用户名: 密码: 验证码:
轻型木结构住宅节能与墙体传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻型木结构住宅以其独特的环境友善、节能降耗、结构安全、健康舒适等优势,为人们创造了良好的居住环境。在我国的住宅产业化进程中,尤其是城乡一体化建设,大力推广建造轻型木结构住宅,不仅在节约能源、保护生态方面能为人类社会作出贡献,而且人居环境的改善能给人们带来更舒心的感受。
     住宅节能是当今建筑节能热潮中的重要组成部分,轻型木结构住宅节能是其得以推广使用的基本前提。本论文采用现场检测技术,对地处北京地区的轻型木结构住宅进行节能评价,研究了能耗、墙体保温性能和温湿度调节性能;采用热流计法和热箱法研究了国产材料制备的轻型木结构墙体稳态条件下的保温性能;并通过数值计算,得出了轻型木结构墙体的温度分布,揭示了传热规律。
     论文主要研究结果如下:
     1轻型木结构住宅节能效果显著,对居室空间具有良好的温湿度调节性能。
     (1)轻型木结构和砖混结构住宅用于采暖的年电能消耗分别为120 kWh/(m2·a)和324 kWh/(m2·a),轻型木结构比砖混结构节约电能63%。比地处哈尔滨的砖混复合保温墙体结构和轻型木结构的采暖耗热量分别低48%和10%。
     (2)轻型木结构住宅墙体平均有效传热系数为0.217 W/(m2·K),比我国现行节能65%标准中所规定的墙体传热系数限值还低52%,完全可将该类型的轻型木结构住宅推广到我国的严寒地区使用。
     (3)实验住宅1轻型木结构1层室内温度为5.7℃~31.0℃,平均相对湿度为33%~75%;2层室内温度为6.7℃~34.6℃,平均相对湿度为31%~66%。实验住宅2胶合木结构2层室内温度为0.8℃~37.2℃,平均相对湿度为59%~76%。实验住宅3胶合木结构2层室内温度为-2.4℃~19.8℃,平均相对湿度为40%~44%。在冬季无采暖的条件下,住宅1的保温性能要好于住宅2和住宅3;夏季无制冷条件下,住宅2的相对湿度较稳定。
     (4)在3~10月,轻型木结构外墙内部的温度高于室内和室外。但在11~1月,高于外温约11℃,低于室温3℃,沿着墙体从外向内温度呈增加趋势。墙体具有优良的冬季保温、夏季隔热的作用,且使室内空气温度分布均匀。相对湿度变化规律与温度相反,墙体内部低于室外和室内。
     (5)各住宅在最冷月和最热月的温度变动比平均值均小于0.5,室内相对湿度波幅最小为11%,最大为35%。根据日室内温湿度延迟时间分布看,轻型木结构实验住宅1的温湿度调节性能强,保温防潮效果好;而胶合木结构实验住宅2夏季的相对湿度延迟时间较长,波幅小。
     2人工林木材制备的轻型木结构墙体保温性能优异,可以积极推广使用。
     (1)实验墙体1、2、3、6号有效传热系数为0.489~0.529 W/ (m2·K),其余墙体有效传热系数均<0.4 W/(m2·K)。实验构造墙体的保温性能完全满足木结构住宅和钢筋混凝土框架木骨架填充墙体的使用要求。尤其是12号和13号墙体,有效传热系数<0.3 W/(m2·K),用于严寒地区,节能效果显著。
     (2)采用热箱—热流计法进行墙体保温性能检测,数据更加可靠。应用有效传热系数指标评价轻型木结构墙体保温性能。
     (3)木墙骨框架之间填充岩棉保温,热阻至少提高2倍;胶合板可降低有效传热系数6%,聚苯板可降低有效传热系数26%,挤塑板可降低有效传热系数36%;端面尺寸45×140mm的木墙骨比45×90mm规格的轻型木结构墙体试件的有效传热系数降低6%~32%,对热流的抵抗能力增强。
     3采用数值计算可准确地描述轻型木结构复合墙体各组成单元界面的温度分布。
     (1)采用数值计算得到各组成材料界面的温度,与实验检测值基本吻合,可以直观、有效地评价墙体传热。
     (2)岩棉的填充和挤塑板与聚苯板的覆面外保温决定了墙体构件的保温效果。木材作为框架材料,具有抵抗外界温度波动的作用。
     (3)采用数值计算得出墙体结构各复合层界面上温度动态分布,使建筑师可以预测各种气候环境条件对轻型木结构墙体的长期作用,有利于节能保温设计。
Light-frame wood residence can create a good living environment with advantages of environment-friend, energy-efficiency, structural safety, health and comfort. Therefore, they not only can contribute to human in saving energy source and protecting zoology, but also can provide superior living environment to improving people living comfort, which can be popularized in the course of residence industrialization, especially in the integration of urban-rural areas.
     Energy efficiency in residence buildings is an important part in today's energy boom of architecture, and energy efficiency of the light-frame wood residence is the basic premise to promote to application. In this research energy efficiency was evaluated based on field testing for the light-frame wood residence in Beijing, including energy consume, wall insulation performance, and regulation performance of temperature and humidity; insulation performance of wood frame walls was studied under the conditions of steady-state performance using heat flow meter and hot-box test method, which were fabricated used domestic materials; through numerical calculation, heat transfer regularity of the temperature distribution in the wall was observed.
     The main results of the dissertation are summarized as follows:
     1 Energy-efficiency effect in light-frame wood residence is significant, and the regulation performance of temperature and humidity is well in living space.
     (1)Electricity consumption in wood structure and brick-concrete structure used for residence heating respectively was 120kWh/(m2·a) and 324 kWh/(m2·a). Light-frame wood residence save energy 63% than brick-concrete structure, and save energy 48% than Harbin’s insulation composite brick-concrete structure, also save energy10% than its same frame structure.
     (2)The average effective heat transfer coefficient of light-frame wood wall was 0.217 W/(m2·K), its lower 52% than current standard limit of energy-efficiency 65% in our country.
     (3)In residence 1- light-frame wood house, the indoor temperature was 5.7℃~31.0℃, and the average relative humidity was 33%~75% on the first floor; the indoor temperature was 6.7℃~34.6℃, and the average relative humidity was 31%~66% on the second floor. In residence 2- glued laminated timber house, the indoor temperature was 0.8℃~37.2℃, and the average relative humidity was 59%~76% on the second floor. In residence 3- glued laminated timber house, the indoor temperature was -2.4℃~19.8℃, and the average relative humidity was 40%~44% on the second floor. The insulation performance of light-frame wood house was better than glued laminated timber house in un-heating conditions in winter; the variation of relative humidity of glued laminated timber house was the most stable in un-refrigeration conditions.
     (4)Temperature inner light-frame was higher than indoor and outdoor temperature in March to October. But higher than outdoor temperature about 11℃and lower than indoor temperature about 3℃in November to January, and along the wall from outside to inside, temperature showed an increasing trend. The wall has an excellent thermal insulation in winter and summer, which was helpful for homogeneous distribution of indoor air temperature. The variation regularity of relative humidity was contrary to temperature, and the relative humidity of inner wall was below than it’s of inside and outside.
     (5)In the hottest and the coldest month, indoor temperature change rate of all residence was less 0.5, and the minimum amplitude of the indoor relative humidity was 11%, the maximum was 35%. According the distribution of delay time of the indoor temperature and relative humidity, the regulation performance of temperature and humidity was well in light-frame wood residence; delay time of relative humidity was longer in glued laminated timber house in summer, and the amplitude was small.
     2 The insulation performance of the light-frame wood walls is excellent, which are manufactured by the plantation wood, therefore this kind of wall can be actively promoted to application.
     (1)Heat transfer coefficient of No.1, No.2, No.3, and No.6 was 0.489~0.529W/(m2·K), others were less 0.4 W/(m2·K). The insulation properties of the experimental structure walls were qualified to the technical code for wood construction and partitions with timber frame- work used in reinforced concrete frame. Especially heat transfer coefficient of the walls of No.12 and No.13, when they were used in more cold areas, the energy-saving effect was significant.
     (2)Data were more reliable when hot box-heat flow meter was used to test the insulation performance. Effective heat transfer coefficient should be used to describe the insulation performance of light-frame wood wall.
     (3)The resistance could be increasing at least 2 times, if the cavity between the wood stud was filled with Rockwool. Plywood could be effective to reduce heat transfer coefficient 6%; expandable polystyrene(EPS) could reduce its 26%; extrude polystyrene (XPS) could reduce its 36%; 45×140mm dimension wood stud could reduce wall heat transfer coefficient 6%~32% than 45×90mm dimension wood stud, and the resistance to heat was more enhanced.
     3 Numerical calculation can be used to accurately describe temperature distribution of internal interface in the light-frame wood wall.
     (1)Temperature distribution of internal interface could be calculated used numerical method. The results were agreed approximately with experiment value, so the numerical value could estimate heat transfer visually and effectively.
     (2)The wall insulation effect as the components was determined by cavity fill with Rockwool and cladding outside with extruded polystyrene board and expandable polystyrene board. Timber as a framework material had resistance effect to temperature fluctuations outside.
     (3)Temperature distribution of could be calculated in each compound interface of light-frame wood wall by numerical method. This can provide information helpful for the energy-efficient design, because the long-term properties of the wall structure could be predicted by architect in varieties of climatic conditions.
引文
[1]江亿,林波荣,曾剑龙等.住宅节能.北京:中国建筑工业出版社,2006
    [2]王恺,赵荣军,潘海丽.展望我国木结构建筑复苏后的前景.中国林业产业,2004,(2):12-15
    [3]费本华,王戈,任海青.我国发展木结构房屋的前景分析.木材工业,2002,16(5):6-9
    [4]江亿.坚持科学发展观,实现中国特色建筑节能. http://www.chinagb.net,2009-04-02
    [5]钱正坤.中国建筑艺术史.湖南:湖南大学出版社, 2007
    [6]樊承谋.木结构在我国建筑中应用的前景.木材工业, 2003,17(3):4-6
    [7] American Forest & Paper Association. Energy conservation study - a performance comparison of a wood-frame and a masonry structure. http://www.awc.org/index.html, 1979
    [8] Sherwood, Gerald E.; Hans, Gunard, E. Energy efficiency in light-frame wood construction,Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1979
    [9] Kieβl,K Kapillarer and dampfformiger. Feuchtetransport in mehrschichtigen Bauteilen. University -Gesarnthochschue-Essen, 1983
    [10] Kohonen, R. A method to analyze the transient hygrothermal behavior of building materials and components. Publication21. Espoco: Tdnnical Research Centre of Finland, 1984
    [11] Burch, D.M., W.C. Thomas, and A.H. Fanney. Water vapor permeability measurements of common building materials. ASHRAE Transactions, 1992
    [12] Burch. D.M., and W.C. Thomas. MOIST-A PC program for predicting heat and moisture transfer in building envelopes. NIST Special Publication 853, Md.: National Institute of Standards and Technology, 1994
    [13] Carsten Rode, Douglas M. Burch. Empirical validation of a transient computer model for combined heat and moisture transfer, Proceedings of Thermal Performance of the Exterior Envelopes of Building VI, Clearwater Beach, FL, 1995,283-295
    [14]外墙外保温技术概述. http://www.topenergy.org/news_33051.html,2008-10-24
    [15]马保国.外墙外保温技术.北京:化学工业出版社,2008
    [16] Moisture conditions in walls and ceilings of a simulated older home during winter. Madison, Wisconsin: Forest Products Laboratory USDA, 1977
    [17] Duff, J E. Moisture Distribution in wood-frame walls in winter. Forest Products Journal, 1968, 18(1)
    [18] Boulant, J., Langlais, C. and Klarsfeld, S..Correlation between the structural parameters and the thermal resistance of fibrous insulants at high temperatures. Seventeenth International Thermal Conductivity Conference, 1983, 381-392
    [19] Burch, D.M. and Thomas, W. C. An analysis of moisture accumulation in a wood frame wall subjected to winter climate. NISTIR 4674, National Institute of Standards and Technolom, 1991
    [20] Burch, D. M., Thomas, W.C. and Fanney, A.H.. Water vapor permeability measurements of common building materials,”ASHRAE Transactions, 1992
    [21] Chlusov, I.E. On the calculation of moisture in roof constructions. (Original in Russia). CIB Conference on Flat Roofs, Stockholm, June 1958, 9-11
    [22] Philip, J.R., and D.A. de Vries. Moisture movement in porous materials under temperature gradients. Transactions, American Geophysical Union, 1957, 38: 222-232
    [23] Luikox, A. V. Heat and mass transfer in capillary-porous bodies. Oxford: Pergamon Press., 1966, 962-968
    [24] Van der Kooi, J. Moisture transport in cellular concrete roofs. Netherlands: Uitgeverij Waltman, 1971
    [25] Nielsen, A.F. Moisture distributions in cellular concrete during heat and moisture transfer. Thermal Insulation Laboratory Technical University of Denmark, 1974
    [26]季杰,许文发.严寒地区建筑墙体湿迁移对其隔热性能影响的研究.中国科学技术大学学报, 1994, 24(1): 114-118
    [27]陈永成,陈启高.建筑墙体潮湿区湿度计算方法研究.重庆建筑大学学报, 1997, 19(3): 16-22
    [28]陈永成,陈启高.围护结构吸湿区湿度分布的分析解.重庆建筑大学学报, 1997, 19(4): 30-37
    [29]贾永英,刘晓燕,戴萍.复合墙体热传递过程的计算与分析.大庆石油学院学报, 2000, 27(3): 80-82
    [30] Hens, H., and A. Janssens. Enquiry on HAMCaT codes. Eneqgy conservation in buildings and community systems programme. Annex 24. Heat, Air and Moisture Transfer in Insulated Envelope Parts. International Energy Agency, 1993
    [31] Burch. D.M., W.C. Thomas. MOIST-A PC program for predicting heat and moisture transfer in building envelopes. NIST Special Publication 853, Gaithersbur, Md.: National Institute of Standardsand Technology, 1994
    [32] Heinz R. Treschsel. Manual 40: Moisture analysis and condensation control in building Envelopes. ASTM MNL 40.
    [33] Zarr, R.R., D.M. Burch, A.H. Fanney. Heat and moisture transfer in wood-based wall construction: measured versus predicted. DIANE Publishing, NIST building science series 173, 1995
    [34]加拿大木业协会.轻型结构体系的保温隔热性能.国际公报No.5
    [35] Charlie Huizenga, Dariush. Arasteh, etc. Therm 2.0: a building component model for steady-state two-dimensional heat transfer. Proceedings of the IBPSA Sixth, Japan, 1999
    [36] Charlie Huizenga, Dariush. Arasteh, etc. Teaching students about Two-Dimensional heat transfer effects in uildingbs, building components, equipment, and appliances using THERM 2.0. ASHRAE Winter Meeting, January 24-27, Chicago, 1999
    [37] Finlayson, E. U. et. al.. THERM 2.0: program description: A PC Program for analyzing Two-Dimensional heat transfer through building products, Lawrence Berkeley National Laboratory Report LBL-37371Rev, Berkeley CA, June 1998
    [38] M. Nofal, M. Straver, K. Kumaran, Comparison of four hygrothermal models in terms of long-term performance assessment of wood-frame constructions. 8th Conference on Building Science & Technology, Solutions to Moisture Problems in Building Enclosures, Toronto, Ontario, Feb. 2001, 1-19
    [39] Burch, M., and Chi, J. MOIST a PC program for predicting heat and moisture transfer in building envelopes. Release 3.0, NIST special publication 917, 1997
    [40] Grunewald, J. Numerical simulation program DIM3.1 for coupled heat, air, salt, and moisture transport, 10th International Symposium for building physics, Dresden, Germany, 1999, 181-191
    [41] Künzel, H.M.. Simultaneous heat and moisture transport in building components: one and two-dimensional calculation using simple parameters, IRB Verlag, 1995
    [42] Karagiozis, A.N., Salonvaara, M.H., and Kumaran, M.K.. LATENITE hygrothermal material property database, IEA Annex 24: Heat-Air-Moisture Transfer in New and Retrofitted Insulated Envelope Parts, 1995, 1-89
    [43] Karagiozis, A.N.. Overview of the 2-D hygrothermal heat-moisture transport model LATENITE, Internal report, Institute for Research in Construction, National Research Council Canada, Ottawa,1993, 24
    [44] Salonvaara, M.H., and Karagiozis, A.N. Moisture transport in building envelopes using an approximate factorization solution method, Proceedings of the Second Annual Conference of the CFD Society of Canada, Toronto, Ontario, Canada, 1994, 317-326
    [45] Karagioziz A.N.. Advanced hygrothermal models and design models. Proceedings of the Canadian Conference on Building Energy. Simulation, 2001
    [46] Karagiozis, A.N.. Advanced Hygrothermal model MOISTURE-EXPERT, Oak Ridge National Laboratory, Report I, 2001
    [47] Karagiozis, A.N.. Advanced Hygrothermal modeling of building materials using Moisture-Expert1.0, 35th International Particleboard/Composite Materials Symposium, Pullman Washington, 2001
    [48] Künzel, H.M., Karagiozis, A.N. , Holm A.. WUFI-ORNL/IBP A-hygrothermal design tool for architects and engineers, Chapter ASTM Manual 40 in Moisture Analysis of Buildings, 2001
    [49] Karagiozis, A.N., Künzel, H.M., and Holm A.. WUFI-ORNL/IBP hygrothermal model. Proceedings of Eight Conference on Building Science and Technology, Solutions to Moisture Problems in Building Enclosures, Feb. 22-23, Toronto 2001, 158-183
    [50] Christine Walker and Douglas Kosar. Hygrothermal modeling of building wall assemblies. California Energy Commission, December 2005
    [51] Stopp H., Strangfeld P., Mendes N. Energy efficience and the hygrothermal performance of envelope parts of buildings. Proceedings III. Latin American Conference on Comfort and Energy Efficiency in Buildings, Curitiba, Brazil, 2003
    [52] Achilles Karagiozis, Mikael Salonvaara. Hygrothermal system-performance of a whole building. Building and Environment, 2001, 36(6): 779-787
    [53] Pasupathy, L. Athanasius, R. Velraj, R.V. Seeniraj. Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management. Applied Thermal Engineering , 2007
    [54] Simonson C.J.; Salonvaara M.; Ojanen T. The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air, 2002, 12(4): 243-251
    [55]宋力.轻钢龙骨复合墙体的应用与研究现状.低温建筑技术, 2007, (4):113-114
    [56]宋力.腹板开孔轻钢龙骨墙体传热性能.低温建筑技术, 2007, (2): 101-102
    [57]贾灿纯,曹崇文.二维传热传质及应力分析有限元模拟软件的开发和应用.浙江工业大学学报, 1997, 25(1): 1-6
    [58]崔永旗,王昭俊,张素梅.轻钢龙骨复合墙体三维导热有限元分析建筑科学, 2006, 22(4): 32-36
    [59]王昭俊,崔永旗,张素梅.不同构造形式轻钢龙骨复合墙体湿传递分析.哈尔滨工业大学学报, 2006, 38(11): 1819-1822
    [60]王昭俊,崔永旗,张素梅.轻钢龙骨腹板开孔参数对复合墙体传热的影响.哈尔滨商业大学学报(自然科学版), 2007, 23(1): 67-70
    [61]费本华,周海宾,傅峰.一栋梁柱式木结构示范住宅的建造实例.山西建筑, 2006, 32(6):15-16
    [62]费本华,周海宾.现代框架式木结构住宅.世界林业研究, 2006, 19(2): 51-54
    [63]赵勇.现代木结构住宅墙体热物理性能研究.北京:中国林业科学研究院,硕士学位论文,2007
    [64]国家技术监督局.民用建筑热工设计规范GB50176-93.1993
    [65]王戈,费本华等.落叶松胶合板复合墙体设计及其保温隔热性能计算.木材工业, 2007, 21(6): 1-6
    [66]江泽慧.中国林业工程.济南:济南出版社,2002
    [67] D. R. Robson. Temperature and Humidity in School Classrooms, Halifax 1961-1962, Internal Report 30. 265 of the Di vision of Building Research, NATIONAL RESEARCH COUNCIL CANADA, June 1963
    [68] A.D. Kent, C.O. Handegord and D.R. Robson, A Study of Humidity Variations in Canadian Houses. ASHRAE, Transactions, V. 72 (Part 11), NRCC 9648, 1966
    [69] Van der Kooi, J. Knorr, K.TH. Temperature and humidity in dwellings, in Dutch, Klimaatbeheersing, 1973, 2: 490-496
    [70] Glass, Samuel V., TenWolde, Anton. Review of in-service moisture and temperature conditions in wood-frame buildings. General Technical Report FPL-GTR-174. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2007
    [71] Carll, C.; TenWolde, A. Accuracy of wood resistance sensors for measurement of humidity. Journal of Testing and Evaluation, 1996, 24(3): 154–160
    [72]牧福美,则元京,山田正.内装材料の湿度调节(第7报).木材学会志, 1981, 36(12): 828-832
    [73]铃木正治.木造住宅の居住性研究.木材学会志,1987, 33(11): 829
    [74]则元京,山田正,牧福美.木材の湿度调节(第7报).木材学会志,1990, 36(5): 341-346
    [75]信田聪.实际大木质壁体の热性质(第1报)冬季室内暖房时の木质壁体の温度特性.木材学会志,1988, 34(5): 388
    [76] EN ISO 13788. Hygrothermal performance of building components and building elements-Internal surface temperature to avoid critical surface humidity and interstitial condensation-Calculation methods, 2001
    [77] FiSIAQ. Classification of Indoor Climate 2000, Finnish Society of Indoor Air Quality and Climate, 2001
    [78] Gustavsson, T., Bornehag, C-G., Samuelsson, I. Temperature, relative humidity and air exchange rate in 390 dwellings. CIB W40 meeting in Glasgow August 31st to September 3rd, 2004
    [79] Hens, H. Package of climatological data measured in Belgian buildings. Internal Report IEA-Annex 24 T2-B-92/01, 1992.
    [80] Jenssen, Jon A., Geving, S., Johnsen, R. Assessments on indoor air humidity in four different types of dwelling randomly selected in Trondhein, Norway. Proceedings of the 6th Symposium on Building Physics in the Nordic Countries, Trondheim, Norway, June 17th-19th, 2002, 729-735
    [81] Rodriguez, E., Baali?a, A., Molina, M. Santaballa, J.A., Vázquez, A., Castellanos, L.R., Infante, C., Indoor/outdoor humidity in mild climate domestic buildings in A Coru?a (Spain). In: Proceedings of Healthy Buildings conference, Helsinki, 2000
    [82] Rose, W. B., Francisco, P. W. Field evaluation of the moisture balance technique to characterize indoor wetness. In: Proceeding of Performance of Exterior Envelopes of Whole Buildings VIII: Integration of Building Envelopes IX conference, Florida, 2004
    [83] Targo Kalamees. Indoor temperature and humidity load in Finish detached houses. Annex 41 MOIST-ENG, Working meeting: Montreal, Canada, 2005
    [84]牧福美,青木務.各種居住空間における湿度の変化.木材学会志,2006,52(1):37-43
    [85]刘加平主编.建筑物理(第三版) .北京:中国建筑工业出版社,2006
    [86]彦启森,赵庆珠.建筑热过程.北京:中国建筑工业出版社, 1986
    [87]陶文铨.数值传热学(第二版).西安:西安交通大学出版社, 2001
    [88] Mitalas G P , Stephenson D G. Room thermal response factors ASHRAE Transactions, l967
    [89] Stephenson D G, Mitalas G P. Cooling load calculation by thermal response factors.ASHRAE Transaction, 1967
    [90] Mitalas G P. Calculation of transient heat flow through walls and roofs.ASHRAE Transactions.1968
    [91] Stephenson D G, Mitalas G P. Calculation of heat flow conduction transfer function for multi-layer slabs. ASHRAE Transactions, 1971
    [92] Stephenson D G, Mitalas G P. Lumping errors of analog circuits for heat flow through a homogeneous slab. NRCC, DBR,1961
    [93] Kusuda T. Thermal response factors for multilayer structures of various heat conduction systems. ASHRAE Transactions, 1986
    [94] Cylan H T. Myers G E. Long-time solution to heat conduction transients with time-dependent inputs. Journal of heat transfer, 1980
    [95]陈友明,王盛卫.建筑围护结构非稳定传热分析新方法.北京:科学出版社,1996
    [96]任海青,周海宾.木结构住宅常见性能检测和评估.北京:建筑工业出版社,2008
    [97]国家技术监督局.采暖居住建筑节能检验标准JGJ132-2001.2001
    [98]国家技术监督局.建筑用热流计JG/T3016-94.1994
    [99]田斌守,杨永恒,孟渊等.应用热流计现场检测建筑物传热系数.新型建筑材料,2004,(8):59-61
    [100]加拿大木业协会.木结构住宅与砖混复合保温墙体结构住宅建筑节能检测与对比的研究报告. 2008
    [101]国家技术监督局.民用建筑节能工程现场热工性能检测标准DGJ32/J23-2006. 2006
    [102]刘一星,李坚.木质材料环境学.北京:中国林业出版社,2008
    [103] ISO 7730 moderate thermal environments-determination of the PMV and PPD indices and specification of the conditions for thermal comfort, 1994
    [104]现代居住建筑的夏季热状况研究. http://www.lunwentianxia.com,2007-11-26
    [105]国家技术监督局.民用建筑热工设计规范GB 50176-93, 1993
    [106]杨世铭.传热学(第3版).北京:高等教育出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700