用户名: 密码: 验证码:
隧道结构稳定性及其流固耦合损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下工程从开始发展,就伴随着安全稳定性研究,赋予复杂地质环境中的隧道工程,在各种条件变化等干扰因素影响下,隧道围岩始终处于动态平衡变化中,使隧道开挖、运营与失稳密切相联,各种危害隧道安全的灾害时有发生,给国家经济发展及人民生命财产安全带来巨大的损失,产生严重的社会影响。在隧道围岩与周围环境相互作用中,渗流场和应力场是隧道围岩体物理地质力学环境的重要组成部分,两场之间存在高度非线性的复杂耦合作用。近年来,对岩体饱和渗流场与应力场耦合理论的研究虽然取得了很丰富的成果,但这些成果主要限于分析宏观裂隙中应力应变状态,涉及岩体损伤破裂过程中新裂纹的萌生、扩展和贯通过程中渗透率的演化及其与应力的耦合作用模型较少;对裂纹扩展过程中的渗透性演化及其力学机制等,还没有完全弄清楚。为此,本文开展了考虑损伤效应的渗流应力耦合作用研究,以加深对岩体围岩变形机理、破坏情况和强度特征的认识,为隧道选线布置、开挖及结构支护设计提供科学技术支持,增强隧道灾害的预测预报和防灾减灾的应对能力,对保证工程安全和节省投资具有重大意义。
     本文主要取得以下研究成果:
     (1)针对隧道开挖产生原岩应力的变化,对隧道结构受力特征进行了研究。基于相关统计及试验资料,分析了隧道围岩与支护结构承担的荷载分布规律,隧道围岩是造成荷载的主要来源,又主要承担一定的荷载,具有一定自承稳定性能力,提出从耦合角度剖析隧道结构稳定性的必要性。
     (2)通过对隧道围岩渗流理论的研究,建立了自适应渗流模型,模型根据渗流介质的渗透特性自动选择相应渗流规律描述相应介质内的流体渗流,可以方便地描述因渗流速度改变或因压力梯度改变而引起的流态变化;结合岩石渗透率理论模型,考察了温度、压力等外界环境影响因素对岩石孔隙率、渗透率等物理特性的影响。
     (3)采用统计理论研究岩石损伤变形破裂过程。针对岩石屈服或破坏后仍具有一定承载能力的特点,对损伤进行修正,建立了更能够反映实际的岩石统计损伤修正本构方程。损伤修正系数c_n、统计分布参数共同影响岩石损伤的等效弹性模量变化和本构方程曲线的形态,反应了岩体内部裂纹的萌生、发展、贯通过程及裂纹间相互作用引起的力学效应。模型参数采用数学拟合联合复合遗传算法求解,所得方程曲线更接近实测曲线,具有明显的优越性。
     (4)应用连续性方程、线动量平衡方程、岩石损伤等效弹性模量方程及相应的物性方程,在合理的基本假设基础上,对饱和状态下渗流场和应力场控制方程分别进行了推导,建立了考虑损伤效应的渗流应力耦合模型。在耦合方程组推导过程中,针对岩体损伤效应,考虑了岩体渗流状态的变化及岩石孔隙率、渗透率变化。
     (5)结合隧道围岩的初始条件及边界条件,研究了考虑损伤效应的渗流应力耦合模型有限差分求解方法,对求解过程进行了程序设计,以FLAC3D有限差分软件为平台,进行了软件二次开发,程序计算过程简洁、便于实现。
     (6)针对考虑损伤效应的渗固耦合模型初始地质参数确定问题提出了模式搜索分层运算方法(HPS),算法在分层优化方法中引入模式搜索,实施模式分层运算,改变求解机制,提高解的精度和稳定性,以清江水布垭工程地下洞室初始地质参数确定为例,进行了实例研究。
     (7)基于建立的耦合模型,应用所开发的程序对四川跷碛水电站洞室位移变形监测工程实例实施数值模拟计算,进行程序检测验证,并把开发的程序应用于武汉伏虎山地段地铁隧道实际工程研究中,辅助隧道设计和施工。
The study of structural security and stability started with the underground projects. Around the complexity geological environment, tunnel surrounding rock always lies in a dynamic equilibrium for some natural conditions changing. That some tunnel disasters instability occurring frequently along with excavation and operation bring great loss to the country's economic development and people's lives and property. At the saturation state, the seepage-stress coupling theory, one of the most important coupling contents, was studied and obtained great richly achievement under the interaction between tunnel rock and its environment factors. However, as most results being limited to analysis the macro-cracks in the stress-strain state of rock, there were several shortages such as the new breakdown crack, expansion and penetration process, the permeability evolution process and the damage-permeability coupling process etc. At the same time, the permeability evolution mechanical mechanism is not clear in the breakdown crack process. So there are some things to do in coupling area. In this paper, the seepage-stress coupling damage behavior of tunnel surrounding rock is studied which can understand the surrounding rock mass deformation mechanism, provide scientific and technical support for tunnel alignment layout and excavation, enhance prediction capabilities of the tunnel disaster response and disaster prevention, ensure safety and save investment significant.
     The main efforts and conclusions results gained can be expressed as follows.
     1. The stress characteristics of tunnel structure is studied because tunnel excavation would produce rock stress changes. Based on statistics and experiment information, the load distribution rule of tunnel rock and support structure has been analyzed. That tunnel rock is the main source of load and also endures certain load. It has a certain self-stability function in different rocks. So the study on tunnel surrounding rock stability must be explored from some coupling factors.
     2. On the basis of seepage laws in the tunnel rock, the self-adaptive seepage model (SSM) was established. The SSM can automatically select the appropriate seepage function which descript the different fluid traits in rock according to the seepage medium permeability, and also express the different fluid modes for the seepage speed or the load change. According to the rock permeability theory model, the main physical rock characteristics is studied at the external environment factors.
     3. The rock damage statistics theory is used on the deformation and crack process. In order to express that yielded and cracked rock has still received a certain load, the tradition statistical damage modification was amended and a new statistics seepage model function was established, which can influence the real rock state. That the amending damage variable parameter and statistics distribution parameters decided the damage equivalent elastic modulus and the curve figure of statistics seepage model function simulate the micro-crack evolution process and some micro-cracks' load effect each other in rock. In new model, variable parameters were calculated by mathematics curve combining with Compositely Genetic Algorithm (CGA). Numerical example shows that the result is efficient and reliable.
     4. Based on some reasonable assumption, the seepage field and stress field equations have been derived through continuity equation, momentum conservation equation, rock statistical damage amending equation and some substantial equations. Then the seepage-stress coupling damage behavior model is established in saturation state.
     5. According to some initial and boundary conditions of tunnel surrounding rock, the finite difference method is explored in seepage-stress coupling damage behavior model.
     6. Hierarchical pattern search is provided to solve some initial geological stress parameters in seepage-stress coupling damage behavior model. The new optimization method enhanced some computing strategies through combing with pattern search method and hierarchical optimization. The fact engineering example shows that the hierarchical pattern search method is high accuracy and validity in the cavern displacement parameter inversion of Qingjiang Shuibuya porject.
     7. Based on the finite difference software FLAC3D, the seepage-stress coupling damage behavior model procedure is designed. This procedure is proven by cavern displacement in Sichuan Qiaoqi hydropower project and used in Wuhan Fuhu mountain subway tunnel project.
引文
[1]钱七虎.迎接我国城市地下空间开始高潮[J].岩土工程学报,1998,20(1):112-113.
    [2]刘宝琛.综合利用城市地面及地下空间的几个问题[J].岩石力学与工程学报,1999,18(1):109-111.
    [3]中华人民共和国交通部.JTG D70-2004.公路隧道设计规范[S].北京:人民交通出版社,2004-11-01
    [4]付冰骏.北美洲隧道工程会议报导[J].岩力学与工程学报,1994,13(3):292-292.
    [5]罗衍俭.隧道工程世纪之梦[J].世界隧道,1997(6):2-3.
    [6]杜炜平.隧道开挖地质灾害规律及防治对策研究[博士学位论文][D].长沙:中南大学,2001.
    [7]铁路工程地质及路基[M].《成昆铁路》二册.人民出版社.1980.
    [8]邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展,1997,27(1):19-38
    [9]仵彦卿.岩体结构类型与水力学模型.石力学与工程学报,2000,19(6):687-691
    [10]刘仲秋,章青.岩体中饱和渗流应力耦合模型研究进展.力学进展,2008,38(5):585-600
    [11]雷承弟.二滩水电站枢纽区岩体蠕变试验[J].水电工程研究,1989:1-11
    [12]Snow D T.Anisotropic permeability of fractured media.Water resources research,1969,5(6):1273-1289.
    [13]荣冠,周创兵,王恩志.裂隙岩体渗流张量计算及其表征单元体积初步研究.石力学与工程学报,2007,26(4):741-746
    [14]江涛.基于细观力学的脆性岩体损伤-渗流耦合本构模型研究[博士学位论文][D].南京:河海大学,2006.
    [15]Noorishad J.,Ayatollahi M S,Witherspoon P.A.etc.A finite-element method for coupled stress and fluid flow analysis in fractures rock masses.Int J Rock Mech Sci Geomech Abstrs,1982,19(4):185-193.
    [16]Oda M.An equivalent model for coupled stress and fluid flow analysis in jointed rock masses.Water Resour,1986,22(13):155-164.
    [17]沈振中,徐志英等三峡大坝坝基黏弹性应力场与渗流场耦合分析.工程力学,2000,17(1):105-113.
    [18]王嫒,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析.石力学与工程学报,2000,19(2):177-181
    [19]Mahnken R,Kohlmeier M,Finite Element Simulation for Rock Salt with Dilatancy Boundary Coupled to Fluid Permaction.Computer Methods Appl Engrg,2001,190:4259-4278
    [20]Indraratna B.Hydro-mechanical aspects of jointed rock media.In Fujii T,ed.Proceedings of the 8~(th) International Congress on Rock Mechanics,Tokyo,1995.759-762
    [21]Young-Ⅱ Kim,Anadei B,Pan E.Modeling the effect of water,excavation sequence and rock reinforcement with discontinuous deformation analysis.Int j Rock Mech Min Sci,1999,36(7):949-970
    [22]肖裕行,王思敬,王泳嘉.离散单元法中接触变化诱导的水头变化[J].岩土力学,1999,20(2):5-9
    [23]王洪涛.裂隙网络渗流与离散元耦合分析充水岩质高边坡的稳定性[J].水文工程地质,2000,2:30-33
    [24]忤彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2000,16(1):1-5
    [25]卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2001
    [26]Jing L R,Ma Y,Fang ZL.Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis(DDA) method.Int j Rock Mech Min Sci,2001,38(3):343-355
    [27]张国新,武晓峰.裂隙渗流对岩石边坡稳定性的影响--渗流、变形耦合作用的DDA法[J].岩石力学与工程学报,2003,22(8):1269-1275
    [28]Ivars D M.Water inflow into excavations in fractured rock-a three-dimensional hydro-mechanical numerical study.Int j Rock Mech Min Sci,2006,43(5):705-725
    [29]Cammatata G,Fidelibus C,Cravero M,et al.The hydromechanically coupled response of rock fractures.Rock Mech Rock Engng,2007,40(1):41-46
    [30]Cappa F,Guglielmi Y,Fenart P,et al.Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements.Int j Rock Mech Min Sci,2005,42(7-8):949-970
    [31]Guglielmi Y,Cappa F,Rutqvist J,et al.Mesoscale characterization of coupled hydromechanical behavior of a fractured-porous slopein response to free water-surface movement.Int j Rock Mech Min Sci,2007
    [32]JiaoY.,HudsonJ.A.The fully-coupled model for rock engineering system.Int.J.Rock Mech.Min.Sci Geomech.Abstr.,1995,32(5):491-512
    [33]Warren TE,Root P J.The behavior of naturally fractured reservoirs.Soc Pet Engg J,1963,(3):234-255
    [34]Ohnishi Y.,Kabayashi A.Thermal-hydraulic-meehanical coupling analysis of rock mass.Comprehensive Rock Engineering,Pergamon Press,1993(2):191-208
    [35]Aifantis E C.On the problem of diffusion in solids.Acta Mech,1980,37:265-296
    [36]仵彦卿,张倬元.岩体系统渗流场与应力场耦合的广义双重介质模型的应用研究.工程地质学报,1996,4(3):40-46
    [37]赵瑜,李晓红,卢义玉.块裂结构岩质边坡水力学模型及数值模拟.岩土力学,2005,26(6):996-999
    [38]Yuan S C,Harrison J P.A review of the state of the art in modeling progressive mechanical breakdown and associated fluid flow in intact heterogeneous rocks.Int.J.Rock Mech.Min.Sci Geomech.Abstr.,1982,19(4):185-193
    [39]Bruno M S,Nakagawa F M.Pore pressure influence on tensile fracture propagation in sedimentary rock.Int.J.Rock Mech.Min.Sci Geomech.Abstr.,1991,28(4):261-273
    [40]Vandamme M,roegiers J C.Poroelasticity in hydraulic fracturing simulators.Journal of petroleum technology,1990,11:1199-1203
    [41]Keivan n.discrete versus smeared versus element-embedded crack models on ring problem.Journal of engineering mechanics,1999,125(6):307-314
    [42]崔中兴,仵彦卿,党发宁等,石砭峪岩体裂隙非连续介质渗流对岩体强度的影响.西安理工大学学报,2001,17(4):366-369
    [43]谢兴华.岩体水力劈裂机理试验及数值模拟研究:[博士学位论文][D]:南京:河海大学,2004.
    [44]唐红侠.水力劈裂条件下裂隙介质水力特性研究:[博士学位论文][D]:南京:河海大学,2005.
    [45]连志龙.岩体水力劈裂机理试验及数值模拟研究:[博士学位论文][D]:合肥:中国科学技术大学,2007.
    [46]Simpson G,Gueguen Y,Schneider F.Permeability enchancement due to microcrack dilatancy in the damage regime.J Geophys Res,2001,106:3999-4016
    [47]Valko P,Economides M J.Propagation of hydraulically induced fractures--A continuum damage mechanics approach.Int.J.Rock Mech.Min.Sci Geomech.Abstr.,1991,31(3):221-229
    [48]杨延毅,周维恒.裂隙岩体的渗流-损伤场耦合分析模型及其工程应用.水力学报,1991,5:19-27
    [49]郑少河,朱维申.裂隙岩体渗流-损伤场耦合模型的理论分析.岩石力学与工程学报,2001,20(2):156-159
    [50]朱珍德,徐卫亚.裂隙岩体渗流场与损伤场耦合模型研究.河海大学学报,2003,31(2):156-160
    [51]Souly M,Homand F,Pepa S,etc.Damage-induced permeability changes in grantite:a case example at the URL in Canada.Int.J.Rock Mech.Min.Sci Geomech.Abstr.,2001,38(2):297-310
    [52]Shao J F,Hoxha D,Bart M,etc.Continuous modeling of induced anisotropic damage in granite.Int.J.Rock Meeh.Min.Sci Geomech.Abstr.,1999,36(8):1001-1012
    [53]Oda M.Takemuea T,Aoki T.Damage growth and permeability change in triaxial compression tests of India granite.Mechanics of materials,2002,34:313-331
    [54]Hou Z M.Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities.Int.J.Rock Mech.Min.Sci Geomech.Abstr.,2003,40(5):725-735
    [55]江涛.基于细观力学的脆性岩体损伤-渗流耦合本构模型研究:[博士学位论文][D]:南京:河海大学,2006
    [56]褚卫江.低孔隙度岩石细观本构模型及损伤-渗流耦合研究:[博士学位论文][D]:南京:河海大学,2007
    [57]卢应发,刘德富,吴延春等.岩石水相互作用的正交各相异性损伤数值模拟.岩石力学与工程学报,2007,26(2):323-330
    [58]Shao J F,Zhou H,Chan K T.Coupling between anisotropic damage and permeability variation in brittle rocks.Int J Numer Anal Mech.Geomech.2005,29:1231-1247
    [59]周建军,周辉,邵建富.脆性岩石各向异性损伤和渗流耦合细观模型研究,岩石力学与工程学报,2007,26(2):368-373
    [60]Scholz C H.Microfracturing and the inelastic deformation of rock in compression.J Geophys Res,1968,73(4):1417-1432.
    [61]杨天鸿,唐春安,梁正召等.脆性岩石破裂过程损伤与渗流祸合数值模型研究,力学学报,2003,35(5):533-540
    [62]Yuan S C,Harrison J P.Development of a hydromechanical local degradation approach and its application to modeling fluid flow during progressive fracturing of heterogeneous rocks.Int.J.Rock Mech.Min.Sci,2005,42(7-8):961-984
    [63]周辉,邵建富,冯夏庭等.岩石细观统计渗流模型研究(Ⅱ):实例分析.岩土力学,2006,27(1):123-126
    [64]Bruno M S,Micromechanics of stress-induced permeability anisotropy and damage in sedimentary rock.Mech Mater,1994,18:31-48.
    [65]Li L,Holt R M.Simulation of flow in sandstone with fluid coupled particle model.In Elsworth D,Tinucci JP,Heasley K A,eds.Rock Mechanics in the National Interest,2001,165-172
    [66]Boutt D F,Cook B K,Mcpherson B,etc.Application of a directly coupled numerical model of fluid-solid mechanics.In:Culligan P J,Einstein H H,Whittle A J,eds.Soil and Rock America 2003 Proceedings,2003.977-983.
    [67]Seeburger D A,Nur A,A pore space model for rock permeability and bulk modulus,J Geophys Res,1984,89(B1):527-536.
    [68]Zhu W,Wong T F.Permeability reduction in a dilating rock:network modeling of damage and tortuosity.Geoptys Res Lett,1996,23(22):3099-3012
    [69]陈先国.隧道结构失稳及判据研究:[博士学位论文][D].成都:西南交通大学,2002
    [70]陈颙等.应力路径、岩石的强度利体积膨胀[J],中国科学,1979,(11):1093-1100
    [71]中华人民共和国交通部.JTG D70-2004.公路隧道设计规范[S].北京:人民交通出版社,2004-11-01
    [72]王明年等.隧道支护与围岩交互作用的试验研究,工程力学,1995增刊,1494-1499
    [73]许强等.外界扰动诱发地质灾害的机理分析[J],岩石力学与工程学报,2002.21(2):280-284
    [74]王永辉.低渗透储层开发压裂的油藏数值模拟研究[博士学位论文][D].成都:西南石油学院,2004.
    [751赵碧华等.油气层渗流[M].四川,南充:西南石油学院印刷厂,1991.16-17.
    [76]阂琪,金贵孝等.低渗透油气田研究与实践[M].北京:石油工业出版社,1998.6-7.
    [77]L.E达克著,刘翔鄂等译.油藏工程原理[M].北京:石油工业出版社,1984.168-168.
    [78]Coats,K.H.,Nielsen,R.L.ete.1967.Simulation of Three Dimensional,Two Phase Flow in Oil and Gas Reservoirs.Soe.Pet.Eng.J.,Deeember:377-388.
    [79]Frederie.Jr.,D.c.etc.New Correlations to Predict Non-Darcy Flow Coefficients at Immobile and Mobile water Saturation.SPE28541,1994
    [80]J.Geetsma,1974.Estimating the Coeffieient of Inertial Resistance in Fluid Flow Through Porous Media.Soe.Pet.Enj.J.,Oetober:445-450.
    [81]R.D.Evans etc.The Effect of Liquid Saturation on the No-Darcy Flow Coefficient in Porous Media.SPE 15066,1985.
    [82]E.V.Evans etc.The Influence of an Immobile or Mobile Saturation upon Non-Darcy Compressible Flow of Real Gases in Propped Fractures.SPE1986.
    [83]黄延章.低渗透油层渗流机理研究[M].北京:石油工业出版社,1998:85-86.
    [84]F.A.Dullien,范玉平,赵东伟等译.现代渗流物理学[M].北京:石油工业出版社,2001.
    [85]贺玉龙.三场耦合作用相关试验及耦合强度量化研究[博士学位论文][D].成都:西南交通大学,2003.
    [86]杨立忠,张人权,史毅虹等.深层地下水渗流的研究[M].北京:成都科技大学出版社,1995.
    [87]洪世铎.油藏物理基础[M].北京:石油工业出版社,1985
    [88]姜振泉,季梁军,左如松等.岩石在伺服条件下的渗透性与应变、应力的关联性特征,岩石力学与工程学报2002,21(10):1442-1446.
    [89]Palciauskas V.V.,Domenico P.A.Characterization of Drained and Undrained Response of Thermally Loaded Repository Rocks[J].Water Resources Research.1982,18(2):281-290
    [90]陈颐,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001.
    [91]张渊,赵阳升,万志军等,不同温度条件下孔隙压力对长石细砂岩渗透率影响试验研究,岩石力学与工程学报,2008,27(1),53-58
    [92]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发.1997,24(3):61-65
    [93]曹文贵,张升.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究[J].湖南大学学报(自然科学版),2005,32(1):43-47.
    [94]曹文贵,赵明华,刘成学.基于统计损伤理论的莫尔-库仑岩石强度判据修正方法之研究[J].岩石力学与工程学报,2005,24(14):2403-2408.
    [95]曹文贵,莫瑞,李翔.基于正态分布的岩石软硬化损伤统计本构模型及其参数确定方法探讨[J].岩土工程学报,2007,29(5):671-675.
    [96]刘齐建,杨林德,曹文贵.岩石统计损伤本构模型及其参数反演[J].岩石力学与工程学报,2005,24(4):616-621.
    [97]韦立德.岩石力学损伤和流变本构模型研究[博士学位论文][D].南京:河海大学,2003.
    [98]杨圣奇,徐卫亚,韦立德等.单轴压缩下岩石损伤统计本构模型与试验研究[J].河海大学学报(自然科学版),2004,32(2):200-203.
    [99]Krajcinovic D,Silva M A G.Statistical aspects of the continuous damage theory[J].Int.J.Solids Structures,1982,18(7):551-562.
    [100]LEMAITRE J.How to use damage mechanics[J].Nuclear Engineering and Design.1984,80(3):233-245.
    [101]赖勇,张永兴.岩石宏、细观损伤复合模型及裂纹扩展规律研究[J].岩石力学与工程学报,2008,27(3):534-542.
    [102]吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报,1996,15(1):55-61.
    [103]文建华,李新平,张文成等.复合遗传算法在爆破震动测试参数确定中的研究[J].岩土力学,2005,26(1):160-162.
    [104]WEN Jian-hua.CHEN Jun-ming WU Dai-hua.Study on Parameter Inversion of Displacement Based on Homotopy Theory Genetic Algorithms.IEEE computer society.Wuhan,CHINA 17-18 Oct.2008,p313-317.
    [105]王振华.流体力学的基本理论[M].上海大学出版社,2002
    [106]孔样言.高等渗流力学[M).合肥:中国科学技术大学出版社,1999
    [107]Hart R.D.,John C.M.ST.Formulation of a Fully-coupled Thermal-Mechanical-Fluid Model for Non-linear Geologic Systems[J].Int.J.Rock.Meeh.Min.Sic.&Geomech.Abstr.1986,23(3):213-224
    [108]Noorishad J.,Tsang C.F.and Witherspoon P.A.Coupled Thermal-Hydraulic Mechanical Phenomena in Saturated Fractured Porous Rocks:Numerical Approach[J].J.Geophysical Res.1984,89(B 12):10365-10373
    [109]刘波,韩彦辉.FLAC原理、实例与应用指南.北京:人民交通出版社,2006
    [110]田迎春,章梓茂,魏培君等.黏弹性介质参数反演的同伦方法[J].岩石力学与工程学报,2006,25(8):1718-1722.
    [111]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社.1999.
    [112]孙钧,黄伟.岩石力学参数弹塑性反演问题的优化方法[J].岩石力学与工程学报,1992,11(3):221-229.
    [113]莫海鸿,唐超宏,刘少跃.应用模式搜索法寻找最危险滑动圆弧[J].岩土工程学报,1999,21(6):696-699.
    [114]粟塔山.最优化计算原理与算法程序设计[M].长沙:国防科技大学出版社,2001
    [115]Yosef S S,Bruce A B.Optimization by pattern search[J].European Journal of Operational Research,1994,78(13):388-303.
    [116]CALVELLO M,FINNO R J.Selecting parameters to optimize in model calibration by inverse analysis[J].Computers and Geotechnics,2004,31(5):411-425
    [117]陈炳瑞,冯夏庭,丁秀丽等.基于模式搜索的岩石流变模型参数识别[J].岩石力学与工程学报,2005,24(2):207-211.
    [118]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例.北京:水力水电出版社,2008
    [119]朱伯芳.有限单元法原理与应用.北京:水力水电出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700