用户名: 密码: 验证码:
应用回交育种和QTL聚合改良粳稻抗旱性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界上许多地区干旱胁迫和水资源短缺是威胁作物生产最重要的限制因素,在我国淡水资源中大约有70%被用于农业,而水稻生产的用水量占全部农业用水的70%。在我国北方,人们对高品质粳稻日益增长的强烈需求使得近几年水稻种植面积急剧增加,这使得竞争有限的水资源成为这里一个严重问题。选育和种植高产、抗旱或节水粳稻新品种成为解决这一问题的最佳途径。因而,育种家们在选育抗旱性强或水分利用效率高的高产粳稻品种时所面临的两大挑战是:对改良抗旱性(或水分利用效率)有利用价值的遗传变异在哪里;应该采取怎样的育种策略。
     本研究采用同样的回交育种策略挖掘籼稻基因库资源中的抗旱隐蔽基因,并采取聚合来源于不同供体抗旱基因的方法,以我国北方粳稻优良恢复系C418为轮回亲本,与5个籼稻供体亲本进行杂交和2次回交,对BC_2F_2混合群体进行严格的干旱筛选,共得到5个抗旱选择群体(113个抗旱选择导入系),对其选择导入效应进行了综合评价,对其中3个群体进行了抗旱QTL定位和效应分析;另应用8个优良抗旱选择导入系配制4个聚合杂交组合,于F_2代进行严格的抗旱筛选,构建抗旱聚合系群体,并对其进行了抗旱QTL定位和抗旱遗传网络剖析。获得主要试验结果如下:
     1.对5个抗旱导入系群体抗旱选择导入效应进行了综合评价。其主要试验结论:导入系后代经过两个不同环境的鉴定,筛选出46(40.7%)株优良导入系,这是应用回交方法开发籼稻基因资源中隐蔽有利变异改良粳稻抗旱性的育种策略的有力证据;在这些株系的变化中株高的增加和抽穗期的缩短是两个相关的变化,这说明抗旱可能与GA途径有关,也说明是逃旱性的抗旱;这些导入系的产量构成因子中存在着大量变异,可以说明不同抗旱机制的存在;本研究产生的C418导入系既可以为剖析抗旱性与产量的关系提供有用材料,又可以作为进一步聚合育种的中间材料。
     2.抗旱选择导入群体QTL定位及其效应分析。其主要试验结论:卡方检验时发现较小规模的选择导入系群体,例如C418/manauthukha群体和C418/teqing群体检测到的超导入位点比例较大,而较大群体C418/yuexiangzhan检测到的超导入位点比例较小,因此,为提高选择效率适当的群体大小是我们进行选择时应该考虑的问题;定位到的许多抗旱QTL在两个群体中同时存在,这些位点相对更加可靠,但是这些位点的基因往往功能相近,在聚合育种时应该尽量避免选择重复功能的供体片段,对于提高改良效果更加有利;定位结果中发现一些对产量具有正向加性效应的QTL,这些位点将会被用于进一步改良抗旱性的育种程序中,同时发现了四种条件下对产量均表现正向显性效应的位点,这对研究QTL的显性效应十分有利,并且对于杂交水稻育种来说更有应用价值。
     3.抗旱聚合系QTL定位和抗旱遗传网络剖析。其主要试验结论:每个聚合群体卡方检验得到的抗旱相关QTL与单向方差分析得到的产量相关QTL都有一些位点是重叠的,这是我们所期望的结果,同时也验证了导入系群体QTL效应分析的结论,有些抗旱位点是对产量具有正向加性效应的,有些抗旱位点对产量是存在负向加性效应的。抗旱遗传网络分析得出群体Ⅰ中AL1处于总调控位置,AL2、AL3、AL4、M1、M3、M4、M5和M6处于调控关系上游;群体Ⅱ中AL1处于总调控位置,AL2、M1、M2、M3处于调控关系上游;群体Ⅲ中AL1处于总调控位置,M1、M2、M3、AL2和AL3处于调控关系上游;群体Ⅳ中AL1处于总调控位置,M1、M2、M3、M4、M5、M6、M7、M8、M9、M10、M12、M14和M16处于调控关系上游,这些基因对于抗旱遗传网络的调控力度最大,对整个抗旱体系的作用举足轻重,在育种选择过程当中要注意对这些导入位点的跟踪选择。
Drought stress and water shortage are the most important factors threatening crop production in many areas of the world. In China, agriculture uses~70% of its total fresh water resources and rice production alone takes up~70% of the water resources for agriculture. In North China, rice acreage has nearly doubled recently as the dramatically increased demand for high quality japonica rice in China. This has created a serious problem in competing the limited water resources in the area. Thus, development and adoption of high yielding, drought tolerant (DT) or water-use-efficient (WUE) japonica varieties are the most attractive solution to this problem. Thus, two major challenges facing plant breeders for developing high yielding japonica rice cultivars with desirable levels of DT and WUE are: where is the useful genetic variation for DT/WUE and what breeding strategy should be used.
     In this study, we used BC breeding to improve japonica hybrid restorer line, C418 by mining the diversity hidden in the indica gene pool. Five BC_2F_2 bulk populations were developed by crossing C418 (the recurrent parent) with 5 indicia donors followed by two rounds backcrossing. The BC_2F_2 populations were subjected to two rounds of selection under severe drought, resulting in the development of 113 DT introgression lines (ILs). Evaluation was made for the lines about introgression effects. Also, we mapped the QTLs for drought tolerance and analyzed the effects of DT QTLs. Furthermore, we conducted 4 pyramiding populations using 8 superior lines improved for DT followed by severe drought selection performed for F_2. QTLs mapping and analyzing of DT genetic network were made for pyramiding DT lines. The main results summarized as follows:
     1. Evaluation was made for 113 lines about introgression effects. Progeny testing across 2 diverse environments allowed the identification of 46 (40.7%) superior C418-ILs, demonstrating the power of BC breeding in exploiting favorable variation hidden in the indica gene pool for improving DT of japonica rice. Increased-height and accelerated-heading were 2 correlated changes in these ILs, suggesting the possible involvement of GA pathway and drought escaping. Considerable variations in yield components among these ILs indicate the presence of different DT mechanisms. The C418-ILs developed in this study were supposed to provide useful materials for dissection of DT and yield, and for further pyramiding breeding in rice.
     2. We mapped the QTLs for drought tolerance of 113 lines and analyzed the effects of DT QTLs.We found that the percent of super introgressin loci in small populations were much larger than that in large population. So we should consider the proper size of populations when we select the DT lines. Many QTLs mapped in the 113 lines were concurrence in two populations and these loci were more reliable for breeder. But, the gene functions of these loci are mostly close and we have to avoid selecting these loci to increase the improving effects when we perform pyraming breeding. We also found the DT QTLs with positive additive effect for yield and these QTLs will be used to improve DT further. At the same time, somes QTLs with positive dominant effect for yield were mapped under 4 conditions and these QTLs will be used to study dominant effect of QTLs further which are very useful for Hybrid rice breeding.
     3. QTLs mapping and analyzing of DT genetic network were made for pyramiding DT lines. DT QTLs of X~2 test and yield QTLs of One-way ANOVA were found overlapping in every population which was desired by us. The results also verified the conclusion that some DT QTLs were positive additive effect for yield and another DT QTLs were negative additive effect for yield. Genetic networks of pyramiding populations on DT indicated that AL1s were all in the chief positions in 4 populations and AL2, AL3, AL4, M1, M3, M4, M5 and M6 of population I , AL2, M1, M2 and M3 of population II, M1, M2, M3, AL2 and AL3 of population III, M1,M2,M3,M4,M5,M6,M7, M8, M9,M10,M12,M14 and M16 of population IV were in the upstream of the relationship which had the highest regulating ability to the genetic network of DT. The functions of these locus or genes are very essential in the DT genetic network. We should pay attentions to track and select these locus in our breeding practice.
引文
[1]蔡永萍,杨其光,黄义德.2000.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学,14(4):219-224
    [2]陈凤梅,程建峰,潘哓云.2001.杂交稻抗旱性状的筛选研究.杂交水稻,16(4):51-54
    [3]陈善福,舒庆尧.1999.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报,16(6):555-560
    [4]陈少裕.1989.膜脂过氧化与植物逆境胁迫.植物学报,6(4):211-217
    [5]程建峰,潘晓云,刘宜柏.2005.快速鉴定稻种资源抗旱性的生理指标筛选及其遗传背景.西南农业学报,(18):529-533
    [6]崔国贤,沈其荣.2001.水稻旱作及对旱作环境的适应性研究进展.作物研究,15(3):70-76
    [7]戴新宾,翟虎渠,张红生等.2000.土壤干旱对水稻叶片光合速率和碳酸酐酶活性的影响.植物生理学报,26(2):133-136
    [8]丁友苗,黄文江,王纪华等.2002.水稻旱作对产量和产量构成因素的影响.干旱地区农业研究,20(4):50-54
    [9]董国军,郭龙彪,藤本宽.2003.栽培稻抗旱性指标的相关研究.浙江农业科学,2:72-75
    [10]杜金友,陈晓阳,李伟.2004.干旱胁迫诱导下植物基因的表达与调控.生物技术通讯,2:10-14
    [11]方宣钧,吴为人,唐纪良.2002.作物DNA标记辅助育种.北京:科学出版社
    [12]方宣钧,吴为人,唐纪良.2002.作物DNA标记辅助育种.北京:科学出版社,
    [13]高吉寅,胡荣海.1984.水稻等品种苗期抗旱生理指标的探讨.中国农业科学,4:41-45
    [14]高宁,景蕊莲,陈耀锋,张传福.2003.作物抗旱相关分子标记及其辅助选择的研究进展植物遗传资源学报,4(3):274-278
    [15]高用明,朱军.2000.植物QTL定位方法的研究进展.遗传,22(3):175-179
    [16]关义新,戴俊英,林艳.1995.水分胁迫下植物叶片光合作用的气孔限制和非气孔限制.植物生理学通讯,31(4):293
    [17]郭连旺,沈允钢.1996.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,32(1):1-8
    [18]郭龙彪,钱前.2003.栽培稻抗旱性的田间评价方法.中国稻米,(2):26-27
    [19]郭咏梅,穆平,刘家富,李自超,卢义宣.2007.水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位.作物学报,33(1):50-56
    [20]韩建民.1990.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系.河北农业大学报,13(1):17-21
    [21]侯建华,吕凤山.1995.玉米苗期抗旱性鉴定研究.华北农学报,10(3):89-93
    [22]胡标林,李名迪,万勇等.2005.我国水稻抗旱鉴定方法与指标研究进展.江西农业学报,17(2):56-60
    [23]胡标林,余守武,万勇等.2007.东乡普通野生稻全生育期抗旱性鉴定.作物学报,33(3):425-432
    [24]胡继超,姜东,曹卫星,罗卫红.2004.短期干旱对水稻叶水势、光合作用及干物质分配的影响.应用生态学报,15(1):63-67
    [25]胡颂平,杨华,邹桂花,刘鸿艳,刘国兰,梅捍卫,蔡润,李名寿,罗利军.2006.水稻胚芽鞘长度与抗旱性的关系及QTL定位.中国水稻科学,20(1):19-24
    [26]黄文江,黄义德,王纪华等.2003.水稻旱作对其生长量和经济产量的影响.干旱地区农业研究,21(4):15-19
    [27]黄文江,王纪华,赵春江等.2002.水稻旱作条件下渗透调节物质和激素含量是关系.干旱地区农业研究,20(1):61-64
    [28]吉田昌一.1984.稻根系的发育和机能.国外农学(水稻),1:12-17
    [29]金忠男.1991.稻的抗旱性机理与鉴定.杂交水稻,(4):45-48
    [30]景蕊莲,昌小平,贾继增,胡荣海.1999.用花药培养创建小麦加倍单倍体作图群体,生物技术,3:6-10
    [31]黎志康.005.我国水稻分子育种计划的策.分子植物育种,3(5):603-608
    [32]李长明,刘保国,任昌福等.1993.水稻抗旱机理研究.西南农业大学学报,15(5):409-413
    [33]李成业,熊昌明,魏仙君.2006.中国水稻抗旱研究进展.作物研究,(5):426-434
    [34]李德福,李金才,魏风珍.2005.拔节长穗期水分胁迫对旱作水稻若干生理特性和经济性状的影响.安徽农业科学,33(7):1166-1167
    [35]李艳,马均,王贺正等.2005.水稻品种苗期抗旱性鉴定指标筛选及其综合评价.西南农业学报,18(3):250-255
    [36]利容千,王建波.2002.植物逆境细胞及生理学.武汉:武汉大学出版社,53-84
    [37]刘立峰,穆平,张洪亮,王毅,李自超.2006.水、旱稻千粒重和产量QTL效应的验证.中国农业科学,39(2):219-224
    [38]刘三宏.2007.水稻抗旱QTL定位及不同抗逆性的遗传重叠与细胞学机制研究(博士学位论文).北京:中国农科院
    [39]刘友良.1992.植物水分逆境生理.北京:中国农业出版社
    [40]卢从明,张其德,匡廷云.1993.水分胁迫对小麦叶绿素a荧光诱导动力学的影响.生物物理学报,9(3):453-457
    [41]卢少云,郭振飞,彭新湘,黎用朝,李宝盛,李明启.1999.水稻幼苗叶绿体保护系统对干旱的反应.热带亚热带植物学报,7(1):47-52
    [42]卢少云,郭振飞,彭新湘,李宝盛,李明启,黎用朝.1997.干旱条件下水稻幼苗的保护酶活性及其与耐旱性关系.华南农业大学学报,18(4):21-25
    [43]路贵和,安海润.1999.作物抗旱性鉴定方法与指标研究进展.山西农业科学,27(4):39-43
    [44]罗利军,张启发.2001.栽培稻抗旱性研究的现状与策略.中国水稻科学,15(3):209-214
    [45]孟宪梅,黄义德,李奕松.2003.水稻若干生理指标与品种抗旱性关系的研究.安徽农业大学学报,30(1):15-22
    [46]缪颖,武炳华.2001.植物抗逆性的获得与信息传导.植物生理学通讯,37(1):71-76
    [47]穆平,李自超,李春平.2003.水、早稻根系性状与抗旱性相关分析及其QTL定位.科学通报,48(20):2162-2169
    [48]穆平.2004.水、旱稻DH和RIL群体抗旱性状相关分析及其QTL表达规律比较(博士学位论文).北京:中国农业大学
    [49]倪新强,王忠华,夏英武.2001.分子标记辅助选择及其在水稻育种中的应用.中国农学通报,17(3):58-61
    [50]区靖祥,邱健德编著.2002.多元数据的统计分析方法—附计算机软件应用.北京:中国农业科学技术出版社,161-187
    [51]曲延英,穆平,李雪琴,田玉秀,文峰,张洪亮,李自超.2008.水、旱栽培条件下水稻叶片水势与抗旱性的相关分析及其QTL定位.作物学报,34(2):198-206
    [52]山仑,陈国良.黄土高原旱地农业的理论与实践.北京:科学出版社,1993:286-297
    [53]舒卫国,陈受宜.2000.植物在渗透胁迫下的基因表达及信号转导.生物工程进展,20(3):3-7
    [54]孙彩霞,沈秀瑛.2002.作物抗旱性鉴定指标及数量分析方法的研究进展.中国农学通报,18(1):49-51
    [55]孙骏威,杨勇,黄宗安,金松恒,蒋德安.2004.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨.中国水稻科学,18(6):539-543
    [56]孙耀中,东方阳,郭学民,刘永军,杨晓玲,吉志新.2005.干旱胁迫下转甜菜碱醛脱氢酶基因水稻花后生理特性及产量构成.干旱地区农业研究,23(5):108-113
    [57]汤章诚.1983.植物对水分胁迫的反应与适应性Ⅰ.抗逆性的一般概念和植物的抗涝性.植物生理学通报,(3):24-29
    [58]汤章城.1986.水分胁迫和植物的气孔运动.植物生理生化进展,(4):43-50
    [59]唐定中,李维明,吴为人等.1999.利用RFLP、AFLP标记构建水稻分子连锁图.高技术通讯,3:48-52
    [60]唐先兵,赵恢武,林忠平.2002.植物耐旱基因工程研究进展.首都师范大学学报(自然科学版),23(3):47-51
    [61]王贺正,马均,李旭毅等.2005.水稻开花期抗旱性鉴定指标的筛选.作物学 报,31(11):1485-1489
    [62]王贺正,马均,李旭毅等.2007.水稻开花期一些生理生化特性与品种抗旱性的关系.中国农业科学,40(2):399-404
    [63]王洪春.1990.干旱诱导蛋白的研究进展.华北农学报,5:8-12
    [64]文峰,李自超,田玉秀,穆平,张洪亮,曲延英.2006.水稻苗期聚乙二醇胁迫与田间抗旱性的遗传分析.新疆农业大学学报,29(3):31-36
    [65]萧浪涛,王少先,彭克勤,夏石头,曹庸,刘华英.2005.自然干旱胁迫下配方肥增效剂对水稻内源激素的影响.中国水稻科学,19(5):417-421
    [66]肖用森,王正直,郭绍川.1996.渗透胁迫下稻苗体内游离脯氨酸积累与膜脂过氧化的关系.武汉植物研究,(4):16-20
    [67]熊清,王伯初,段传人.2000.植物抗脱水胁迫的分子机制.生物化学与生物物理进展,27(3):247-250
    [68]徐吉臣,李晶昭,郑先武等.2001.苗期水稻根部性状的QTL定位.遗传学报,28(5):433-438
    [69]徐云碧,朱立煌.1994.分子数量遗传学.北京:中国农业出版社,55-113
    [70]徐云碧.1994.分子数量遗传学.北京:中国农业出版社
    [71]杨建昌,乔纳圣·威尔斯,朱庆森,彭智勇.1995.水分胁迫对水稻叶片气孔频率、气孔导度及脱落酸含量的影响.作物学报,21(5):533-539
    [72]杨建昌,王国忠,王志琴等.2002.旱种水稻灌浆特性与灌浆期籽粒中激素含量是变化.作物学报,28(5):615-621
    [73]杨建昌,王志琴,朱庆森.1995.水稻在不同土壤水分状况下脯氨酸的积累与抗旱性的关系.中国水稻科学,9(2):92-95
    [74]杨建昌,王志琴.1995.水稻品种的抗旱性及生理特性的研究.中国农业科学,28(5):65-70
    [75]杨建昌,朱庆森,王志琴等.1995.土壤水分对水稻产量与生理特性的影响.作物学报,21(1):110-112
    [76]喻方圆,徐锡增.2003.植物逆境生理研究进展.世界林业研究,16(5):6-11
    [77]张丛志,张佳宝,赵炳梓,张辉.2007.作物对水分胁迫的响应及水分利用效率的研究进展.节水灌溉,第5期
    [78]张林生,赵文明.2003.LEA蛋白与植物的抗旱性.植物生理学通讯,39(1):61-66
    [79]张学勇,童依平,游光霞等.2006.选择牵连效应分析:发掘重要基因的新思路.中国农业科学,39(8):1526-1535
    [80]张燕之,周毓珩,邹吉承.1996.水稻抗旱性鉴定方法与指标研究Ⅲ.旱作水稻的主要农艺性状与其抗旱性指标.辽宁农业科学,(2):6-8
    [81]张燕之,周毓珩,邹吉承等.1996.水稻抗旱性鉴定方法与指标研究Ⅰ.生理生化方法鉴定稻的抗 旱性与水分胁迫下产量关系.辽宁农业科学,(1):10-13
    [82]张永平译.1985.作物抗性生理学.北京:农业出版社:191-207
    [83]张玉屏,朱德峰,林贺青等.2005.不同时期水分胁迫对水稻生长特性和产量形成的影响.干旱地区农业研究,23(2):48-53
    [84]赵全志,高桐梅,宁慧峰等.2005.分蘖期土壤水分对旱稻矿质养分吸收的影响.水土保持学报,19(6):90-93
    [85]郑成本,黄东益,莫饶等.2000.“热大99W”序列早稻新品系农艺特性与抗旱性的研究.热带作物学报,21(4):52-57
    [86]郑天清,徐建龙,傅彬英,高用明,Satish VERUKA,Renee LAFITTE,翟虎渠,万建民,朱苓华,黎志康.2007.遗传搭车与方差分析在水稻定向选择群体的抗旱性位点分析中的初步应用.作物学报,33(5):799-804
    [87]郑天清.2006.水稻高代回交导入系选择群体的选择响应与遗传重叠研究(博士学位论文).南京农业大学
    [88]周元昌,陈启锋,吴为人等.2000.作物QTL,定位研究进展.福建农业大学学报,29(2):138-144
    [89]朱杭申,黄呸生.1994.土壤水分胁迫与水稻活性氧代谢.南京农业大学学报,17(2):7-11
    [90]朱军.1999.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),33(3):327-335
    [91]朱维琴,吴良欢,陶勤南.2003.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究.土壤通报,34(1):25-28
    [92]Ali,A.J.,J.L.Xu,A.M.Ismail,B.Y.Fu,C.H.M.Vijaykumar,Y.M.Gao,J.Domingo,R.Maghirang,S.B.Yu,G.Gregorio,S.Yanaghihara,M.Cohen,B.Carmen,D.Mackill,and Z.K.Li.2006.Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program.Field Crops Research,97:66-76
    [93]Allard,R.W.1960.Principles of Plant Breeding.John Wiley & Sons,Inc.,New York
    [94]Barton N.H.2000.Genetic hitchhiking.Philosophical Transactions of the Royal Society B:Biological Sciences,355:1553-1562
    [95]Bemacchi D,Beck-Bunn T,Eshed Y,Lopez J,Petiard V,Uhilig J,Zamir D and Tanksley S.1998a.Advanced backcross QTL analysis in tomato.I.Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum.Theoretical and Applied Genetics,97:381-397
    [96]Bing Yue,Weiya Xue,Lizhong Xiong,et al.2006.Genetic basis of drought resistance at reproductive stage in rice:separation of drought tolerance from drought avoidance.Genetics,172:1213-1228
    [97]Bligh A F,Blackhall N.W,Edwards K J.1999.Using amplified fragment length polymorphisms and simple sequence length polymorphisms to identify cultivars of brown and white milled rice.Crop Science,39: 1715-1721
    [98]Botstein D R,White R L,Skolnick M,et al.1980.Construction of a genetic linkage map in man using restraction fragment length polymorphism.Am J Hum Genet,32: 314-331
    [99]Bowler C,Van Montagu M,Inze D.1992.Superoxide dismutase and stress to lerance .Ann Rev Plant Physio Plant Mol Biol,(43):83-l 16
    [100]Bray E.A.,1993.Molecular responses to water deficit.Plant Physiology,(103):1035-1040
    [101]Capell T,Escobar C,Liu H,et al.1998.0verexpression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putresine accumulation in transgenic plants .Theor Appl Genet,97: 246-254
    [102]Cardon L.R.,Abecasis G.R.2003.Using haplotype blocks to map human complex trait loci.Trends in Genetics,19:135-140
    [103]Champoux MC,Wang G,Sarkarung S et al.1995.Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers.Theoretical and Applied Genetics,90: 969-981
    [104]Chandler F M,Robertson M.1994.Gene expression regulated by abscisic acid action and its relation to stress tolerance.Annu Rev Plant Physiol,(45):113-141
    [105]Chandva B R,Pathan M,Blum A,et al.1999.Comparison of measurement methods of o smotic adjustment in rice cultivars .Crop Sci,39:150-158
    [106]Chang- Hyo Goh,Rainer Hedrich.2001.Ulrich Schreiber Osmotic Stress Induces Inactivation of Photo synthesis in Guard Cell Protoplasts of Vicia Leaves .Plant Cell Physiol,(42): 1186-1191
    [107]De Datta,Malabuyac J,Agragon E,et al.1988.A field screening technique for evaluating rice germplasm for drought tolerance during the vegetative stage.Field Crops Res,19:123-134
    [108]Donis~Keller,Green H P,Helms C,et al.1987.A genetic linkagemap of the human genome.Cell,51:319-377
    [109]Edwards,M.D.,Stuber,C.W.,Wendel,J.F.I987.Molecular-marker facilitated investigations of quantitative trait loci in maize.I.Numbers,genomic distribution and types of gene action.Genetics 116: 113-125
    [110]Eshed Y,Zamir D.1995.An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL.Genetics,141:1147-1162
    [111]Fukai S,Cooper M.1995.Development of drought resistant cultivars using Physio2morphological traits in rice .Field crops Res.,40 (2): 67-86
    [112]G.H.Zou,H.W.Mei,H.Y.Liu,et al.2005.Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers.Theor.Appl.Genet.DOI 10.1007/s00122-005-0111-3
    [113]Giandat J,Parcy F,Berauche N,et al.1994.Current advances in abscisic acid and signaling.Plant Mot Biol,26:1557-1577
    [114]Gimelfarb A & Lande R.1994b.Simulation of marker assisted selection for non additive traits. Genet.Res.,64:127-136
    [115]Gimelfarb A & Lande R.1995.Marker assisted selection and marker- QTL associations in hybrid populations.Theor Appl Genet,91:522-528
    [116]GRAMENE.2006.GRAMENE database,http://www.gramene.org/
    [117]Guan,D.and K.Hubacek.2008.A new and integrated hydro-economic accounting and analytical framework for water resources: A case study for North China.J.Environ.Manage,88:1300-1313
    [118]Guo L B,Qian Q.2003 .The field evaluation methods of the drought resistance in the cultivated rice.China Rice,2:26-27
    [119]Hall A E.1976.Ecological studies .Analysis and Syntheis,19: 76-83
    [120]He,G.M.,C.Q.Sun,Y.CFu,Q.Fu,K.J.Zhao,C.L.Wang,Q.Zhang,Z.Z.Ling,and X.K.Wang.2004.Pyramiding of senescence-inhibition IPT gene and Xa23 for resistance to bacterial blight in rice (Oryza sativa L.).Yi Chuan Xue Bao,31:836-841
    [121]Hemamalini G.S.,Shashidhar H.E,Hittalmani S.2000.Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice ( Oryza sativa L.).Euphytica,112 :69-78
    [122]Hiroshi T,Atsushi Y,Yoshiaki H,et al.1996.RFLP firamework map using recombinant inbred lines in rice.Breeding Science,46: 279-284
    [123]Horton R F.1987.Stomatal opening: the role of abscisic acid.Canadian Journal of Botany,49:583-585
    [124]Huang,T.Y.,S.G.Li,Y.P.Wang,and H.Y.Li.2003.Accelerated improvement of bacterial blight resistance of 'Shuhui527' using molecular marker-assisted selection.Sheng Wu Gong Cheng Xue i Bao,19: 153-157.
    [125]Jang IC,Oh S J,Seo J S,et al.2003 .Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transduction and gene expression profiles.Current Opinion in Plant Biology,(6):405-409
    [126]Jeanne C,Morris F,Walker Simmons M K.1991.Sequence analysis of a cDNA encoding a Group 3 LEA mRNA induced by ABA or dehydration stress in wheat.Plant Molecular Biology,16:1073-1076
    [127]John V J.1997.Regulation of ribonucleic acid metabolism by plant hormones .Plant Physiol,28: 537-564
    [128]Kristin A ,Schneider,Mary E B ,et al.1997.Marker assisted selection to improve drought resistance in common Bean.Crop Sci,37:51-60
    [129]Lafitte HR,Price AH,Courtois B.2004.Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers.Theoretical and Applied Genetics,109:1237-1246
    [130]Lafitte,H.R.,C.H.M.Vijayakumar,Y.M.Gao,Y.Shi,J.L.Xu,B.Y.Fu,S.B.Yu,A.J.Ali,J.Domingo,R.Maghirang,R.Torres,D.J.Mackill,and Z.K.Li,2006: Improvement of rice drought tolerance through backcross breeding: evaluation of donors and results from drought nurseries.Field Crops Research,97:77-86
    [131]Lande R,Thompson R.1990.Efficiency of marker-assisted selection in the improvement of quantitative traits.Genetics,124: 743-756
    [132]Lander E.S,Botstein S.1989.Mapping Mendelian factors underlying quantitative trait loci using RFLP linkage maps.Genetics,121: 185-199
    [133]Li J,Xiao J,Grandillo S et al.2004.QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O.sativa L.) and African (O.glaberrima S.) rice.Genome,47: 697-704
    [134]Li,Z.K.,B.Y.Fu,Y.M.Gao,J.L.Xu,J.Ali,H.RXafitte,Y.Z.Jiang,J.D.Rey,CH.Vijayakumar,R.Maghirang,T.Q.Zheng,and L.H.Zhu.2005.Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.).Plant Molecular Biology,59: 33-52
    [135]Li,Z.K.,L.S.Shen,B.Courtois,and H.R.Lafitte.2000.Development of Near Isogenic Introgression Line (NⅡL) Sets for QTLs Associated with Drought Tolerance in Rice.In: J.M.Ribaut and D.Poland (eds.),Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments,103-107.CIMMYT,E1 Batan,Mexico
    [136]Li,Z.K.,S.R.M.Pinson,A.H.Paterson,W.DJPark,and J.W.Stansel.1997.Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L) population.Genetics,145:1139-1148
    [137]Liang J,Zhang J.1999.Xylem ABA concent ration can not explain the delay of stomatal recovery of pro- stress plants after rewatering .Plant Growth Regul,(29): 77-86
    [138]Liang J,zhang J.Wong M H.1997.Can itomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying.Photosyn.Res.,51: 149-159
    [139]Liu P Y,Zhu J,Lou X Y,Lu Y.2003.A method for marker-assisted based on QTLs with epistatic effects.Genetica,119: 75-86
    [140]Liu Z C,Park B J,Kanno A,et al.2005.The novel use of a combination of spnicaition and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.)with lea gene.Mol Breed,16(3): 189-197
    [141]Ltai C,Vaadia Y.1971.Cytokinin activity in water stressed shoots .Plant Physiol.,47: 87-90
    [142]Mackill D J,Nguyen H T,Zhang J X.1999.Use of molecular markers in plant improvement programs for rainfed lowland rice.Field Crops Res,64:177-185
    [143]Mathilde A C.Theresa M F,Cho Y,et al.1994.Saturated Molecular map of the rice genome based on an interspecific backcross population.Genetics,138: 1251-1274
    [144]Maurel C.1997.Aquaporins and water permeability of plant membranes.Annu Rev Plant Physiol Mol Biol,48:399-429
    [145]Mayra Rodriguez,Eduardo Canales,Carlos J.Borroto,et al.2006.Identification of genes induced upon water-deficit stress in a drought-tolerant rice cultivar .Journal of Plant Physiology,163:577-584
    [146]Medrano H,Escalona J M,J Bota,et al.2002.Regulation of photosynthesis of C3 plant in response to p regressive drough t: stomatal conductance as a reference parameter .Annals of Botany,(89):895-905
    [147]Mehdy M C.1994.Active oxygen species in plant defense against pathogens .Plant Physiol,(105): 467-472
    [148]Moreau L,Charcosset A,Hospital F & Gallais A.1998.Marker assisted selection efficiency in populations of finite size.Genetics,148 :1353-1365
    [149]Mu P,Li Z,C P,Zhang H L.2003.QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross .Chinese Science Bulletin,48 (24):2718-2724
    [150]NaKada M.1994.RFLP analysis for species separation in genere Bipolaris and curvularia.Mycoscience,35:271-278
    [151]Nguyen H T,Babu R C,Blum A.1997.Breeding for drought resistance in rice: physiology and molecular genetics considerations.Crop Sci,37:1426-1434
    [152]O'Toole J,Chang T T.1979.Drought resistance in cereals: rice,a case study [A].In: Mussell H,Staples R C.Stress Physiology of Crop Plants.New York: John Wiley & Sons,373-405
    [153]Poster A,Legrel A.1999.Abscisic acid immunoloca Iizationand ultrastructural changes in water stressed camender plants.PlantPhysiol.,105: 272-279
    [154]Price AH,Townend J,Jones MP et al.2002.Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa.Plant Mol Biol,48: 683-695
    [155]Ray J D,Yu L,McCouch S R,et al.1996.Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.).Theoretical and Applied Genetics,92:627-636
    [156]Redona E D,Mackill D J.1996.mapping quantitative trait loci for seeding vigour in rice using RFLPs.Theoretical and Applied Genetics,92:395-402
    [157]Ribaut J M,Betran J.1999.Single large-scale marker-assisted selection (SLS-MAS).Molecular Breeding,5: 531-541
    [158]Rohila J.S.,Jain R K.,Wu R,et al.2002.Genetic improvement of Basmatirice for salt and drought tolerance by regulated expression of a barley Hval cDNA.Plant Sci,163(3):525-532
    [159]Romagosa I,Han F,Ullrich S E,Hayes P M,Wesenbery D M.1999.Verification of yield QTL through realized molecular marker-assisted selection responses in a barley cross.Molecular Breeding,5:143-152
    [160]Rouf M A,Wang T,Phillips D V et al.1999.Molecular mapping of Rcs3 gene for resistance to frogeye leaf spot in soybean.Crop Science,39: 1687-1691
    [161]Sasaki T,Burr B.2000.International rice genome sequencing project: the effort to completely sequence the rice genome .Curr Opin Plant Biol,3(2):138-141
    [162]Scandaliol J G.1993.Oxygen stress and super oxide dimutases .Plant Physiology,(101):7-12
    [163]Schlotterer C.2002.Microsatellite-based multilocus screen for the identification of local selective sweeps.Genetics,160:753-763
    [164]Schlotterer C.2003.Hitchhiking mapping-functional genomics from the population genetics perspective.Trends Genet,19: 32-38
    [165]Schlotterer C.A.2002.Microsatellite-based multilocus screen for the identification of local selective sweeps.Genetics,160:753-763
    [166]Schneider A K,Mary E B,James D K.1997.Marker-assisted selection to improve drought resistance in common bean.Crop Science,37:51-60
    [167]Seel W E,Hendry GA.1992.Effect of deccication on some activated oxygen procuring enzymes and antioxidants in mosses.Exp.Bot.,1031-1037
    [168]Seel WE,Hendry G A,et al.1992.Effect of desiccations on some activated oxygen processing enzymes and anti-oxidants in mosses.Exp Bot,43:1031-1037
    [169]Seemann J R,Chritchley C.1985.Effects of salt stress on the ground,ion content stemmata behaviors and photosynthesis capacity of a salt sensitive species.Pharseolus vulgaris L Planta,(19):123-134
    [170]Skrier K,Mandy J.1990.Gene expression in response to abscisic acid osmotic stress.Plant Cell,2:1503-1512
    [171]Smith J.M.,Haigh J.1974.The hitch-hiking effect of a favourable gene.Genetical Res.,23: 23-35
    [172]Soller M., Beckmann J.S.1983.Genetic polyphism in varietal identification and genetic improvement.Theor.Appl.Genet.,67:25-33
    [173]Tanksley S D & Nelson J C.1996.Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theor Appl Genet,92:191-203
    [174]Tanksley S D ,Grandillo S ,Fulton T M,Zamir D ,Eshed Y.Petiar Vd,Lopez J & Beck2Bunn T.1996.Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L.pimpnellif olium.Theor Appl Genet,92:213-224
    [175]Tanksley S D.1993.Mapping polygenes.Annu Rev Genet,27: 205-233
    [176]Temnykh S,Genevieve D,Angelika L,Leonard L,Samuel C,McCouch S R.2001.Computational and Experimental Analysis of Microsatellites in Rice (Oryza sativa L.): Frequency,Length Variation,Transposon Associations,and Genetic Marker Potential.Genome Res.,11:1441-1452
    [177]Thanh N D,Zheng H G,Dong N V,et al.1999.Genetic variation in root morphology and microsatellite DNA loci in upland rice (Oryza sativa L.) From Vietnam.Euphytica,105: 43-51
    [178]Walton D C.1990.Biochemistry and physiology of abscisic acid.Annual Review of Plant Physiology,31:453-489
    [179]Wang Y G,Deng Q Y,Liang F S,Xing Q H,Li J M,Xong Y D,Sun S M,Guo B T,Yuan L P,Wang B.2001.Molecular marker assisted selection for yield-enhancing genes in the progeny of Minghui63 ×0.rufipogon.Agriculture Science in China,103: 75-83
    [180]Wang Y H,Lu J J,Zhang J,Li J H,Wang C H,Ding Z Q,Zhang C J,Yao Y Q,Li Z F.2005.Study on drought resistance identification methods and evaluation index of dry land rice.Agric Res Arid Areas,23 (4): 129-133
    [181]Weller,J.I.,Soller,M.,Brody,T.1988.Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum-xLycopersicon pimpinellifolium) by means of genetic markers.Genetics 1218: 329-339
    [182]Williams JGK,Kubelik AR,Livak KJ et al.1990.DNA polymorphism amplified by arbitrary primers are useful as genetic markers.Nucl Acid Res,18: 6532-6535
    [183]Wright S C.1969.An increase in th"einhibitor -β”content of detached wheat leaves following a period of wilting.Planta,86:10-20
    [184]Yadav R,Courtois B,Huang N et al.1997.Mapping genes controlling root morphology and root distribution in a double haploid population of rice.Theoretical and Applied Genetics,94: 619-632
    [185]Yancey P H,Clark M E,et al.1982.Living with water stress: Evolution of osmolyte system.Sci,217:1214-1222
    [186]Yue B,Xiong L,Xue W et al.2005.Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil.Theoretical and Applied Genetics,111:1127-1136
    [187]Zeiger E.1987.Stomatal Function.Stanford,CA: Stanford University Press
    [188]Zeng Z B.1993.Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci.Proc.Natl.Acad.Sci.,90:10972-10976
    [189]Zeng Z B.1994.Genetics.Precision mapping of quantitative trait loci.136:1457-1468
    [190]Zhang J,Zheng HG,Aarti A et al.2001.Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species.Theoretical and Applied Genetics,103:19-29
    [191]Zhang T Z,Yuan Y L,Yu John,Guo W Z,Kohel J Russel.2003 .Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection.Theoretical and Applied - Genetics,106: 262-268
    [192]Zheng HG,Babu RC,Pathan MS et al.2000.Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds.Genome,43: 53-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700