用户名: 密码: 验证码:
多沙河流水库自适应控制运用研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多沙河流常具有水少沙多、水沙分布不均匀等特点。在多沙河流上修建水库既要充分发挥水库的效益,又要妥善解决泥沙日益淤积所导致的库容不断减少的问题,较少沙河流更为复杂。如何合理运用或调度多沙河流水库不仅对工程有重要意义,而且在科学上也是一个难题。
     本文将自适应控制的原理引入多沙河流水库运用中,建立了多沙水库自适应控制运用模式。该模式以水沙数学模型确定不同时刻水库的状态,考虑该状态下水库的综合效益,构造多沙水库自适应控制器,根据入库水沙条件实时调整水库的运用方式,使水库运用一直处于较优的状态。
     在多沙河流水库自适应控制运用中,应用了随机理论,并通过时间序列法生成随机水文数据,根据生成的水沙资料预测不同条件下不同流量洪水发生的概率,以调整水库的运用方案,反映水库运用方式对来水来沙的适应性。此外,模型中还运用了多种可体现自适应运用理念的处理方法,包括:采用模糊集方法将汛期划分为汛期前期、主汛期和汛期后期;采用模糊聚类分析方法进行入库水沙量大小的分析;采用多目标优化方法初步确定临界敞泄流量和含沙量;采用逐步抬高正常蓄水位的方法以减少水库的淤积;根据不同时段水库剩余库容的大小实时调整水库的临界敞泄流量和含沙量。
     将自适应控制运用模式分别应用于亭口水库的单库优化运用和亭口水库与反调节水库的联合运用。其结果表明:自适应控制模式对来水来沙条件变化具有较好的适应性,能随外界条件的改变随时调整运用参数,能使水库在满足供水要求或提供较大供水量的同时,保持足够的剩余库容。
     此外,本文还定量分析了多沙河流水流运动方程中动量修正系数和水流挟沙力随水深的变化规律,同时将聚类统计分析方法引入到水流挟沙力公式的检验中,对水流挟沙力公式进行评价,将结果用于多沙水库的水沙数学模型中,并完成了验证计算。
Sediment-laden rivers are generally characterized by less runoff and high sediment supply, concentrated water discharge, transversal section with main channel and floodplain, etc. So, reservoirs built on these rivers are required to not only well display their benefits but also appropriately deal with the sediment accumulation problems, whose operations are more complex than those on low sediment concentration rivers. It is significant to identify an appropriate operation method for the reservoirs on high sediment concentrated rivers.
     By introducing the adaptive control theory, the concept of adaptive operation of reservoir is proposed, and the corresponding adaptive operation model is constructed. Based on the constructed water and sediment mathematic models, the adaptive operation model can identify the real-time state of the reservoir and construct the adaptive controller considering the reservoir’s water supply, flood protection, electric power generation and other benefits under the concerned state, and adjust the water level and discharge in real time according to the incoming water and sediment conditions, which can make the reservoir operation be in a optimized state all the while.
     In the adaptive operation model, stochastic hydrology data are created by time series method, which are used to identify the happening probabilities of floods with different discharge under different conditions. And the operation program is adjusted according to the probabilities, which reflecting the model’s adaptability to the changing water and sediment conditions. Besides, several processing methods are used in the model, including: fuzzy sets are used to classify the flood season into prophase, main phase and anaphase; fuzzy cluster is used to analyze the incoming water and sediment magnitude; multi-objective optimization is used to initially identify the critical ungated flow and sediment content; the method of gradually raising normal pool level is used to decrease sediment accumulation; and the residual storage capacities of the reservoir in different periods of time are referenced to adjust the critical ungated flow and sediment content in real time. By synthetically using these methods, the difficulties occurring in the application of the model are overcome, and the efficiency and operability of the model are greatly improved.
     The adaptive operation model is individually applied to single operation of Tingkou reservoir on Heihe River in Shaanxi province and multiple reservoirs operation. The application results indicate that the adaptive operation model can well respond to the changing water and sediment conditions, its parameters can be adjusted in real time with the changes of the input variables, and the reservoir can supply abundant water with a large residual capacity conserved. Through comparing with the conventional multi-objective optimization method of reservoir operation, the adaptive model is found to supply more water with a larger residual capacity, and obviously be superior to the conventional method. The results and analysis prove the rationality of the adaptive operation and the feasibility and validity of the adaptive operation model.
     Furthermore, the water and sediment characteristics of high sediment concentrated rivers are analyzed, and the describing approaches about the momentum correction coefficient and transverse velocity distribution for the rivers are proposed. Then the water and sediment mathematic models for high sediment concentrated rivers are constructed, which provides good supports for the studies on the operation model of reservoirs on sediment-laden rivers.
引文
[1]水利部水资源研究及区划办公室.中国水资源初步评价.全国水资源初步成果汇总技术小组, 1981.
    [2]黄映石.水库调度.中国水利水电出版社, 1996.
    [3]陕西水科院、清华大学水利工程泥沙教研室.水库泥沙.北京:水利电力出版社, 1979.
    [4]唐日长.长江水利工程中的泥沙问题.人民长江, 1956, 11: 1-2.
    [5]唐日长.长江三峡水库长期使用研究.人民长江, 1990, 6: 1-9.
    [6]王本德,周惠成.水库汛限水位动态控制理论与方法及其应用.北京:中国水利水电出版社, 2006.
    [7]王厥谋.丹江口水库防洪优化调度模型简介.水利水电技术, 1985(8): 17-23.
    [8]许自达.防洪水库(群)洪水优化调度的判别式.水利经济, 1990, 1: 24-29.
    [9]朱儒楷等.非线性规划.长沙:中国矿业大学出版社, 1990.
    [10]李寿声,彭世彰,汤瑞凉等.多种水源联合运用的非线性规划灌溉模型,水利学报, 1986(6): 11-19.
    [11] Carraga, C.C, Mays, L.W. Optimization modeling for sedimentation in alluvial river. J. Water Resource. Plng. and Mgmt. Div, ASCE, 1995, 121(3): 251-259.
    [12] Bellman R. D., Dreyfuss E. Applied Dynamic Programming. Princeton, New Jercy: Princeton Univercity Pr. 1962.
    [13] Little J.D.C. The use of storage water in a hydroelectric system. J. operations research, 1955.3: 187-197.
    [14] Stedinger, J. R., Sule, B. F. and Loucks, D. P. Stochastic dynamic programming models for reservoir operation optimization. Water Resources Research, 1984, 20(11): 1499–1505.
    [15] Kelman J., Stedinger, J. R., Cooper, L. A., Hsu, E. and Yuan, S. Sampling stochastic dynamic programming applied to reservoir operation. Water Resources Research, 1990, 26(3): 447–454.
    [16] Tejada-Guibert A., Johnson, S. A. and Stedinger, J. R. Comparison of two approaches for implementing multireservoir operating policies derived using stochastic dynamic programming. Water Resources Research, 1993, 29(12): 3969-3980.
    [17]谭维炎,黄守信.利用随机动态规划进行水电站水库的优化调度.水利学报, 1982, 7: 1-7.
    [18]张玉新,冯尚友.多维决策的多目标动态规划及其应用.水利学报, 1986(7): 1-10.
    [19]张玉新,冯尚友.水库水沙联合调度多目标规划模型及其应用研究.水利学报, 1988,9: 19-26.
    [20]张铭,王丽萍,安有贵等.水库调度图优化研究.武汉大学学报(工学版), 2004, 6: 5-8.
    [21]郑德凤,王本德.水库防洪与补源优化调度及其风险分析.水利学报, 2005, 3: 772-780.
    [22]陈洋波,曾碧球.水库供水发电多目标优化调度模型及应用研究.人民长江, 2004, 4: 11-14.
    [23]邵东国,李玮,刘丙军.抬高水库汛限水位的洪水资源化利用研究.农村水利水电, 2004, 9: 26-29.
    [24]张玉新,冯尚友.水库发电与供水的随机多目标动态规划模型与应用.水电能源科学, 1991, 3: 3-9.
    [25] Nicklow, J.W. Discrete-Time Optimal Control for Water Resources Engineering and Management. Water International, 2000, 25(1): 89-95.
    [26]练继建,胡明罡,刘媛媛.多沙河流水库水沙联调多目标规划研究.水力发电学报, 2004, 23(2): 12-17.
    [27]雷声隆,覃强荣,郭元裕,等.自优化模拟及其在南水北调东线工程中的应用.水利学报, 1989, 5: 10-13.
    [28]吴艳春,惠钢桥,吴昌林,等.南水北调穿黄模型检测与控制自动化系统.长江科学院院报, 1999, 16(3): 46-49.
    [29]陈良程,蔡治国,王晓霖,等.黄河流域水量调度方案编制方法研究.应用基础与工程科学学报, 2003, 11(2): 208-215.
    [30]魏加华,王光谦,翁文斌等.流域水量调度自适应模型研究.中国科学E辑, 2004, S1: 185-192.
    [31]钟登华,刘建民,熊开智.复杂长距离输水系统仿真优化研究.中国工程科学, 2005, 10: 64-67.
    [32]魏加华,王光谦,蔡治国.多时间尺度自适应流域水量调控模型.清华大学学报(自然科学版), 2006, 46(12) : 1973-1977.
    [33]蔡治国,王光谦,魏加华.黄河流域水量调度的自校正控制模型.清华大学学报(自然科学版), 2004, 44(12): 1660-1663.
    [34]赵勇,裴源生,于福亮.黑河流域水资源实时调度模型系统研究.水利学报, 2006, 37(1): 82-88.
    [35]陈守煜,赵瑛琪.汛期的模糊集模式及其应用.水电能源科学, 1989(3): 211-218.
    [36]王本德,许海军.水库防洪实时调度决策模糊推理神经网络模型及其应用.水文, 2003, 23 (6): 8-11.
    [37]邹进,张勇传.模糊动态规划在三峡梯级电站短期优化调度中的应用.水利水电技术, 2004, 8: 89-83.
    [38]吴保生,陈惠源.多库防洪系统优化调度的一种解算方法.水利学报, 1991, 11: 35-41.
    [39]张静,王本德,汪魁峰.模糊优选ANN在水库调度方案优选中的应用.人民黄河, 2006, 28(3): 69-71.
    [40]周惠成,张改红,王国利.基于熵权的水库防洪调度多目标决策方法及应用.水利学报, 2007, 1: 100-106.
    [41] Lin, TW. Well-behaved penalty functions for constrained optimization. J. Chinese institute of engineering, 1990, 13(2): 157-166.
    [42] Russel, S.O., Camplell, P. E. Reservoir operating rules with fuzzy programming. J. Water Resources Plan. Manage, 1996, 122(3): 165-170.
    [43] Shrestha, B. P., Duckstein, L. E., Stokhin, Z. Fuzzy rule-based modeling of reservoir operation. J. Water Resources Plan. Manage, 1996, 122(4): 262-269.
    [44] Panigrahi, D. P., Mujumdar, P.P. Reservoir operation modeling with fuzzy logic. Water Resources Manage, 2000, 14: 89-109.
    [45] Dubovin, T., Jolma, A., Turunen, E. Fuzzy model for real-time reservoir operation. J.Water Resources Plan. Manage, 2002, 128(1): 66-73.
    [46] Goldberg, D. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley Publishing Co., Inc., Reading, MA. 1989.
    [47] Esat, V., Hall, M.J. Water resources system optimization using genetic algorithms. Proceedings of the 1st Int. Conference On Hydroinformatics. Balkema, Rotterdam, The Netherlands, 1994.
    [48] Oliveira, R., Loucks, D.P. Operating rules for multireservoir systems. Water Resour. Res., 1997, 33(4): 839-852.
    [49] Wardlaw, R., Sharif, M. Evaluation of genetic algorithms for optimal reservoir system operation. J. Water Resour. Plng. and Mgmt., ASCE, 1997, 125(1): 25-33.
    [50] Ahmed Senouci, Hassan R. Al-Derham. Genetic algorithm-based multi-objective model for scheduling of linear construction projects. Advances in Engineering Software, 2008, 39(12): 1023-1028
    [51] Raman, H., Chandramouli, V. Deriving a general operating policy for reservoirs using neural networks. J. Water Resour. Plng. and Mgmt., ASCE, 1996, 122(5): 342-347.
    [52] Chandramouli, V., Raman, H. Multireservoir modeling with dynamic Programming and neural networks. J. Water Resour. Plng. and Mgmt., ASCE, 2001, 127(2): 89-98.
    [53] Cancelliere, A., Giuliano, G., Ancarani, A., Rossi, G. A neural networks approach for deriving irrigation reservoir operating rules. Water Resources Management, 2002, 16: 71-88.
    [54] Yeh, W.W. Reservoir management and operation models: A state of the art review. Water Resour. Res., 1985, 21(12): 1797-1818.
    [55] Wurbs, R. A. Reservoir-system simulation and optimization models. J. Water Resour. Plng. and Mgmt., ASCE, 1993, 119(4): 455-472.
    [56]夏震寰,韩其为,焦恩泽.论长期使用库容.第一次河流泥沙国际学术讨论会文集.北京:光华出版社, 1980, 3: 793-802.
    [57]王敏生,杨源高,安中金,等.龚嘴水库运用方式探讨.水电站设计, 1988, 1:40-44.
    [58]刘学文,张建军;曹振平.蔡庄水库泥沙淤积现状及减淤对策.山西水利科技, 1996, 3: 49-53.
    [59]杨定贵,李明英.向家坝水库运用方式分析.水力发电, 1998, 2: 20-23.
    [60]张红武,张欧阳,张俊华,等.泾河东庄水库排沙试验研究.水力发电学报, 2004, 23(4):82-87.
    [61] Nicklow, J.W., Larry, W.M. Optimization of multiple reservoir networks for sedimentation control. Journal of hydraulic engineering, 2002, 126(4): 232-242.
    [62] Nicklow, J.W., Larry, W.M. Operation of multiple reservoir systems to control sedimentation in rivers and reservoirs. World Water Congress, 2001: 1-11.
    [63] Todorovic, P., Zelenhasic, E. A stochastic model for flood risk analysis. Water Resour. Res., 1970, 6(6): 1641-1648.
    [64] Rosbjerg, D. Estimation in partial duration series with independent and dependent peak values. J. Hydrol., 1985, 76: 183-195.
    [65] Loaiciga, H.A. Marino, M.A. Risk analysis for reservoir operation. Water Resour. Res., 1986, 22(4): 876-885.
    [66] Simonovic, S.P., Venema, H.D., Burn, D.H. Risk-based parameter selection for short term reservoir operation. J. Hydrol., 1992, 131: 269-291.
    [67] Z.X. Xu, K.Ito. Incorporating inflow uncertainty into risk assessment for reservoir operation. Stochastic hydrology and hydraulics, 1997,11: 433-448.
    [68]朱鉴远.控制泥沙淤积的主要措施──水库泥沙调度.四川水利, 1997, 3: 6-11.
    [69]顾大勤.龚嘴水库调度[J].四川水力发电, 1995, 3: 76-80.
    [70]杨源高.龚嘴水库悬沙三角洲洲头出库后淤积特性及其影响.四川水力发电, 1995, 3: 81-87.
    [71]李波,杨丽娜.多沙河流水库汛限水位动态控制运用与水库排沙问题研究.吉林水利, 2006, 2: 14-18.
    [72]童思陈.河道型水库泥沙淤积及其长期利用调控模式研究[博士学位论文].北京:清华大学, 2005.
    [73]周建军,林秉南.双汛限水位调度方案对三峡工程通航条件的影响. China Three Gorges Construction, 2002, 9(6):4-7.
    [74]李义天.三峡水库9月分旬控制蓄水初步研究.水力发电学报, 2006, 25(1): 61-66.
    [75]曲少军,丁六逸,缪凤举,等.小浪底水库运用后三门峡水库运用方式的初步研究.泥沙研究, 2001, 2: 29-33.
    [76]王士强,钟德钰,刘金梅.三门峡水库非汛期运用水位研究.泥沙研究, 2001, 2: 21-24.
    [77]郭庆超,胡春宏,陆琴,等.三门峡水库不同运用方式对降低潼关高程作用的研究[J].泥沙研究, 2003, 1: 1-9.
    [78]张红武,张俊华,等.工程泥沙研究与实践.黄河水利出版社, 1999.
    [79]胡春宏.黄河水沙调控与下游河道中水河槽塑造.北京:科学出版社, 2007.
    [80]谢鉴衡.河床演变及整治.北京:中国水利水电出版社, 1996.
    [81]陕西省水利科学研究所河渠研究室,清华大学水利工程系泥沙研究室.水库泥沙.北京:水利电力出版社, 1979.
    [82]梁志勇,姚文广,李文学等.多沙河流的河性.北京:中国水利水电出版社, 2003.
    [83] Shiono, K., Knight, D.W. Turbulent open channel flows with variable depth across the channel. J. Fluid. Mech., 1991, 222: 617-646.
    [84] Yang, K., Cao, S, Liu, X. Transverse Kinetic Energy Correction Coefficient in Hydraulic Computation of Compound Channels. Proceedings of the International Symposium on River Sedimentation, October, Yichang, China, 2004, 1247-1252.
    [85]王双明,孙西欢,潘光在.复式断面河道泥沙数值模拟.太原理工大学学报, 2000, 31(1): 60-63.
    [86] Van Prooijen, B.C., Battjes, J.A., Uijttewaal, W.S.J. Momentum Exchange in Straight Uniform Compound Channel Flow. Journal of Hydraulic Engineering, ASCE, 2005, 131(3): 175-183.
    [87] Carling, P.A., Cao, Z., Holland, M., Ervine, D.A., Babaeyan-Koopaei, K. Turbulent flow across a natural compound channel. Water Resources Research, AGU, 2002, 38(12): 1270.
    [88] Myers, W.R.C., Knight, D.W., Lyness, J.F., Cassells, J.B., Brown, F. Resistance coefficients for inbank and overbank flows. Proc. Inst. Civ. Engrs., Wat., Marit. & Energy, 1999.
    [89] Shiono, K., Al-Romaih, J.S., Knight, D.W. Stage-discharge assessment in compound meandering channels. Journal of Hydraulic Engineering, ASCE, 1999, 125 (1): 66-77.
    [90] Lambert, M.F., Myers, W.R. Estimating the discharge capacity in straight compound channels. Proc. Inst. Civ. Engrs., Wat., Marit. & Energy, 1998, 130: 84-94.
    [91] Cao, Z. X., Meng, J., Pender, G., Wallis, S. Flow Resistance and Momentum Flux in Compound Open Channels. Journal of Hydraulic Engineering, 2006, 132: 1272-1282.
    [92]李彪,胡旭跃,徐立军.复式断面滩槽流速分布研究综述.水道港口, 2005, 26(4): 228-232.
    [93]童汉毅,槐文信,张礼卫.复式断面明渠的流速比和流量比.武汉大学学报(工学版),2003, 36(5): 9-13.
    [94]许唯临.复式河道漫滩水流计算方法研究.水利学报, 2002, 6: 21-26.
    [95] Knight, D., Demetriou, J. Flood plain and main channel flow interaction. Journal of Hydraulic Engineering, ASCE, 1983, 109(8): 1073-1092.
    [96]王树东.漫滩水流二维流速分布及水力学计算.水利学报, 1986, 11: 51-58.
    [97]刘星,贺晓春.天然河道断面流速计算.水运工程, 1998,11: 29-31.
    [98]周宜林,王明甫.滩槽挟沙水流流速横向分布研究.泥沙研究, 1996, 9(3): 56-63.
    [99] Knight, D.W., Demetriou, J.D., Hamed, M.E. Stage discharge relationships for compound channels. In Channels and channel control structures, Smith K. V. H. ed., Springer-Verlag, 1984, 4.21-4.35.
    [100] Rajaratnam, N. Ahmadi, R.M. Interaction between main channel and flood plain flows. J. Hydr. Division, ASCE, 1979,105: 573-588.
    [101] Myers, B.C., Elsawy, E.M. Boundary shear in channel with flood plains. J. Hydr. Division, ASCE, 1975,101: 933-946.
    [102]胡春宏,吉祖稳等.复式断面非均匀沙滩槽交换规律研究.水利水电科学研究院, 1997.
    [103]丁君松,王树东.漫滩水流的水流结构及悬沙运动[J].泥沙研究, 1989, 1: 82-87.
    [104] Guo, J. Logarithmic matching and its application in computational hydraulics and sediment transport. J. Hydr. Res., IAHR, 2002, 40(5): 555-566.
    [105] Tang, X., Knight, D.W. Experimental study of stage discharge relationships and sediment transport rates in a compound channel. Proceedings of the 29th IAHR Congress, Beijing, 2001, 69-76.
    [106] Atabay, S., Knight, D.W., Seckin, G. Effects of overbank flow on fluvial sediment transport rates. Water Management, Proc. Inst. Civ. Engrs., 2005, 158(WM1): 25-34.
    [107] Ackers, P. Hydraulic design of two-stage channels. Water, Maritime & Energy, Proc. Inst. Civ. Engrs., 1992, 96(4): 247-257.
    [108]孙夏平.复合明渠水流挟沙力特性分析[学士学位论文].武汉大学. 2005,6.
    [109]麦乔威,赵苏里.黄河水流挟沙力问题初步研究.泥沙研究, 1958, 2: 1-39.
    [110]黄河水利委员会水利科学院研究所.黄河下游土城子挟沙能力测验段实测资料分析.泥沙研究, 1959, 1: 43-46.
    [111]舒安平.水流挟沙力公式的验证与评述.人民黄河, 1993 , 1: 7-9.
    [112]陈雪峰,陈立,李义天.高中低浓度挟沙水流挟沙力公式的对比分析.武汉水利电力大学学报, 1999, 5: 1-5.
    [113]黄仁勇,韦直林,赵连军等.河床冲淤幅度判别指标与水流挟沙力公式验证.人民黄河, 2004, 5: 22-24.
    [114]熊建秋,李祚泳.基于支持向量机的水流挟沙力预测研究.水利学报, 2005, 36(10): 1171-1175.
    [115]朱勇华,邰淑彩,孙温玉.应用数理统计.武汉:武汉水利电力大学出版社, 2000.
    [116]窦国仁,王国兵.黄河小浪底枢纽泥沙研究.南京水科院, 1993.
    [117]曹如轩,程文,钱善琪等.高含沙洪水揭河底初探.人民黄河, 1997, 2: 1-5.
    [118]张红武,张清.黄河水流挟沙力的计算公式.人民黄河, 1992 , 11: 7-9.
    [119]刘峰,李义天.新的水流挟沙力计算公式.长江科学院院报, 1997, 3: 17-20.
    [120]舒安平,高含沙水流挟沙能力及输沙机理研究[博士学位论文].北京:清华大学, 1994.
    [121]刘兴年,曹淑尤,黄尔等.粗细泥沙挟沙能力研究.泥沙研究, 2000, 4: 35-39.
    [122]张红武,江恩惠,白咏梅等.黄河高含沙洪水模型的相似律.郑州:河南科学技术出版社, 1994.
    [123]吴腾,李远发,洪建等.聚类分析在高含沙水流挟沙力公式检验中的应用.水利学报, 2007, 7: 852-856.
    [124]王光谦,魏加华.流域水量调控模型与应用.北京:科学出版社, 2006.
    [125]徐湘元.自适应控制理论与应用.北京:电子工业出版社, 2007.
    [126]尚毅梓,吴保生.多渠段渠道自动控制系统的稳定控制.清华大学学报(自然科学版), 2008, 48(6): 967-971.
    [127]张红武,赵连军,王光谦等.黄河下游河道准二维水沙数学模型研究.水利学报, 2003, 4: 1-6.
    [128]林锉云.多目标优化的方法及理论.长春:吉林教育出版社, 1992.
    [129]尚松浩.水资源系统分析方法及应用.北京:清华大学出版社, 2006.
    [130]徐建华.现代地理学中的数学方法(第2版).北京:高等教育出版社, 2002.
    [131]苑希民,李鸿雁,刘树坤,等.神经网络和遗传算法在水科学领域的应用.北京:中国水利水电出版社, 2002.
    [132]王志毅,周刚炎.译随机水文学.河南:黄河水利出版社, 2001.
    [133]韦直林,谢鉴衡,傅国岩,等.黄河下游河床变形长期预测数学模型的研究.武汉水利电力大学学报, 1997, 30(6): 1-5.
    [134]赵文林.黄河泥沙.郑州:黄河水利出版社, 1996.
    [135]张红武.黄河下游洪水模型相似律的研究[博士学位论文].北京:清华大学, 1995.
    [136]张俊华,张红武,李远发等.水库泥沙模型异重流运动相似条件的研究.应用基础与工程科学学报, 1997, 3: 309-316.
    [137]邰淑彩.用模式识别法选取典型水沙年初探.武汉大学学报(工学版), 1989, 1: 108-112.
    [138]陈凯麒,王东胜,刘兰芬等.流域梯级规划环境影响评价的特征及研究方向.中国水利水电科学研究院学报, 2005, 2: 79-84.
    [139]陈庆伟,陈凯麒,梁鹏.流域开发对水环境累积影响的初步研究.中国水利水电科学研究院学报. 2003, 4: 300-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700