 2038-2039
    [89]Handy S T, Okello M, Dickenson G. Solvents from biorenewable sources: ionic liquids based on fructose. Organic Letters, 2003, 5(14): 2513-2515
    [90]Gordon C M. New developments in catalysis using ionic liquids. Appl Catal A General, 2002, 222: 101-117
    [91]邓友全,石峰,彭家建,等.微孔材料装载金属络合物离子液体催化剂.中国专利. CN, 1389298A. 2003
    [92]Bao W, Wang Z, Li Y. Synthesis of chiral ionic liquids fromnatural amino acids. J Org Chem, 2003, 68: 591-593
    [93]Mathews C J, Smith P J, Welton T. Palladium catalysed Suzuki cross-coupling reactions in ambienttemperature ionic liquids. Chem Commun, 2000, (10): 1249-1250
    [94]Revell J D, Ganesan A. Ionic liquid acceleration of solid-phase suzuki?miyaura cross-coupling reactions. Org Lett, 2002, 4(18): 3071-3073
    [95]Kabalka G W, Dong G, Venkataiah B. Rhodium-catalyzed cross-coupling of allyl alcohols with aryl- and vinylboronic acids in ionic liquids. Org. Lett, 2003, 5(6): 893-895
    [96]Handy S T, Zhang X L. Organic synthesis in ionic liquids: the stille coupling. Org. Lett, 2001, 3(2): 233-236
    [97]Fukuyama T, Shinmen M, Nishitani S, et al. A copper-free sonogashira coupling reaction in ionic liquids and its application to a microflow system for efficient catalyst recycling. Org Lett, 2002, 4(10): 1691-1694
    [98]Howarth J, James P, Dai J F. The coupling of aryl halides in the ionic liquid [bmim]PF6. Tetrahedron Lett, 2000, 41(52): 10319-10321
    [99]Chiappe C, Pieraccini D, Saullo P. Nucleophilic displacement reactions in ionic liquids: substrate and solvent effect in the reaction of NaN3 and KCN with alkyl halides and tosylates. J Org Chem, 2003, 68(17): 6710-6715
    [100]Luo Y, Wu J X, Ren R X. Ullmann diaryl ether synthesis in ionic liquids. Synlett, 2003, 1(1): 1734-1736
    [101]Kim D W, Song C E, Chi D Y. Significantly enhanced reactivities of the nucleophilic substitution reactions in ionic liquid.J Org Chem, 2003, 68(11): 4281-4285
    [102]Kim D W, Song C E, Chi D Y. New method of fluorination using potassium fluoride in ionic liquid: significantly enhanced reactivity of fluoride and improved selectivity. J Am Chem Soc, 2002, 124(35): 10278-10279
    [103]Song C E, Oh C R, Choo D J, et al. Cr(salen) catalysed asymmetric ring opening reactions of epoxides in room temperature ionic liquids. Chem Commun, 2000, (18): 1743-1744
    [104]Gordon C M, McCluskey A. Ionic liquids: a convenient solvent for environmentally friendly allylation reactions with tetraallylstannane. Chem Commun, 1999, (15): 1431-1432
    [105]Broeke J V D, Winter F, Deelman B J, et al. A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling. Org Lett, 2002, 4(22): 3851-3854
    [106]Kumar A, Pawar S S. AlCl3-catalysed dimerization of 1,3-cyclopentadiene in the chloroaluminate room temperature ionic liquid. Journal of Molecular Catalysis A: Chemical, 2004, 208(1-2): 33-37
    [107]Stenzel O, Brull R,Wahner U M, et al. Oligomerization of olefins in a chloroaluminate ionic liquid [ J ]. Journal of Molecular Catalysis A: Chemical, 2003, 192: 217-222
    [108]Carmichael A J, Haddleton D M, Seddon K P, et al. Copper(I) mediated living radical polymerisation in an ionic liquid. Chem Commun, 2000, (14): 1237-1238
    [109]Fraga-Dubreuil J, Bazureau J P, Hamelin J, et al. Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media. Catalysis Communications, 2002, 3(5): 185-190
    [110]Adams C J, Earle M.J, Seddon K R. Catalytic cracking reactions of polyethylene to light alkanes in ionicliquids. Green Chem, 2000, (2): 21-24
    [111]Nara S J, Harjani J R, Salunlche M M. Lipase-catalysed transesterification in ionic liquids and organic solvents: a comparative study. Tetrahedron Letters, 2002, 43(16): 2979-2982
    [112]Wasserscheid P, Waffenschmidt H. Ionic liquids in regioselective platinum-catalysed hydroformylation [J]. Journal of Molecular Catalysis A: Chemical. 2000, (164): 61-67
    [113]Earle M J, McCormac P B, Seddon K R. Regioselective alkylation in ionic liquids. Chem Commun, 1998, (20): 2245-2246
    [114]Waffenschmidt H, Wasserscheid P. Ionic liquids in regioselective platinum-catalysed hydroformylation. J Mol Catal A: Chemica1, 2001, (164): 61-67
    [115]Laali K K, Gettwert V J. Electrophilic nitration of aromatics in ionic liquid solvents. J Org Chem, 2001, 6(1): 35-40
    [116]Song C E, Roh E J. Practical method to recycle a chiral(salen) Mn epoxidation catalyst by using an ionic liquid. Chem Commun, 2000, (10): 837-838
    [117]Lau R M, Rantwijk F V, Seddon K R, et al. Lipase-Catalyzed Reactions in Ionic Liquids. Org Lett, 2000, 2(26): 4189-4191
    [118]Ross J, Chen W P, Xu L J, et al. Ligand effects in palladium-catalyzed allylic alkylation in ionic liquids. Organometallics, 2001, 20(1): 138-142
    [119]Freemantle M, Designer solvents-ionic liquids may boost clean technology development.Chem Eng News, 1998, 76(13): 32-37
    [120]韩金玉,黄鑫,王华,等.绿色溶剂离子液体的性质和应用研究进展.化学工业与工程, 2005, 22(1): 62-66
    [121]Huddlestou J G, Willauer H D, Swatloski R P. Room temperatureionic liquids as novel media for clean liquid liquid extraction. Chem Commun, 1998, (16): 1765-1766
    [122]Visser A E, Swatloski R P, Rogers R D, et al. Task-specific ionic liquidsfor the extraction of metal ions from aqueous solutions. Chem Commun, 2001, (10): 135-136
    [123]Harmon C D, Smith W H, Costa D A. Criticability calculations forplutonium metal at room temperature in ionic liquid solutions. Radiation Physics and Chemistry, 2001, 60(3): 157-159
    [124]Zhang S, Zhang Q, Zhang Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind Eng Chem Res, 2004, 43(2):614-622
    [125]Gu Y L, Shi F, Yang H, et al. Leaching separation of taurine and sodiumsulfate solid mixture using ionic liquids. Sepn Pur Tech, 2004, 35(2): 153-159
    [126]Scurto A M, Aki S N V K, Brennecke J F. CO2 as a separationswitch for ionic liquid/organic mixtures. J Am Chem Soc, 2002, (124): 10276-10277
    [127]B?smann A, FranciòG, Janssen E, et al. Activation, tuning,andimmobilization of homogeneous catalysts in an ionic liquid/compressed CO2 continuous-flow system. Angewandte Chemie(International Edition inEnglish), 2001, 40(14): 2697-2699
    [128]苏策,张磊,张应鹏.离子液体/水混合溶剂促进醛酮还原反应.兰州理工大学学报, 2008, 34(4): 74-76
    [129]练习中,李毅群,周美云.离子液体/水混合溶剂促进芳醛与罗丹宁的缩合反应.有机化学, 2006, 26(9): 1272-1274
    [130]龚勇华,薛浩然,何鸣远,等.离子液体[bmim]BF4/水混合溶剂中的1-丁烯氢甲酰化反应研究.有机化学, 2004, 24(9): 1108-1110
    [131]Li D M, Shi F, Deng Y Q, et al. One-step C=N, C=O bonds cleavage and C=O, C=N bonds formation over supported ionic liquid in water. Tetrahedron Letters, 2004, 45(21): 6791-6794
    [132]陶国宏,陈知宇,何玲,等.设计新型液液两相催化体系:兀配体离子液体.催化学报, 2005, 26(3): 253-260
    [133]Zhu H P, Yang F, Tang J, et al. Br?nsted acidic ionic liquid1-methylimidazolium tetrafluoroborate: a green catalyst and recyclablemedium for esterification. Green Chem, 2003, (5): 38-39
    [134]寇元,杨雅立.功能化的酸性离子液体.石油化工, 2004, 33(4): 297-302
    [135]徐寿昌.有机化学.高等教育出版社,2003, 5
    [136]Gordon C M. New development in catalysis using ionic Liquids. Appl Catal A, 2001, 222(1-2): 101-1l7
    [137]Sheldon R.Catalytic reactions in ionic liquids. Chem Commun, 2001, (23): 2399-2407
    [138]Olivier-Bourbigou H, Magna L. Ionic liquids: perspectives for organic and catalytic reactions. J Mol Catal A, 2002, (182-183): 419-437
    [139]Sitze M S, Schreiter E R, Patterson E V, et a1 .Ionic liquids based on FeCl3 and FeCl2: Raman scattering and ab initio calculations. Inorg Chem, 2001, 40(10): 2298-2304
    [140]Abbott A P, Capper G, Davies D L, et a1. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quatemary ammonium salts with functional side chains. Chem Commun, 2001, 19(1): 2010-2011
    [141]刘鹰,刘植昌,黄崇品,等.氯铝酸离子液体催化异丁烷/丁烯烷基化反应.化学反应工程与工艺,2004, 20(3): 229-234
    [142]陈治明,李霞,余大坤.离子液体超酸催化合成乙酸乙酯.贵州师范大学学报(自然科学版), 2004, 22(3): 71-73
    [143]Smith G P, Dworkin A S, Pagni R M, et al. Br?nsted superacidity of HCl in a liquid chloroaluminate AlCl3-1-ethyl-3-methyl-1H-imidazolium chloride. J Am Chem Soc, 1989, 111(2): 525-530
    [144]Wasserscheid P, Sesing M, Korth W. Hydrogensulfate and tetrakis(hydrogensulfato)borate ionic liquids: synthesis and catalytic application in highly Br?nsted-acidic systems for Friedel-Crafts alkylation. Green Chem, 2002, (4): 134-138
    [145]Thomazeau C, Olivier-Bourbigou H, Magna L, et a1. Determination of an acidic scale in room temperature ionic liquids. J Am Chem Soc, 2003, 125(5): 264-265
    [146]Li D M, Shi F, Peng J J, et a1. Application of functional ionic liquids possessing two adjacent acid sites for acetalization of aldehydes. J Org Chem. 2004, 69(10): 3582-3585
    [147]Gu Y L, Shi F, Deng Y Q..Esterification of aliphatic acids with olefin promoted by Br?nsted acidic ionic liquids. Journal of Molecular Catalysis A: Chemical, 2004, 212(1-2): 71-75
    [148]Shi F, He Y D, Li D M, et a1. Developing effective catalyst system for reductive carbonylation of nitrobenzene based on the diversity of ionic liquids. Journal of Molecular Catalysis A: Chemical, 2006, 244(1-2): 64-67
    [149]Gu Y L, Shi F, Deng Y Q. SO3H-functionalized ionic liquid as efficient, green and reusable acidic catalyst system for oligomerization of olefins. Catal Commun, 2003, (4): 597-601
    [150]陈晓梅,桂建舟,丛晓辉,等.功能化酸性离子液体催化异丁醛环化三聚反应.石油化工高等学校学报, 2005, 18(3): 30-35
    [151]Gui J Z, Cong X H, Liu D, et al. Novel Br?nsted acidic ionic liquid as efficient and reusable catalyst system for esterification. Catal Commun, 2004, (5): 473-477
    [152]丛晓辉,桂建舟,陈晓梅,等. SO3H-离子液体催化苯酚和叔丁醇选择性烷基化反应.石油化工高等学校学报, 2005, 18(2): 1-6
    [153]Gui J Z, Ban H Y, Cong X H, et al.Selective alkylation of phenol with tert-butyl alcohol catalyzed by Br?nsted acidic imidazolium salts. Journal of Molecular Catalysis A: Chemical, 2005, 225(1): 27–31
    [154]Gui J J, Deng Y Q, Hu Z D, et al. A novel task-specific ionic liquid for Beckmann rearrangement: a simple and effective way for product separation. Tetrahedron Lett, 2004, 45(12): 2681-2683
    [155]桂建舟,刘丹,丛晓辉,等.酸性离子液体中环己烯催化氧化合成己二酸.石油化工高等学校学报, 2006, 1(1): 6-9
    [156]Forbes D C, Weaver K J. Br?nsted acidic ionic liquid: the dependence on water of the Fischer esterification of acetic acid and ethanol. Journal of Molecular Catalysis A: Chemical, 2004, 214(1): 129-132
    [157]王晓化,陶国宏,吴晓牧,等.离子液体酸性的红外光谱探针法研究.物理化学学报, 2005, 21(5): 528-533
    [158]Antonietti M, Kuang D B, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angewandte Chemie-International Edition, 2004, 43(38): 4988-4992
    [159]Dai S, Ju Y H, Gao H J, et al. Preparation of silica aerogel using ionic liquids as solvents. Chem Commun, 2000, (3): 243-244
    [160]Zhou Y, Antonietti M. Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique. Adv Mater, 2003, 15(17): 1452-1455
    [161]Attard G S, Glyde J C, Goltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature, 1995, 378: 366-368
    [162]Zhou Y, Antonietti M. A series of highly ordered, super-microporus, lamellar silicas prepared bynanocasting with ionic liquids. Chem Mater, 2004, 16: 544-550
    [163]Zhou Y, Antonietti M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure. Chem Commun, 2003, 2564-2565
    [164]Kuang D B, Brezesinski T, Smarsly B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. J Am Chem Soc, 2004, 126 (34): 10534-10535
    [165]Zhou Y, Schattka J H, Antonietti M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique. Nano Letters, 2004, 4(3): 477 -481
    [166]Cooper E R, Andrews C D, Wheatley P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 2004, 430(7003): 1012-1016
    [167]Zhou Y, Antonietti M. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J Am Chem Soc, 2003, 125(49): 14960-14961
    [168]Yoo K, Choi H, Dionysiou D D. Ionic liquid assisted preparation of nanostructured TiO2 particles. Chem Commun, 2004, (17): 2000-2001
    [169]Nakashima T, Kimizuka N. Intedacial synthesis of hollow TiO2 microspheres in ionic liquid.J Am Chem Soc, 2003, 125(21): 6386-6387
    [170]Dupont J, Fonseca G S, Umpierre A P, et al. Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions. J Am Chem Soc, 2002, 124(16): 4228-4229
    [171]Fonseca G S, Umpierre A P, Fichtner P F P, et al. The Use of imidazolium ionic liquids for the formation and stabilization of Ir0 and Rh0 nanoparticles: efficient catalysts for the hydrogenation of arenes.Chem Eur J, 2003, 9(14): 3263-3269
    [172]Huang J, Jiang T, Han B X, et al. Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid. Chem Commun, 2003,14: 1654-1655
    [173]张晟卯,张春丽,张经纬,等.室温离子液体中银纳米微粒的制备与结构表征.物理化学学报, 2004, 20(5): 554-556
    [174]Silveira E T, Umpierre A P, Rossi L M, et al. The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids. Chem Eur J, 2004, 10(15): 3734-3740
    [175]Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc, 2004, 126(10): 3026-3027
    [176]张晟卯,李健,张春丽,等.羧基功能化离子液体修饰Pd纳米微粒的制备及结构表征.无机化学学报, 2007, 23(4): 729-732
    [177]江炎兰,张金春,王杰,等.纳米材料的性能与应用[J].兵器材料科学与工程, 2001, 24(6): 64-68
    [178]Duff D G, Edwards P P, Johnson B F G. Formation of polymer protected platinum sol: a new understanding of the parameters controlling morphology. J Phys Chem, 1995, 99(43): 15934-15944
    [179]Teranishi T, Hosoe M, Tanaka T, et al. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J Phys Chem B, 1999, 103(19): 3818-3827
    [180]刘汉范.高分子稳定纳米金属簇的合成及催化研究.高分子通报, 2005, (4): 76-81
    [181]Xiao C X, Wang H Z, Kou Y, et al. Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquidsI. Platinum catalyzed selective hydrogenation of o-chloronitrobenzene. Journal of Catalysis. 2007, 250: 25-32
    [182]Zou M, Mu X D, Kou Y, et al. Selective hydrogenation of cinnamaldehyde by ionic copolymer-stabilized Pt nanoparticles in ionic liquids. Chin J Catal, 2007, 28(5): 389-391.
    [183]Scheeren C W, Machado G, Dupont J, et al. Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg Chem, 2003, 42(15): 4738-4742
    [184]Yan J Y, Kung H H, Sachtler W M H, et al. Synergistic effect in lean NOx reduction by CH4 over Co/ Al2O3 and H-zeolite catalysts. J Catal, 1998, 175(2): 294-301
    [185]胡竟民,徐宏芬,鲁耘,等.碳五馏份醚化多功能催化剂的研究.石油化工, 1999, 28(6): 354-358
    [186]滕丽华,鲁文质,李霞,等.合成二甲醚过程中的多功能催化协同效应.华东理工大学学报, 2004, 30(4): 365-369
    [187]周广林,张文慧,周红军,等.焦化干气一步法预处理多功能催化剂的工业侧线试验.石油化工, 2007, 36(9): 948-951
    [188]Struijk J, Scholten J J F. Selectivity to cyclohexenes in the liquid phase hydrogenation of benzene and toluene over ruthenium catalysts, as influenced by reaction modifiers. Appl Catal A, 1992, 82(2): 277-287
    [189]Chou P, Vannice M A. Benzene hydrogenation over supported and unsupported palladium. J Catal, 1987, 107(1): 129-139
    [190]Hari Prasad Rao P R, Ueyama K, Matsukata M. Crystallization of high silica BEA by dry gel conversion. Appl Catal A: General, 1998, 166(1): 97-103
    [191]邱俊,小村贞一,田好浩,等. Pd/Hβ双功能催化剂上苯加氢烷基化合成环己基苯.催化学报, 2007, 28(3): 246-250
    [192]钟琳,肖建良,李灿.多相双功能催化剂上的不对称直接Aldol反应.催化学报, 2007, 28(8): 673-675
    [193]Okino T, Hoashi Y, Takemoto Y. Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J Am Chem Soc, 2003, 125(42): 12672-12673
    [194]Wang J, Li H, Duan W H, et al. Organocatalytic asymmetric Michael addition of 2,4-pentandione to nitroolefins. Org Lett, 2005, 7(21): 4713-4716
    [195]Wang J, Li H, Zu L, et al. Chiral binaphthyl-derived amine-thiourea organocatalyst-promoted asymmetric Morita-Baylis-Hillman reaction. Org Lett, 2005, 7(19): 4293-4296
    [196]Sohtome Y, Hashimoto Y, Nagasawaa K. Guanidine-thiourea bifunctional organocatalyst for the asymmetric Henry(Nitroaldol) reaction. Adv Synth Catal, 2005, 347(11-13): 1643-1648
    [197]Castro D C, Sauvage E, Valkenberg M H, et al. Immobilised ionic liquids as lewis acid catalysts for the alkylation of aromatic compounds with dodecene. J Catal, 2000, 196(1): 86-94.
    [198]Valkenberg M H, De Castro C, H?lderich W F. Friedel?Crafts acylation of aromatics catalysed by supported ionic liquids. Appl Catal A: Gen, 2001, 215(1-2): 185-190.
    [199]Mehnert C P. Supported Ionic Liquid Catalysis. Chem Eur J, 2005, 11(1): 50-56.
    [200]Qiao K, Hagiwara H, Yokoyama C. Acidic ionic liquid modified silica gel as novel solid catalysts for esterification and nitration reactions. J Mol Catal A: Chem, 2005, 246: 65-69.
    [201]Mikkola J P, Aumo J, Murzin D Y, et al. Structured but not over-structured: woven active carbon fibre matt catalyst. Catal Today, 2005, 105(3-4): 325-330
    [202]Mehnert C P, Cook R A, Dispenziere N C, et al. Supported ionic liquid catalysis-a new concept for homogeneous hydroformylation catalysis. JACS Commun, 2002, 124(44): 12932-12933
    [203]Shi F, Zhang Q H, Li D M, et al. Silica-gel-confined ionic liquids:a new attempt for the development of supported nanoliquid catalysis. Chem Eur J, 2005, 11(18): 5279-5288
    [204]Howarth J. Oxidation of aromatic aldehydes in the ionic liquid [bmim]PF6. Tetrahedron Letter, 2000, 41(34): 6627-6629
    [205]Horvath I T, Rabai J. Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science, 1994, 266(5182): 72-75
    [206]Song C E, Roh E J. Practical method to recycle a chiral (salen) Mn epoxidation catalyst by using an ionic liquid. Chem Commun, 2000, (10): 837-838
    [207]Owens G S, Abu-Omar M M. Methyltrioxorhenium-catalyzed epoxidations in ionic liquids. Chem Commun, 2000, (13): 1165-1166
    [208]Ellis B, Keim W, Wasserscheid P. Linear dimerisation of but-1-ene in biphasic mode using buffered chloroaluminate ionic liquid solvents. Chem Commun,1999, (4): 337-338
    [209]Wasserscheid P. Inovative Losungsmittel fiir die Zweiphasenkatalyse. Chemie in Unserer Zeit, 2003, 37 (1): 53-63
    [210]Chaloner P A, Esteruelas M A, JoéF, et al. Homogeneous hydrogenation. Dordrecht: Kluwer Academic Publisher, 1994
    [211]Chauvin Y, Mussmann L, Olivier H. A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angew Chem Int Ed Engl, 1995, 34 (23-24): 2698-2700
    [212]Brown R A, Pollet P, Mckoon E, et al. Asymmetric hydrogenation and catalyst recycling using ionic liquid and supercritical carbon dioxide. J Am Chem Soc, 2001, 123(6): 1254-1255
    [213]Zim D, de Souza R F, Dupont J, et al. Regioselective synthesis of 2-arylpropionic esters by palladium-catalyzed hydroesterification of styrene derivatives in molten salt media. Tetrahedron Letter, 1998, 39(39): 7071-7074
    [214]Mizushima E, Hayashi T, Tanaka M. Palladium-catalysed carbonylation of aryl halides in ionic liquid media: high catalyst stability and significant rate-enhancement in alkoxycarbonylation. Green Chem, 2001,3(2): 76-79.
    [215]乔焜,邓友全.室温离子液体反应介质中叔丁醇氢酯基化反应的研究.化学学报, 2002, 60(6): 996-1000
    [216]Peng J J, Deng Y Q. Catalytic Beckmann rearrangement of ketoximes in ionic liquids. Tetrahedron Lett, 2001, 42(3): 403-405
    [217]Du Z Y, Li Z P, Guo S, et al. Investigation of physicochemical properties of lactam-based Br?nsted acidic Ionic liquids. J Phys Chem B, 2005, 109(41): 19542-19546
    [218]Guo S, Du Z Y, Zhang S G, et al. Clean Beckmann rearrangement of cyclohexanone oxime in caprolactam-based Br?nsted acidic ionic liquids. Green Chem, 2006, 8(3): 296-300
    [219]Kaufmann D E, Nouroozian M, Henze H. Molten salts as an efficient medium for palladium catalyzed C-C coupling reactions. Synlett, 1996, (11): 1091-1092
    [220]Xing H B, Wang T, Zhou Z H, et al. The sulfonic acid-functionalized ionic liquids with pyridinium cations: acidities and their acidity–catalytic activity relationships. Journal of Molecular Catalysis A: Chemical, 2007, 264(1-2): 53-59
    [221]谢文华,叶兴凯,杨向光,等.紫外光谱法测定杂多酸的酸强度.化学世界, 1996, 37(9): 490-492
    [222]金寄春.重排反应.高等教育出版社, 1990: 278
    [223] Cui Y M, Gao J, Wang Sh F, et al. Preparation of p-Aminophenol by Rearrangement of Phenylhydroxylamine in the Br?nsted acidic ionic liquids. The Proceedings of the 8th international symposium on green chemisty in China: Beijing, 2007, 5
    [224]张海涛.氧化硅负载铂金属催化剂及对氨基苯酚催化合成工艺研究: [硕士学位论文].保存地点:河北工业大学, 2004
    [225]黄宝华,汪艳飞,张焜,等. Synthesis of pyrrolidonium acidic ionic liquids and their catalytic activity for esterification of acetic acid and butanol. Chinese Journal of Catalysis, 2007, 28(8): 743-748
    [226]李广学,马建华,蔡春,等. Study on the processs for preparing p-aminophenol from nitrobenzene hydr0genation. Journal of HeFei University of Teachnology, 2005, 28(4): 389-393
    [227]Teranishi T, Miyake M. Size control of palladium nanoparticles and their crystal structures. Chem Mater. 1998, 10(2): 594-600

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700