用户名: 密码: 验证码:
骨骼肌线粒体对不同训练方式的适应及其基因应答机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素抵抗是2型糖尿病、心血管疾病、肥胖症等多种代谢性疾病的前期表现,而线粒体损伤和功能异常又是导致外周组织发生胰岛素抵抗的重要原因。骨骼肌线粒体对长期运动的代谢适应被认为是运动预防冠心病、2型糖尿病和肥胖的关键因素。已有研究认为,骨骼肌线粒体的运动适应对运动方式、运动强度、运动频率和持续时间有着较高的特异性和依赖性。线粒体的运动适应包括线粒体生物发生、线粒体管网融裂、物质代谢与ATP合成等诸多变化。然而,骨骼肌运动适应,尤其是线粒体对具体运动方式发生特异性适应的基因表达机制还鲜为人知,与运动敏感性基因表达有关的调控因子还知之甚少。
     目的:本研究分别建立以长时间、低强度为特征的耐力训练模型和以短时间、大强度、间歇性为特征的冲刺训练模型,探讨、比较骨骼肌运动敏感性基因在长期训练后的累积性应答特征,期望从基因表达水平阐释骨骼肌线粒体适应不同训练方式的特异性,为运动预防代谢性疾病提供一些科学参考。此外,本研究也建立了一种“以骨骼肌负载降低为主要特征”的负对照生理模型——后肢悬吊,期望以此模型探讨骨骼肌废用性萎缩的有关机理,辅证运动适应的相关结论。
     方法:清洁级Sprague-Dawley雄性大鼠40只,随机分为4组,即安静组(C,n=10),后肢悬吊组(D,n=8),耐力训练组(E,n=10),间歇性冲刺训练组(S,n=12)。间歇性冲刺训练:每天9-10次10s极量强度(≥42m/min)的跑台运动,间歇时间30-60s;耐力训练:每天30-60min低强度(≤16.7m/min)的持续跑台运动;每周训练6天,训练8周。后肢悬吊组在第1-5周与安静组饲养方式相同,在第6-8周实施悬吊,以悬尾方式保持后肢离地1-2cm。最后一次训练结束后24h,所有大鼠断颈处死。心脏取血,检测血糖、血浆胰岛素、瘦素、甘油三酯;取腓肠肌检测丙酮酸、乳酸的含量以及己糖激酶(HK)、丙酮酸激酶(PK)、苹果酸脱氢酶(MDH)的活性,分离腓肠肌线粒体,检测柠檬酸合成酶(CS)、羟脂酰CoA脱氢酶(HCD)的活性;用实时荧光定量PCR检测腓肠肌GLUT4、AMPKα2、PDK4、CPT-1β、PGC-1α、ERRα、NRF-2α、Mfn1、Mfn2、OPA1、Drp1、Fisl的基因转录水平;用Western blot测定腓肠肌线粒体PDK4、CPT-1β、Mfn2、Drp1的蛋白表达及细胞核PGC-1、ERRα的蛋白表达:用ELISA法(酶联免疫吸附试验)检测腓肠肌线粒体和胞浆的细胞色素c的含量。
     结果:(1)机体在两种运动方式和后肢悬吊的生理条件下,整体生理调节尚处于稳态范围内,正常生理稳态未受干扰。耐力训练能显著降低血浆甘油三酯,间歇性冲刺训练和后肢悬吊对血浆甘油三酯无显著影响,表明耐力训练与间歇性冲刺训练在此有着不同的运动适应效果。
     (2)耐力训练与间歇性冲刺训练对静息骨骼肌有着类似的丙酮酸提升效应,但间歇性冲刺训练能提高静息骨骼肌的乳酸水平,说明间歇性冲刺训练很可能使肌纤维在静息时的无氧代谢已经处于活跃状态。耐力训练、间歇性冲刺训练和后肢悬吊对静息骨骼肌HK、PK、MDH、HCD活性没有显著影响,但间歇性冲刺训练导致CS活性增加。
     (3)健康机体GLUT4 mRNA表达对于耐力训练并不表现敏感。间歇性冲刺训练能诱导GLUT4 mRNA表达上调。耐力训练后骨骼肌AMPKα2 mRNA表达下调,可能是AMPK信号通路活性对耐力训练适应性下调的一种表现。耐力训练对CPT-1的基因转录和蛋白表达均无显著作用,对PDK4也仅仅只在转录水平有下调作用。间歇性冲刺训练在基因转录和蛋白表达两个水平都导致PDK4下调。后肢悬吊与间歇性冲刺训练对PDK4、CPT-1基因表达的调控方向一致。
     (4)后肢悬吊、耐力训练、间歇性冲刺训练对NRF-2αmRNA表达均无显著作用。PGC-1、ERRα的基因转录和核蛋白表达并不具有同步性。耐力训练和间歇性冲刺训练都可能诱导了PGC-1α、ERRα基因的“转录节省化”效应。PGC-1与ERRα的核蛋白表达具备较高的线性正相关。后肢悬吊对PGC-1α、ERRα、NRF-2α基因转录的调控方向与耐力训练一致;后肢悬吊对PGC-1、ERRα蛋白表达的调控方向与间歇性冲刺训练一致。
     (5)耐力训练上调Mfn1 mRNA表达,但Mfn2 mRNA以及线粒体Mfn2蛋白表达对耐力训练均表现沉默。间歇性冲刺训练后Mfn2 mRNA转录下调,但线粒体Mfn2蛋白表达上调。间歇性冲刺训练可能增加Mfn2 mRNA及其蛋白的稳定性,导致Mfn2基因“转录节省化”。耐力训练或间歇性冲刺训练并不导致Fisl基因的转录适应性变化。间歇性冲刺训练后Drp1mRNA转录上调,线粒体Drp1蛋白表达下调,但Drp1的基因转录和蛋白表达对耐力训练均表现沉默。
     (6)后肢悬吊导致胞浆CytC显著增加,但线粒体CytC无显著增减。耐力训练使线粒体和胞浆CytC同步增加,间歇性冲刺训练导致线粒体CytC显著增加,但不导致胞浆CytC显著增加。
     结论:(1)血糖-胰岛素-瘦素三者之间可能存在相互依赖的稳定性,运动对健康机体三者之间的稳态联系可能有维持作用。间歇性冲刺训练能作为一种省时的运动方式提高骨骼肌有氧代谢能力,但在提高有氧代谢能力的同时也能促进丙酮酸向乳酸的转化。
     (2)间歇性冲刺训练导致PDK4酶蛋白的下调有可能削弱PDK4对糖氧化的抑制,从而有利于糖原的迅速动员,这对于间歇性冲刺训练的强度特点是一种有利的代谢适应。PGC-1与ERRα可能在细胞核中协同发挥转录激活作用,该激活作用在间歇性冲刺训练组比较显著,这也可能是PGC-1/ERRα转录激活通路对不同训练方式的差异性适应。
     (3)本实验耐力训练对健康大鼠骨骼肌糖代谢以及线粒体融合的作用并不显著。间歇性冲刺训练能诱导线粒体融合加强,分裂抑制,线粒体Drp1蛋白下调、Mfn2蛋白上调、PDK4蛋白下调可能协同促进线粒体的糖有氧氧化和结构融合。本实验的耐力训练未见此协同效果。间歇性冲刺训练诱导线粒体融合活性显著高于耐力训练。
     (4)骨骼肌废用性萎缩可能首先通过细胞凋亡减少肌纤维数量,单根肌纤维线粒体的相对密度则不会即刻下降。耐力训练可能使单根肌纤维的线粒体相对密度和氧化磷酸化能力有非常显著的增加。间歇性冲刺训练可能比耐力训练更有利于防止细胞凋亡和肌萎缩、维持肌肉体积,这可能是腓肠肌对间歇性冲刺训练的一种混合型、过渡性的适应特征。
     (5)面对骨骼肌负荷降低与负荷增加(运动)的不同生理刺激,骨骼肌细胞未必就存在不同的应答机制。本实验的后肢悬吊和间歇性冲刺训练对线粒体系统的影响比耐力训练要大得多,从维持机体的健康稳态看,耐力训练可能是的一种较好的运动方式;从提高线粒体机能、预防线粒体疾病的角度看,间歇性冲刺训练也不失为一种省时的运动方式。
The insulin resistance syndrome (IRS)is a trait cluster composed of risk factors forthe future development of cardiovascular disease,obesity and/or type 2 diabetes.Impaired mitochondrial function is related to common insulin resistance in skeletalmuscle.Mitochondrial adaptation to long-term exercise training is redarded as a keyfactor for exercise to prevent cardiovascular disease,obesity and/or type 2 diabetes.Exercise-induced mitochondrial adaptations in muscle are highly specific and aredependent upon the type of exercise (i.e.resistance vs endurance)as well as itsintensity,frequency and duration.These adaptations include changes in mito-biogenesis,mito-fusion/fission,mitochondrial metabolism and ATP production.However,at the present time,most of the mechanisms underlying the mitochondrialadaptation of skeletal muscle to specific exercise still remain to be unclear.Little isknown about the regulatory factors directly modulating the expression ofexercise-responsive genes.
     Purpose:Exercise programs of endurance training and sprint interval training werefounded in the study,one of the purposes was to determine the molecular difference ofmitochondrial adaptations in muscle between the two training programs and providesome evidence for execise to prevent metabolic disease.Muscle disuse modelcharacterized by muscle unloading was also selected as a negative control group,another purpose was to investigate mechanisms underlying muscle disuse-inducedatrophy,and to support some conclusions about exercise adaptation.
     Methods:40 male Sprague-Dawley rats were distributed into four groups:sedentary(C,n=10),hindlimb suspension(D,n=8),sprint interval training(S,n=12)orendurance training(E,n= 10).Sprint interval training consisted of 9-10 repeats of a 10s“all out”treadmill test((?)42m/min)with 30-60s recovery between repeats,6 days/wk.Endurance training consisted of 30-60min of continuous treadmill exercise at a lowerintensity((?)16.7m/min)per day,6 days/wk.Group D were administered similarly toGroup C in the 1~5wk,hindlimb suspension was implemented in the 6~8wk bykeeping the rat's hindlimb 1~2cm away from the ground.After 8 weeks of eithersprint interval or endurance training,all rats were decapitated 24h after the lasttreadmill test.Blood was collected from heart,blood glucose,insulin,leptin andtriglyceride were detected.The content ofpyruvate and lactate,the enzyme activity ofhexokinase(HK),pyruvate kinase(PK)and malate dehydrogenase(MDH)ingastrocnemius homogenate were measured by spectrophotometric assays.Thecapacity of citrate synthase(CS)andβ-hydroxyacyl-CoA dehydrogenase(HCD)wasdetermined in mitochondrial extact from gastrocnemius.Real-time PCR was used todetermine the mRNA content of GLUT4,AMPKα2,PDK4,CPT-1β,PGC-1α,ERRα,NRF-2α,Mfnl,Mfn2,OPAl,Drpl,Fisl in gastrocnemius.Western blot was used todetermine the protein content of PDK4,CPT-1β,Mfn2,Drpl in mitochondria andPGC-1,ERRαin nuclear extract.ELISA was used to determine the content ofcytochrome c in mitonchondria and cytoplasm.
     Results:
     (1)Hindlimb suspension and exercise program in the study had no negative effects onphysiological homeostasis in an organism.However,endurance training decreasedblood triglyceride,sprint interval training and hindlimb suspension had no markedeffects on blood triglyceride,suggesting that endurance training differed in bloodtriglyceride from sprint interval training.
     (2)Both endurance training and sprint interval training increased pyruvate level inresting muscle,but it was only sprint interval training that increased lactate level inresting muscle,suggesting that sprint interval training activated anerobic metabolismin resting muscle.Hindlimb suspension and the two exercise programs in the studyhad no marked effects on the activities of HK、PK、MDH、mito-HCD,but sprintinterval training elevated the capacity ofmito-CS.
     (3)Endurance training in the study had no marked effect on mRNA content ofGLUT4,sprint interval training induced the upregulation of GLUT4mRNA.Endurance training in the study induced a downregulation of AMPKα2 mRNA,suggesting that AMPK signalling in resting muscle may be attenuated after endurancetraining.Endurance training in the study had no marked effect on mRNA and proteincontent of CPT-1,and induced a decrease only in PDK4mRNA.Sprint intervaltraining in the study induced a marked decrease in mRNA and protein content ofPDK4.Hindlimb suspension had a very similar effect to sprint interval training onregulating gene expression of PDK4、CPT-1.
     (4)Hindlimb suspension and the two exercise programs in the study had no markedeffects on NRF-2αmRNA.The synchronization of mRNA and protein content wasvery poor in PGC-1\ERRαgene expression.The two exercise programs in the studywere likely to induce a“labor-saving”transcription of PGC-1αand ERRor.PGC-1αprotein was in linear correlation with ERRαin nuclear extract.Hindlimb suspensionhad a very similar effect to endurance training on regulating mRNA transcription ofPGC-1/ERRα/NRF-2,and had a very similar effect to sprint interval training onregulating protein expression of PGC-1/ERRα.
     (5)Endurance training in the study upregulated Mfn1 mRNA,but Mfn2 kept silenceto endurance training in transcriptional level and mitochondrial localization.Sprintinterval training induced a decrease in Mfn2 mRNA and an increase in mito-Mfn2protein.Sprint interval training maybe increased the stability of Mfn2 mRNA andprotein,and induced a“labor-saving”transcription of Mfn2.The two exerciseprograms in the study had no marked effects on Fisl mRNA.Sprint interval traininginduced an increase in Drpl mRNA and a decrease in mito-Drpl protein,but DrplmRNA and protein expression kept silence to endurance training.
     (6)Hindlimb suspension induced an increase in cytoplasmic CytC and had no markedeffect on mito-CytC.Endurance training induced an increase in cytoplasmic CytC andmito-CytC,Sprint interval training induced an increase in mito-CytC and had nomarked effect on cytoplasmic CytC.
     Conlusions:
     (1)There may be an interdependent stability among blood glucose,insulin and leptin,exercise training maybe have positive effects on maintaining the interdependence.Ourdata indicated that sprint interval training might be used as an efficient program toenhance oxidative capacity and increase the conversion of pyruvate to lactate inresting muscle.
     (2)The downregulation of PDK4 protein maybe attenuate the inhibitory effect ofPDK4 on mitochondrial oxidation of carbohydrate and contribute to glycogenoxidation.These changes were a favorable metabolic adaptation to sprint intervaltraining.PGC-1 coordinated likely the activation of metabolic genes with ERRαinnuclei of muscle,sprint interval training in the study probably induced more intensivetranscriptional activation than endurance training.
     (3)Endurance training in the study had less effect on muscle glycogen oxidation andmito-fusion than sprint interval training.The latter exercise program could inducemito-fusin and decrease mito-fission.Elevation of mito-Mfn2 protein with decrease inmito-PDK4 and Drpl protein maybe enhance mito-fusion and glycogen oxidation inmuscle.The present data suggested that sprint interval training was more likely toincrease mito-fusion than endurance training.
     (4)Muscle disuse in the study might decrease myofiber number by apoptosis,notdecrease mitochondrial density in muscle fiber.Mitochondrial density and oxidativecapacity in muscle fiber maybe increased dramatically after endurance training.Sprintinterval training was more likely to prevent muscular apoptosis and atrophy andmaintain muscle mass than endurance training,gastrocnemius adaptation to sprintinterval training showed mixed and transitive.
     (5)The similarity between exercise-and disuse-induced muscle suggested that musclecells were not necessary to response dissimilarly to muscle overloading or unloading.Hindlimb suspension and sprint interval training in the study had much rnore intensiveeffects on mitochondrial homeostasis than endurance training.Endurance trainingcould be used as a better program to keep healthy homeostasis.Sprint interval trainingcould be used as a timesaving program to enhance mitochondrial function and preventmitochondrial related diseases.
引文
[1]Alberts,B.Molecular Biology of the Cell[M],fourth edition.2002:767-770.
    [2]Rizzuto R,Pinton P,Carrington W,et al.Close contacts with the endoplasmic reticulum asdeterminants of mitochondrial Ca2+ responses[J].Science.1998,280:1763-1766.
    [3]Anderson S,Banker A T,Barrell B G,et al.Sequence and organization of the human mitochondrial genome[J].Nature,1981,290(5806):457~465.
    [4]Hood DA,Irrcher I,Ljubicic V,Joseph AM.Coordination of metabolic plasticity in skeletal muscle[J].J Exp Biol.2006;209(Pt 12):2265-2275.
    [5]Potthoff M J,Olson EN,Bassel-Duby R.Skeletal muscle remodeling[J].Curr Opin Rheumatol.2007;19(6):542-549.
    [6]Lisa S.Chow,Laura J.Greenlund,Yan W.Asmann,et al.Impact of endurance training on murine spontaneous activity,muscle mitochondrial DNA abundance,gene transcripts,and function[J].J Appl Physiol,2007;102(3):1078-1089.
    [7]Nader GA.Concurrent strength and endurance training:from molecules to man[J].Med Sci Sports Exerc.2006;38(11):1965-1970.
    [8]http://www.olympic.cn/news/olympic_comm/2004-06-02/186946.html
    [9]Sugden,M.C.,Bulmer,K.,Holness,M.J.Fuel-sensing mechanisms integrating lipid and carbohydrate utilization[J].Biochem.Soc.Trans.2001,29:272-278.
    [10]Bajotto,G.,Murakami,T.,Nagasaki.Downregulation of the skeletal muscle pyruvate dehydrogenase complex in the Otsuka Long-Evans Tokushima Fatty rat both before and after the onset of diabetes mellitus[J].Life Sci.2004,75:2117-2130.
    [11]Patel MS,Korotchkina LG.Regulation of the pyruvate dehydrogenase complex[J].Biochem Soc Trans.2006;34(4):217-22.
    [12]T.E.Roche.Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes,heart ischemia,and cancer[J].Cell.Mol.Life Sci.2007,64:830-849.
    [13]Kato M,Li J,Chuang JL,Chuang DT.Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545,dichloroacetate,and radicicol[J].Structure.2007;15(8):992-1004.
    [14]Mayers,R.M.,Leighton,B.,Butlin.PDK kinase inhibitors:a novel therapy for Type Ⅱ diabetes[J].Biochem.Soc.Trans.2005;33:367-370.
    [15]Sugden MC,Holness MJ.Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases[J].Arch Physiol Biochem.2006;112(3):139-49.
    [16]Tuganova A,Klyuyeva A,Popov KM.Recognition of the inner lipoyl-bearing domain of dihydrolipoyl transacetylase and of the blood glucose-lowering compound AZD7545 by pyruvate dehydrogenase kinase 2[J].Biochemistry.2007;46(29):8592-602
    [17]Tso SC,Kato M,Chuang JL.Structural determinants for cross-talk between pyruvate dehydrogenase kinase 3 and lipoyl domain 2 of the human pyruvate dehydrogenase complex[J].J Biol Chem.2006;281(37):27197-204
    [18]Zhang Q,Teng H,Sun Y.Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumoniae[J].Bioprocess Biosyst Eng.2007 Aug 23 In print
    [19]Xiaofei Wang,Evelyn Perez,Ran Liu.Mallet and Shao-Hua Yang.Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells[J].Brain Research,2007;1132(2):1-9
    [20]Pan JG,Mak TW.Metabolic targeting as an anticancer strategy:dawn of a new era?[J]Sci STKE.2007;381(4):14-15
    [21]Bao H.,Kasten S.A.Pyruvate dehydrogenase kinase isoform 2 activity stimulated by speeding up the rate of dissociation of ADP[J].Biochemistry 2004;43:13442-13451
    [22]Wilson L,Yang Q,Szustakowski JD.Pyruvate induces mitochondrial biogenesis by a PGC-1-independent mechanism[J].Am J Physiol Cell Physiol 2007;292:C1599-C1605
    [23]FRANKS PW,LOOS RJF.PGC-1α Gene and Physical Activity in Type 2 Diabetes Mellitus[J].Exerc Sport Sci Rev.2006,34(4):171-175
    [24]Keiko Kusuhara,Klavs Madsen,Lotte Jensen.Calcium signalling in the regulation of PGC-1α,PDK4 and HKII mRNA expression[J].Biological Chemistry,2007;388(5):481-488
    [25]S.Schiaffino,M.Sandri,and M.Murgia.Activity-Dependent Signaling Pathways Controlling Muscle Diversity and Plasticity[J].Physiology,2007;22(4):269-278.
    [26]Ole Hartvig Mortensen,Peter Plomgaard,Christian P.Fischer,et al.PGC-1 is downregulated by training in human skeletal muscle:no effect of training twice every second day vs.once daily on expression of the PGC-1 family.J Appl Physiol,2007;103(11):1536-1542.
    [27]Liu,C.,Li,S.,Liu,T.Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism[J].Nature,2007;447:477-481
    [28]SORIANO FX,LIESA M,BACH D,et al.Evidence for a Mitochondrial Regulatory Pathway Defined by Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α,Estrogen-Related Receptor-α,and Mitofusin 2[J].Diabetes.2006,55(6):1783-1791
    [29]LIANG H,WARD WF.PGC-1α:a key regulator of energy metabolism[J].Adv Physiol Educ,2006,30:145-151
    [30]PICH S,BACH D,BRIONES P,et al.The Charcot-Marie-Tooth type 2A gene product,Mfn2,upregulates fuel oxidation through expression of OXPHOS system[J].Hum Mol Genet,2005,14:1405-1415
    [31]MICHAEL LF,WU Z,CHEATHAM RB,et al.Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1[J].Proc Natl Acad Sci USA.2001,98:3820-3825
    [32]HOLLOSZY JO.Exercise-induced increase in muscle insulin sensitivity[J].J Appl Physiol.2005,99:338-343
    [33]G.GASTALDI,A.RUSSELL,A.GOLAY.Upregulation of peroxisome proliferator-activated receptor gamma coactivator gene ( PGC1A ) during weight loss is related to insulin sensitivity but not to energy expenditure[J].Diabetologia,2007,9:1428-1432
    [34]SOYAL S,KREMPLER F,OBERKOFLER H,et al.PGC-1alpha:a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes[J].Diabetologia.2006,49:1477-1488
    [35]MOOTHA VK,LINDGREN CM,ERIKSSON KF,et al.PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregnlated in human diabetes[J].Nat Genet.2003,34:267-273
    [36]LING C,POULSEN P,CARLSSON E,et al.Multiple environmental and genetic factors influence skeletal muscle PGC-lalpha and PGC-lbeta gene expression in twins[J].J Clin Invest.2004,114:1518-1526
    [37]Degenhardt T,Saram(a|¨)ki A,Malinen M.Three Members of the Human Pyruvate Dehydrogenase Kinase Gene Family Are Direct Targets of the Peroxisome Proliferator-activated Receptor beta/delta[J].J Mol Biol.2007;372(2):341-55
    [38]Fuster G,Busquets S,Ametller E,Olivan M.Are peroxisome proliferator-activated receptors involved in skeletal muscle wasting during experimental cancer cachexia? Role of beta2-adrenergic agonists[J].Cancer Res.2007;67(13):6512-9
    [39]Araki M,Nozaki Y,Motojima K.Transcriptional regulation of metabolic switching PDK4 gene under various physiological conditions [J]. Yakugaku Zasshi. 2007;127(1):153-62
    
    [40] Araki M, Motojima K. Identification of ERRalpha as a specific partner of PGC-lalpha for the activation of PDK4 gene expression in muscle [J]. FEBS J. 2006; 273(8): 1669-80
    
    [41] Zhang Y, Ma K, Sadana P, Chowdhury F. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression [J]. J Biol Chem. 2006; 281(52):39897-906
    
    [42] Cha SH, Rodgers JT, Puigserver P. Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-lalpha [J]. Proc Natl Acad Sci U S A. 2006; 103(42):15410-5
    
    [43] Adam R. Wende, Janice M. Huss. PGC-lalpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism [J]. Molecular and Cellular Biology, 2005; 25(24):10684-10694.
    
    [44]KIM JW, GAO P, LIU YC, et al. HIF-1 and Dysregulated c-Myc Cooperatively Induces VEGF and Metabolic Switches, HK2 and PDK1[J]. Mol Cell Biol. 2007; 27(9):7381-7393.
    
    [45]CAIRNS RA, PAPANDREOU I, SUTPHIN PD, et al. Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy[J]. Proc Natl Acad Sci U S A. 2007;104(22):9445-50
    
    [46]DE PALMA S, RIPAMONTI M, VIGANO A, et al. Metabolic modulation induced by chronic hypoxia in rats using a comparative proteomic analysis of skeletal muscle tissue[J]. J Proteome Res. 2007; 6(5): 1974-84
    
    [47]KIM JW, TCHERNYSHYOV I, SEMENZA GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J].Cell Metab. 2006; 3(3): 177-85
    
    [48] SEMENZA GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1[J]. Biochem J. 2007; 405(1):1-9
    
    [49]CHOKKALINGAM K, JEWELL K, NORTON L. High-fat/low-carbohydrate diet reduces insulin-stimulated carbohydrate oxidation but stimulates nonoxidative glucose disposal in humans:An important role for skeletal muscle pyruvate dehydrogenase kinase 4[J]. J Clin Endocrinol Metab. 2007; 92(1):284-92
    
    [50]KIM YI, LEE FN, CHOI WS, et al. Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states[J]. Diabetes. 2006; 55(8):2311-7
    
    [51]WHITE UA, COULTER AA, MILES TK, et al. The STAT5A-mediated induction of pyruvate dehydrogenase kinase 4 expression by prolactin or growth hormone in adipocytes[J]. Diabetes2007; 56(6): 1623-9
    
    [52]SPARKS LM, XIE H, KOZA RA, et al.High-fat/low-carbohydrate diets regulate glucose metabolism via a long-term transcriptional loop[J]. Metabolism. 2006; 55( 11): 1457-63
    
    [53]WILSON CR, TRAN MK, SALAZAR KL, et al.Western diet, but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats[J].Biochem J. 2007; 406(3):457-67
    
    [54]XU J, HAN J, EPSTEIN PN, et al. Regulation of PDK mRNA by high fatty acid and glucose in pancreatic islets[J]. Biochem Biophys Res Commun. 2006; 344(3):827-33
    
    [55]TSINTZAS K, JEWELL K, KAMRAN M, et al. Differential regulation of metabolic genes in skeletal muscle during starvation and refeeding in humans[J]. J Physiol. 2006; 575:291-303
    
    [56]VEGA RB, HUSS JM, KELLY DP, et al. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes[J]. Mol Cell Biol. 2000; 20:1868-1876.
    
    [57]JEOUNG NH, WU P, JOSHI MA, et al.Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation[J]. Biochem J. 2006; 397(3):417-25
    
    [58]LEBLANC PJ, HARRIS RA, PETERS SJ. Skeletal muscle fiber type comparison of pyruvate dehydrogenase phosphatase activity and iso-fonn expression in fed and food-deprived rats. Am J Physiol Endo-crinol Metab[J]. 2007; 292: E571-E576
    
    [59]LONG YC, GLUND S, GARCIA-ROVES PM, et al.Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression[J]. J Biol Chem. 2007; 282(3):1607-14
    
    [60]KUSUHARA K, MADSEN K, JENSEN L, et al.Calcium signalling in the regulation of PGC-lalpha, PDK4 and HKII mRNA expression[J]. Biol Chem. 2007; 388(5):481-8
    
    [61]HELGE JW, REHRER NJ, PILEGAARD H, et al.Increased fat oxidation and regulation of metabolic genes with ultraendurance exercise[J]. Acta Physiol (Oxf). 2007; 191(1):77-86
    [62]TUNSTALL RJ,MCAINCH AJ,HARGREAVES M,et al Reduced plasma free fatty acid availability during exercise:effect on gene expression[J].Eur J Appl Physiol.2007;99(5):485-93
    [63]SMITH AC,BRUCE CR,DYCK DJ.AMP kinase activation with AICAR simultaneously increases fatty acid and glucose oxidation in resting rat soleus muscle[J].J Physiol.2005;565:537-46.
    [64]KLEIN D,PILEGAARD H,TREEBAK JT,et al.Lack of {alpha}25'AMP Activated Protein Kinase enhances Pyruvate Dehydrogenase activity during exercise[J],Am J Physiol Endocrinol Metab.2007;293(11):E1242 -E1249.
    [65]JORGENSEN SB,WOJTASZEWSKI JF,VIOLLET B,et al.Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle[J].FASEB J.2005;19:1146-1148
    [66]MASON SD,RUNDQVIST H,PAPANDREOU I.HIF-1{alpha} in Endurance Training:Suppression of Oxidative Metabolism[J].Am J Physiol Regul Integr Comp Physiol.2007;293(11):R2059-R2069.
    [67]高弘,李春,华玉涛,焦鹏,曹竹安.长链二元酸代谢中肉碱脂酰转移酶的作用[J].中国生物工程杂志.2003;23(6):14-16.
    [68]Distler AM,Kerner J,Hoppel CL.Post-translational modifications of rat liver mitochondrial outer membrane proteins identified by mass spectrometry[J].Biochim Biophys Acta.2007;1774(5):628-636.
    [69]Yamazaki N,Yamanaka Y,Hashimoto Y,et al.Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I[J].FEBS Lett,1997,409:401-406.
    [70]Woeltje KF,Esser V,Weis BC,et al.Cloning,Sequencing,and expression of a cDNA encoding rat liver mitochondrial camitine palmitoyltransferase Ⅱ[J].The Journal of Biological Chemistry,1990,265:10720~1072
    [71]Kerner J,Hoppel C.Review:fatty acid import into mitochondria[J].Biochimica et Biophysica Acta.2000;1486:1-17.
    [72]Faye A,Esnous C,Price NT,et al.Rat liver carnitine palmitoyltransferase 1 forms an oligomeric complex within the outer mitochondrial membrane[J].J Biol Chem,2007,282(37):26908-26916.
    [73]Rubink DS,Winder WW.Effect of phosphorylation by AMP-activated protein kinase on palmitoyl-CoA inhibition of skeletal muscle acetyl-CoA carboxylase[J].J Appl Physiol,2005,98(4):1221-1227.
    [74]Folmes CD,Lopaschuk GD.Role of malonyl-CoA in heart disease and the hypothalamic control of obesity[J].Cardiovasc Res,2007,73(2):278-287.
    [75]Pender C,Trentadue AR,Pories WJ,et al.Expression of genes regulating malonyl-CoA in human skeletal muscle[J].J Cell Biochem,2006,99(3):860-867.
    [76]Velasco G,Geelen MJ,del Pulgar TG,et al.Malonyl-CoA-Independent acute control of hepatic carnitine palmitoyltransferase Ⅰ activity[J].J Biol Chem,1998,273(34):21497-21507
    [77]Sleboda J,Risan KA,Spydevold O,et al.Short-term regulation of camitine palmitoyltransferase Ⅰ in cultured rat hepatocytes:spontaneous inactivation and reactivation by fatty Acids[J].Biochimica et Biophysica Acta,1999,1436(3):541-549.
    [78]Brandt JM,Djouadi F,Kelly DP.Fatty acids activate transcription of the muscle carnitine palmitoyltransferase Ⅰ gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha[J].J Biol Chem.1998,273(37):23786-23792.
    [79]Sadana P,Zhang Y,Song S,et al.Regulation of camitine palmitoyltransferase Ⅰ (CPT-Ⅰalpha) gene expression by the peroxisome proliferator activated receptor gamma Coactivator (PGC-1) isoforms[J].Mol Cell Endecrinol,2007,267(1-2):6-16.
    [80]萧建中,杨文英,Kjeld Hennanse.细胞内脂肪堆积和β细胞增殖的关系[J].中国糖尿病杂志,2006,14(2):94-97.
    [81]Liu HY,Zheng G,Zhu H,et al.Hormonal and nutritional regulation of muscle carnitine palmitoyltransferase Ⅰ gene expression in vivo[J].Arch Biochem Biophys,2007,465(2):437-442.
    [82]Schenk S,Horowitz JF.Coimmunoprecipitation of FAT/CD36 and CPT Ⅰ in skeletal muscle increases proportionally with fat oxidation after endurance exercise training[J].Am J Physiol Endocrinol Metab,2006,291(2):E254-260.
    [83]Holloway GP,Bezaire V,Heigenhauser GJ,et al.Mitochondrial long chain fatty acid oxidation,fatty acid translocase/CD36 content and carnitine pahnitoyltransferase Ⅰ activity in human skeletal muscle during aerobic exercise[J]. J Physiol, 2006, 571(1):201-210.
    
    [84]Bezaire V, Heigenhauser GJ, Spriet LL. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle[J]. Am J Physiol Endocrinol Metab, 2004, 286(1):E85-91.
    
    [85]Ruderman NB, Park H, Kaushik VK, et al. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise[J]. Acta Physiol Scand, 2003, 178(4):435-442.
    
    [86] Roepstorff C, Halberg N, Hillig T, et al. Malonyl-CoA and camitine in regulation of fat oxidation in human skeletal muscle during exercise[J]. Am J Physiol Endocrinol Metab, 2005,288(1):E133-142.
    
    [87]Starritt EC, Howlett RA, Heigenhauser GJ. Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle[J]. Am J Physiol Endocrinol Metab, 2000,278(3):E462-468.
    
    [88]Bruce CR, Thrush AB, Mertz VA, et al. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content[J]. Am J Physiol Endocrinol Metab, 2006, 291(1):E99-107.
    
    [89]Dean D, Daugaard JR,Young ME. Exercise diminishes the activity of acetyl-CoA carboxylase inhuman muscle[J]. Diabetes, 2000,49(8): 1295-1300.
    
    [90]Kuhl JE, Ruderman NB, Musi N, et al. Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle[J]. Am J Physiol Endocrinol Metab, 2006, 290(6):E1296-1303.
    
    [91]Morifuji M, Sanbongi C, Sugiura K. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats[J]. Br J Nutr, 2006, 96(3):469-475.
    
    [92] Pilegaard H, Osada T, Andersen LT, et al. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise[J]. Metabolism 2005 54(8): 1048-1055.
    
    [93]Tunstall RJ, McAinch AJ, Hargreaves M, et al. Reduced plasma free fatty acid availability during exercise: effect on gene expression[J]. Eur J Appl Physiol, 2007, 99(5):485-493.
    
    [94] Esther E. Mechanisms leading to restoration of muscle size with exercise and transplantation after spinal cord injury[J]. Am J Physiol Cell Physiol, 2000 (12) ; 279: 1677 - 1684.
    
    [95] Allen DL, Linderman JK, Roy RR, et al. Growth hormone/IGF-I and/or resistive exercise maintains myonuclear number in hindlimb unweighted muscles[J]. J Appl Physiol. 1997;83(6):1857-1861.
    
    [96] McCormick KM, Thomas DP. Exercise-induced satellite cell activation in senescent soleus muscle[J]. J Appl Physiol. 1992;72(3):888-893.
    
    [97] Petrella JK, Kim JS, Cross JM, et al. Efficacy of myonuclear addition may explain differential myo fiber growth among resistance-trained young and older men and women[J]. Am J Physiol Endocrinol Metab. 2006;291(5):E937-46.
    
    [98] Hikida RS, Staron RS, Hagerman FC, et al. Effects of high-intensity resistance training on untrained older men. II. Muscle fiber characteristics and nucleo-cytoplasmic relationships[J]. J Gerontol A Biol Sci Med Sci. 2000;55(7):B347-54.
    
    [99] Wang XD, Kawano F, Matsuoka Y, et al. Mechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscle[J]. Am J Physiol Cell Physiol. 2006;290(4):C981-9.
    
    [100] Kagawa Y, Hayashi JI. Gene therapy of mitochondrial diseases using human cytoplasts[J].Gene Ther, 1997,4:6-10.
    
    [101] Stephanie Duguez, Leonard Feasson, Christian Denis, et al. Mitochondrial biogenesis during skeletal muscle regeneration [J]. Am J Physiol Endocrinol Metab, 2002; 282(4): E802 - 809.
    
    [102] Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-la drives the formation of slow-twitch muscle fibres[J]. Nature.2002,418:797-801.
    
    [103] Reznick RM., Shulman GI. The role of AMP-activated protein kinase in mitochondrial biogenesis[J]. J Physiol. 2006,574(1):33-39.
    
    [104] Sriwijitkamol A, Ivy JL, Christ-Roberts C, et al. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training[J]. Am. J. Physiol. Endocrinol. Metab.2005,290:E925-E932.
    
    [105] Winder WW, Taylor EB, Thomson DM. Role of AMP-Activated Protein Kinase in the Molecular Adaptation to Endurance Exercise[J]. Med Sci Sports Exerc.2006,38 (11): 1945-1949.
    
    [106] Kahn BB, Alquier T, Carling D, et al. AMP activated protein kinase: ancient energy gauge provides clues to modem understanding ofmetabolism[J].Cell Metab.2005,1:15-25.
    [107]Jorgensen SB,Viollet B,Andreelli F,et al.Knockout of the α2 but Not α1 5'-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside but Not Contraction-induced Glucose Uptake in Skeletal Muscle[J].J Biol Chem.2004,279:1070-1079.
    [108]C.S.Kraft,C.M.R.LeMoine,C.N.Lyons,et al.Control of mitochondrial biogenesis during myogenesis[J].Am J Physiol Cell Physiol,2006;290(4):C1119-C1127.
    [109]Richard C.Scarpulla.Transcriptional Paradigms in Mammalian Mitochondrial Biogenesis and Function[J].Physiol Rev,2008;88(4):611-638.
    [110]St(?)phanie Duguez,L(?)onard F(?)asson,Christian Denis,etal.Mitochondrial biogenesis during skeletal muscle regeneration[J].Am J Physiol Endocrinol Metab,2002;282(4):E802-E809.
    [111]Bengtsson J,Gustafsson T,Widegren U,et al.Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans[J].Pflugers Arch.2001 Oct;443(1):61-6.
    [112]KARBOWSKIM,YOULE RJ.Dynamics ofmitochondrial morphology in healthy cells and during apoptosis[J].Cell Death and Differentiation.2003,10:870-880
    [113]CHEN H,CHAN DC.Mitochondrial dynamics in mammals[J].Curr Top Dev Biol.2004,59:119-144
    [114]COLLINS TJ,BERRIDGE MJ,LIPP P.Mitochondria are morphologically and functionally heterogeneous within cells[J].EMBO J.2002,21:1616-1627
    [115]MARGINEANTU DH,COX WG,SUNDELL L,et al.Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines[J].Mitochondrion.2002,1:425-435
    [116]马泰,朱启星.线粒体形态学改变与细胞凋亡[J].细胞生物学杂志,2006,28:671-675
    [117]Smimova E,Griparic L,Shurland DL and van Der Bliek AM.Dynamin-related protein Drpl is required for mitochondrial division in mammalian cells[J].Mol Biol Cell.2001,12:2245-2256.
    [118]Pitts KR,Yoon Y,Krueger EW and McNiven MA.The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells[J].Mol Biol Cell,1999,10:4403-4417.
    [119]Yoon Y,Krueger EW,Oswald BJ and McNiven MA.The mitochondrial protein hFisl regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1[J].Mol Cell Biol.2003,23:5409-5420
    [120]HSIUCHEN CHEN1,SCOTT A.DETMER1,ANDREW J.EWALD.Mitofusins Mfnl and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development[J].J.Cell Biol.2003,160:189-200
    [121]TAKUMI KOSHIBA,SCOTT A.DETMER,JENS T.KAISER.Structural Basis of Mitochondrial Tethering by Mitofusin Complexes[J].Science,2004,305:858-862
    [122]SARA CIPOLAT,OLGA MARTINS DE BRITO,BARBARA DAL ZILIO.OPAl requires mitofusin 1 to promote mitochondrial fusion[J].Proc.Natl.Acad.Sci.2004,101:15927-15932
    [123]KIJIMA K,NUMAKURA C,IZUMINO H,et al.Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A[J].Hum Genet.2005;116(1-2):23-27
    [124]MARIUSZ KARBOWSKI,KRISTI L.NORRIS,MEGAN M.CLELAND,et al.Role of Bax and Bak in mitochondrial morphogenesis[J].Nature,2006,443:658-662
    [125]ISHIHARA N,EURA Y,MIHARA K.Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity[J].J Cell Sci.2004,117:6535-6546
    [126]OLICHON A,BARICAULT L,GAS N,et al.Loss of OPAl perturbates the mitochondrial inner membrane structure and integrity,leading to cytochrome c release and apoptosis[J].J Biol Chem.2003,278:7743-7746
    [127]MARGARET NEUSPIEL,RODOLFO ZUNINO,SANDHYA GANGARAJU.Activated Mitofusin 2 Signals Mitochondrial Fusion,Interferes with Bax Activation,and Reduces Susceptibility to Radical Induced Depolarization[J].The Journal Of Biological Chemistry,2005,280(1):25060-25070
    [128]CHEN,K.H.,GUO,X.M.,MA,D.L,et al.Dysregulation of a novel hyperplasia suppressor gene triggers vascular proliferative disorders[J].Nature Cell Biology,2004,6:872-883
    [129]FLORENCE MALKA,OLWENN GUILLERY,CARMEN CIFUENTES-DIAZ.Separate fusion of outer and inner mitochondrial Membranes [J]. Nature, 2005, 6(9):853-860
    
    [130] SEOK-YONG CHOI1, PING HUANG, GARY M. JENKINS. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis [J]. Nature, 2006,8(11):1255-1262
    
    [131] PETERSEN KF, BEFROY D, DUFOUR S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance [J]. Science. 2003, 300: 1140-1142
    
    [132] LOWELL BB, SHULMAN GI. Mitochondrial dysfunction and type 2 diabetes [J]. Science.2005, 307: 384-387
    
    [133] RICHARD J. YOULE, MARJUSZ KARBOWSKI. Mitochondrial fission in apoptosis [J].NATURE, 2005,6(8):657-663
    
    [134] RIE SUGIOKA, SHIGEOMI SHIMIZU, YOSHIHIDE TSUJIMOTO. Fzol, a Protein Involved in Mitochondrial Fusion, Inhibits Apoptosis [J]. The Journal Of Biological Chemistry.2004,279(10): 52726-52734
    
    [135] TIANZHENG YU, JAMES L. ROBOTHAM, Y1SANG YOON. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology [J]. PNAS, 2006; 103:2653-2658
    
    [136] BACH, D, PICH, S., SORIANO, FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity [J]. J.Biol. Chem. 2003, 278: 17190-17197.
    
    [137] C. DEBARD, M. LAVILLE, V. BERBE, et al. Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of type 2 diabetic patients [J].Diabetologia, 2004, 47:917-925
    
    [138] D. BACH, D. NAON, S. PICH. Expression of Mfn2, the Charcot-Marie-Tooth Neuropathy Type 2A Gene, in Human Skeletal Muscle: Effects of Type 2 Diabetes, Obesity, Weight Loss, and the Regulatory Role of Tumor Necrosis Factor {alpha} and Interleukin-6 [J], Diabetes, 2005 54:2685-2693.
    
    [139] G. MINGRONE, M. MANCO, M. CALVANI. Could the low level of expression of the gene encoding skeletal muscle mitofusin-2 account for the metabolic inflexibility of obesity? [J],Diabetologia, 2005, 48(10):2108-2114
    
    [140] FRANKS PW, LOOS RJF. PGC-1α Gene and Physical Activity in Type 2 Diabetes Mellitus [J]. Exerc Sport Sci Rev. 2006, 34(4): 171-175
    
    [141] SORIANO FX, LIESA M, BACH D, et al. Evidence for a Mitochondnal Regulatory Pathway Defined by Peroxisome Proliferator-Activated Receptor-y Coactivator-1α, Estrogen-Related Receptor-a, and Mitofusin 2 [J]. Diabetes.2006, 55(6): 1783-1791
    
    [142] PAWLIKOWSKA P, GAJKOWSKA B, ORZECHOWSKI A. Mitofusin 2 (Mfn2): a key player in insulin-dependent myogenesis in vitro [J]. Cell Tissue Res.2007, 327:571-581
    
    [143] LIANG H, WARD WF. PGC-1α: a key regulator of energy metabolism [J]. Adv Physiol Educ, 2006,30:145-151
    
    [144] PICH S, BACH D, BRIONES P, et al.The Charcot-Marie-Tooth type 2A gene product,Mfn2, upregulates fuel oxidation through expression of OXPHOS system [J]. Hum Mol Genet,2005, 14:1405-1415
    
    [145] MICHAEL LF, WU Z, CHEATHAM RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1 [J].ProcNatl Acad Sci USA. 2001, 98:3820-3825
    
    [146] HOLLOSZY JO. Exercise-induced increase in muscle insulin sensitivity [J]. J Appl Physiol.2005, 99:338-343
    
    [147]G. GASTALDI,A. RUSSELL,A. GOLAY.Upregulation of peroxisome proliferator-activated receptor gamma coactivator gene (PGC-1) during weight loss is related to insulin sensitivity but not to energy expenditure[J]. Diabetologia, 2007, 9: 1428-1432
    
    [148] SOYAL S, KREMPLER F, OBERKOFLER H, et al. PGC-lalpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes [J]. Diabetologia. 2006, 49:1477-1488
    
    [149] MOOTHA VK, LINDGREN CM, ERIKSSON KF, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes [J]. Nat Genet. 2003,34, 267-273
    
    [150] LING C, POULSEN P, CARLSSON E, et al. Multiple environmental and genetic factors influence skeletal muscle PGC-lalpha and PGC-1 beta gene expression in twins [J]. J Clin Invest. 2004,114:1518-1526
    [151]ROMAIN CARTONI,BERTRAND LEGER,M.BENJAMIN HOCK.Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise[J].J Physiol.2005,567(1):349-358
    [152]A.GARNIER,D.FORTIN,J.ZOLL,et al.Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle[J],FASEB J.2005,19:43-52
    [1]Pedersen BK,Febbraio MA.Muscle as an endocrine organ:focus on muscle-derived interleukin-6[J].Physiol Rev.2008;88(4):1379-406.
    [2]Bopp J,Hemiet MT,Nicolas F,et al.Adaptation of blood sugar regulation during individually adjusted muscular exercises:Effects of training[J].C R Seances Soc Biol Fil.1978;172(6):1107-13.
    [3]Soultanakis H,Platanou T.Effect of dietary carbohydrate content on blood glucose levels of swimmers during training[J].J Sports Med Phys Fitness.2008;48(3):335-40.
    [4]Liu X,Miller YD,Burton NW,et al.A preliminary study of the effects of Tai Chi and Qigong medical exercise on indicators of metabolic syndrome,glycaemic control,health related quality of life,and psychological health in adults with elevated blood glucose[J].Br J Sports Med.2008 Oct 16.[Epub ahead of print]
    [5]Sennott J,Morrissey J,Standley PR,et al.Treadmill exercise training fails to reverse defects in glucose,insulin and muscle GLUT4 content in the db/db mouse model of diabetes[J].Pathophysiology.2008;15 (3):173-9.
    [6]Orozco LJ,Buchleitner AM,Gimenez-Perez G,et al.Exercise or exercise and diet for preventing type 2 diabetes mellitus[J].Cochrane Database Syst Rev.2008;(3):CD003054.
    [7]Wallberg-Henriksson H,Rincon J,Zierath JR.Exercise in the management of non-insulindependent diabetes mellitus[J].Sports Med.1998;25(1):25-35.
    [8]周惠,牛瑞丽.运动疗法干预2型糖尿病患者血糖血脂的变化[J].中国临床康复.2006;10(32):58-66.
    [9]潘新宇,牛岭.运动疗法干预2型糖尿病患者的血糖、血脂变化[J].中国临床康复.2005;9(47):8-16.
    [10]Durstine JL,Grandjean PW,Davis PG,et al.Blood lipid and lipoprotein adaptations to exercise:a quantitative analysis[J].Sports Med.2001;31 (15):1033-62.
    [11]Leon AS,Sanchez OA.Response of blood lipids to exercise training alone or combined with dietary intervention[J].Med Sci Sports Exerc.2001;33(6):S502-15.
    [12]Tambalis KD,Panagiotakos DB,Kavouras SA,et al.Responses of Blood Lipids to Aerobic,Resistance,and Combined Aerobic With Resistance Exercise Training:A Systematic Review of Current Evidence[J].Angiology.2008 Oct 30.
    [13]Consitt LA,Copeland JL,Tremblay MS.Endogenous anabolic hormone responses to endurance versus resistance exercise and training in women[J].Sports Med.2002;32(1):1-22.
    [14]Kraemer WJ,Ratamess NA.Hormonal responses and adaptations to resistance exercise and training[J].Sports Med.2005;35(4):339-61.
    [15]Ivy JL.Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus[J].Sports Med.1997;24(5):321-36.
    [16]Kamohara S,Burcelin R,Halaas J L,et al.Acute stimulation of glucose metabolism in mice by leptin treatment[J].Nature.1997,389:374-377.
    [17]Kellerer M,Lammers R,Fritsche A,et al.Insulin inhibits leptin receptor signalling in HEK293 cells at the level of janus kinase2:a potential mechanism for hyperinsulinaemia-associated leptin resistance[J].Diabetologia,2001,44:1125-1132.
    [18]李文琪,薛丽香.瘦素及瘦素抵抗在糖尿病发病中的作用[J].中国糖尿病杂志.2007;15(1):58-9
    [1]田野.运动生理学高级教程[M].高等教育出版社,2003.
    [2]张国华,曾凡星.AMPK 抑制运动中骨骼肌蛋白合成的研究进展[J].中国运动医学杂志,2008;27(7):536-439.
    [3]Marc T.Hamilton,Frank W.Booth.Skeletal muscle adaptation to exercise:a century of progress[J].J Appl Physiol,2000;88(1):327-331.
    [4]周亮等.运动过程中骨骼肌摄取葡萄糖的调节[J]_体育科学,2006;26(5):69-73.
    [5]冯炜权等.运动生物化学研究进展[M].北京:北京体育大学出版社,2007
    [6]T.E.ROCHE.Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes,heart ischemia,and cancer[J].Cell.Mol.Life Sci.2007,64 (7-8):830-849.
    [7]WILSON L,YANG Q,SZUSTAKOWSKI JD.Pyruvate induces mitochondrial biogenesis by a PGC-lalpha-independent mechanism[J].Am J Physiol Cell Physiol.2007,292(5):C1599-C1605.
    [8]IRRCHER I,ADHIHETTY PJ,JOSEPH AM,et al.Regulation of mitochondrial biogenesis in muscle by endurance exercise[J].Sports Med.2003;33(11):783-793.
    [9]BRUCE CR,THRUSH AB,MERTZ VA,et al.Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content[J].Am J Physiol Endocrinol Metab.2006,291(1):E99-E107.
    [10]Gollnick PD,Struck PJ,and Bogyo TP.Lactic dehydrogenase activities of rat heart and skeletal muscle after exercise and training.J Appl Physiol 22:623-627,1967.
    [11]Parra J,Cadefau JA,Rodas G,Amig(?) N,Cuss(?) R.The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle.Acta Physiol Scand 2000;169(2):157-65.
    [12]邓树勋/洪泰田/曹志发.运动生理学.高等教育出版社,1999.
    [13]张蕴琨、丁树哲.运动生物化学/高等学校教材.高等教育出版社,2006.
    [14]Patrick T.Fueger,Sami Heikkinen,Deanna P.Bracy,et al.Hexokinase Ⅱ partial knockout impairs exercise-stimulated glucose uptake in oxidative muscles of mice.Am J Physiol Endocrinol Metab,2003;285(11):E958-E963.
    [15]Janice A.Koval,Ralph A.DeFronzo,Robert M.O'Doherty,et al.Regulation of hexokinase Ⅱ activity and expression in human muscle by moderate exercise.Am J Physiol Endocrinol Metab,1998;274(2):E304-E308.
    [16]王镜岩.生物化学第三版.高等教育出版社,2003.
    [17]Pendergrass M,Gulli G,Saccomani MP,et al.In vivo glucose transport and phosphorylation in skeletal muscle is impaired in obese and diabetic patients.Dibetes,1 994,43(suppl.1):72-75.
    [18]Vestergaard H,Bjorbaek C,Hansen T,et al.hnpaired activity and gene expression of hexokinaseⅡin muscle from non-insulin-de-pendent diabetes mellitus patients.J Clin Invest,1995,96:2639.
    [19]Rothman DL,Shulman RG,Shuhnan GI.31P nuclear magnetic resonance measurements of muscle glucose 6-phosphate:evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus.J Clin Invest,1992,89:1069.
    [20]Falholt K,Jensen I,Lindkaer JS,et al.Carbohydrate and lipid metabolism of skletal muscle in type 2 diabetic patients.Diabet Med,1988,5:27.
    [21]Harmer AR,Chisholm DJ,McKenna MJ,et al.Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes.Diabetes Care.2008 Nov;31(11):2097-102.
    [22]Suwa M,Nakano H,Radak Z,Kumagai S.Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle.Metabolism.2008 Jul;57(7):986-98.
    [23]王镜岩.生物化学第三版.高等教育出版社,2003.
    [24]许豪文.运动生物化学概论.高等教育出版社,2002.
    [25]Holloszy JO.Adaptation of skeletal muscle to endurance exercise.Med Sci Sports Exerc,1975;7:155-164.
    [26]R.J.Bamard,H.W.Duncan,K.M.Baldwin,et al.Effects of intensive exercise training on myocardial performance and coronary blood flow.J Appl Physiol,Sep 1980;49:444-449.
    [27]R.Wibom,E.Hultman,M.Johansson,et al.Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining.J Appl Physiol,Nov 1992;73:2004-2010.
    [28]王镜岩.生物化学第三版.高等教育出版社,2003.
    [29]BURGOMASTER KA,HEIGENHAUSER GJ,GIBALA MJ.Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance[J].J Appl Physiol.2006,100(6):2041-2047.
    [30]Ogura Y,Naito H,Aoki J,Uchimaru J,et al.Sprint-interval training-induced alterations of Myosin heavy chain isoforms and enzyme activities in rat diaphragm:effect of normobaric hypoxia.Jpn J Physiol.2005 Dec;55(6):309-16.
    [31]BURGOMASTER KA,HOWARTH KR,PHILLIPS SM,et al.Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans[J].J Physiol.2008,586(1):151-160.
    [32]GIBALA M J,LITTLE JP,VAN ESSEN M,et al.Short-term sprint interval versus traditional endurance training:similar initial adaptations in human skeletal muscle and exercise performance[J].J Physiol,2006;575(Pt 3):901-911.
    [33]Rakobowchuk M,Tanguay S,Burgomaster KA,et al.Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans.Am J Physiol Regul Integr Comp Physiol.2008 Jul;295(1):R236-42.
    [34]RICHTER E A,JENSEN P,KIENS B,et al.Sarcolemmal Glucose Transport and GLUT-4 Translocation during Exercise are Diminished by Endurance Training[J].Am J Physiol Endocri Metab,1998,274:E89-E95.
    [35]DERAVE W,LUND S,HOLMAN GD,et al.Contraction-stimulated Muscle Glucose Transport and GLUT-4 Surface Content are Dependent on Glycogen Content[J].Amn J Physiol Endocri Metab,1999,277:E1103-E1110.
    [36]Douen AG,Ramlal T,Rastogi S,et al.Exercise induces recruitment of the “insulin-responsive glucose transporter” evidence for distinct intracellula r insulin and exercise-recruitable transporter pools in skeletal muscle.J Bio Chem,1990,265:13427-13430.
    [37]Hansen PA,Wang W,Marshall BA,et al.Dissociation of GLUT4 translocation and insulin-stimulated glucose transport in transgenic mice overexpressing GLUTi in skeletal muscle[J].J Biol Chem,1998,17,273(29):18173-18179.
    [38]Giorgos N.Kraniou,David Cameron-Smith,and Mark Hargreaves.Acute exercise and GLUT4 expression in human skeletal muscle:influence of exercise intensity.J Appl Physiol,Sep 2006;101:934-937.
    [39]Henriksen E J,Halseth AE.Adaptive responses of GLUT-4 and citrate synthase in fast-twitch muscle of voluntary running rats.Am J Physiol.1995 Jan;268(1 Pt 2):R130-4.
    [40]Kirsten A.Burgomaster,Naomi M.Cermak,Smart M.Phillips,et al.Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining.Am J Physiol Regulatory Integrative Comp Physiol, May 2007; 292: R1970 - R1976.
    
    [41] Terada S, Yokozeki T, Kawanaka K, Ogawa K, et al. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl Physiol, 2001; 90:2019-2024.
    
    [42] Turnley A M, Stapleton D, Mann R J, et al. Cellular distribution and developmental expression of AMP- activated protein kinase isoforms in mouse central nervous system[J]. J.Neurochem., 1999,72(4): 1707-1716.
    
    [43] Thomson, D.M., Porter, B.B., Tall, J.H., et al. Skeletal muscle and heart LKB1 deficiency causes decreases voluntary running and reduced muscle mitochondrial marker enzyme expression in mice[J]. Am. J. Physiol. Endocrinol. Metab. 2007; 292: E196-E202.
    
    [44] Sakamoto K, McCarthy A, Smith D, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction[J]. EMBO J, 2005; 24:1810-1820.
    
    [45] Fujii N, Hirshman MF, Kane EM, et al. AMP-activated protein kinase α2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle[J]. J Biol Chem, 2005; 280:39033-39041.
    
    [46] Bruss MD, Arias EB, Lienhard GE,et al. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes, 2005;54: 41-50.
    
    [47] BarnesBR, GlundS, LongYC,et al. 5-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics[J]. FASEB J, 2005; 19:773-779.
    
    [48] Bolster DR, Crozier SJ, Kimball SR.,et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling[J]. J Biol Chem, 2002; 277: 23977-23980.
    
    [49] Sebastian B. J(?)rgensen, Jonas T. Treebak, Benoit Viollet, et al. Role of AMPKα2 in basal,training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol Endocrinol Metab, Jan 2007; 292: E331 - E339.
    
    [50] McConell GK, Manimmanakom A, Lee-Young RS, et al. Differential attenuation of AMPK activation during acute exercise following exercise training or AICAR treatment. J Appl Physiol.2008 Nov;105(5):1422-1427.
    
    [51] Leick L, Wojtaszewski JF, Johansen ST, etal. PGC-lalpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E463-474.
    
    [52] Qiang W, Weiqiang K, Qing Z, et al. Aging impairs insulin-stimulated glucose uptake in rat skeletal muscle via suppressing AMPKalpha. Exp Mol Med. 2007 Aug;39(4):535-43.
    
    [53] Steinberg GR, Smith AC, Van Denderen BJ, et al. AMP-activated protein kinase is not down-regulated in human skeletal muscle of obese females. J Clin Endocrinol Metab. 2004 Sep;89(9):4575-80.
    
    [54] Neurath KM, Keough MP, Mikkelsen T. AMP-dependent protein kinase alpha 2 isoform promotes hypoxia-induced VEGF expression in human glioblastoma. Glia. 2006 May;53(7):733-43.
    
    [55] Seo S, Ju S, Chung H, et al. Acute effects of glucagon-like peptide-1 on hypothalamic neuropeptide and AMP activated kinase expression in fasted rats. Endocr J. 2008 Oct;55(5):867-74.
    
    [56] Steinberg GR, Watt MJ, McGee SL, et al. Reduced glycogen availability is associated with increased AMPKalpha2 activity, nuclear AMPKalpha2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Appl Physiol Nutr Metab. 2006 Jun;31(3):302-12.
    
    [57] Pan JG, Mak TW. Metabolic targeting as an anticancer strategy: dawn of a new era? [J] Sci STKE. 2007; 381(4): 14-15.
    
    [58] Morifuji M, Sanbongi C, Sugiura K. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats.Br J Nutr, 2006, 96(3):469-475.
    
    [59] Pilegaard H, Osada T, Andersen LT, et al. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. Metabolism, 2005,54(8):1048-1055.
    [60]萧建中,杨文英,Kjeld Hermanse.细胞内脂肪堆积和β细胞增殖的关系.中国糖尿病杂志,2006,14(2):94-97.
    [61]Sugden MC,Holness MJ.Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase Kinases.Arch Physiol Biochem.2006 Jul;112(3):139-49.
    [62]Pilegaard H,Neufer PD.Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and afterexercise.Proc Nutr Soc.2004 May;63(2):221-6.
    [63]ALAMDARI N,CONSTANTIN-TEODOSIU D,MURTON AJ,et al.Temporal changes in the involvement of pyruvate dehydrogenase complex in muscle lactate accumulation during lipopolysaccharide infusion in rats[J].J Physiol.2008,586(6):1767-1775.
    [1]许纲.运动训练中骨骼肌线粒体生物发生的基因表达与调控.中国运动医学杂志,2006,25(1):65-71.
    [2]Goffart S,WiesnerRJ.Regulation and coordination of nuclear gene expression during mitochondrial biogenesis.Exp Physiol,2003,88:33-40.
    [3]Hood DA,Adhihetty P J,Colavecchia M,et al.Mitochondrial biogenesis and the role of the protein import pathway.Med Sci Sports Exerc,2003,35:86-94.
    [4]David A.Hood,Beatrice Chabi,Keir Menzies.Exercise-Induced Mitochondrial Biogenesis in Skeletal Muscle(Chapter 3),Role of Physical Exercise in Preventing Disease and Improving the Quality of Life[M],Springer 2007:38-60.
    [5]Josep A.Villena,Anastasia Kralli.ERRalpha:a metabolic function for the oldest orphan[J].Cell-Trends in Endocrinology and Metabolism,2008,19(8):269-277.
    [6]Gugneja S,Virbasius JV,Scarpulla RC.Four structurally distinct,non-DNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain.Mol Cell Biol.1995 Jan;15(1):102-11.
    [7]Ongwijitwat,S;Liang,HL;Graboyes,EM,et al.Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs.Gene.2006;374(6):39-49.
    [8]Zoll J,Monassier L,Gamier A,N'Guessan B,et al.ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction.J Appl Physiol.2006 Aug;101(2):385-91.
    [9]Kraft,CS;LeMoine,CMR;Lyons,CN,et al.Control of mitochondrial biogenesis during myogenesis.Am J Physiol Cell Physiol.2006 Apr;290(4):C1119-27.
    [10]Cartoni R,L(?)ger B,et al.Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise.J Physiol.2005 Aug;567(Pt 1):349-58.
    [11]Ojuka,EO;Jones,TE;Han,DH,et al.Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle.FASEB J.2003 Apr;17(6):675-81.
    [12]Baar,K;Wende,AR;Jones,TE,et al.Adaptations of skeletal muscle to exercise:rapid increase in the transcriptional coactivator PGC-1.FASEB J.2002 Dec;16(14):1879-86.
    [13]David CW,Dong-Ho Han,Pablo M,et al.Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1 alpha expression.J Biol Chem,2007;282(1):194-199.
    [14]Melloul D,Stoffel M.Regulation of transcriptional coactivator PGC-1alpha.Sci Aging Knowledge Environ,2004;2004(9):9.
    [15]张燕,王强,王东进.能量代谢与疾病的关键调控因子PGC-1α.中国糖尿病杂志,2008;16(7):385-389.
    [16]Andersson U,Scarpulla RC.Pgc-1-related coactivator,a novel,serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells.Mol Cell Biol,2001,21:3738-3749.
    [17]Giguere,V.,Yang,N.,Segui,P.,et al.Identification of a new class of steroid hormone receptors.Nature,1988;331(6151):91-94.
    [18]钱云霞,钱凯先.雌激素相关受体 ERR 的功能及其调控.生物化学与生物物理进展,2005;32(6):495-501.
    [19]孙亮,金锋,王沥.核辅激活因子 PGC-1 作用分子机制的研究进展.遗传,2005;27(2):302-308.
    [20]Schreiber SN,Emter R,fHock MB et al.The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator lalpha (PGC-1alpha)-induced mitochondrial biogenesis.Proc Natl Acad Sci USA,2004;101:6472-6477.
    [21]V.K.Mootha,C.Handschin,D.Arlow, et al.ERR{alpha} and Gabpa/b specify PGC-1 {alpha}-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle.PNAS,2004;101(17):6570-6575.
    [22]Sylvia N.Schreiber,Darko Knutti,Kathrin Brogli.The Transcriptional Coactivator PGC-1 Regulates the Expression and Activity of the Orphan Nuclear Receptor Estrogen-Related Receptor alpha.J.Biol.Chem.,2003;278(11):9013-9018.
    [23]Maret D,Boffa MB,Brien DF,Nesheim ME,et al.Role of mRNA transcript stability in modulation of expression of the gene encoding thrombin activable fibrinolysis inhibitor.J Thromb Haemost.2004 Nov;2(11):1969-79.
    [24]Guhaniyogi,J.,G.Brewer.Regulation of mRNA stability in mammalian cells.Gene,2001;265:11-23.
    [25]Puigserver,P et al.Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator- 1.Mol.Cell.2001;8:971-982.
    [26]Handschin,C.et al.An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle.Proc.Natl.Acad.Sci.2003;100:7111-7116.
    [27]Rodgers,J.T.et al.Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1.Nature,2005;434:113-118.
    [28]Nahl(?) Z,Hsieh M,Pietka T,et al.CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPAR beta-mediated adaptation to metabolic stress.J Biol Chem.2008;283(21):14317-26.
    [29]Araki M,Nozaki Y,Motojima K.Transcriptional regulation of metabolic switching PDK4 gene under various physiological conditions.Yakugaku Zasshi.2007;127(1):153-62.
    [30]Zhang Y,Ma K,Sadana P,Chowdhury F,Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression.J Biol Chem.2006;281(52):39897-906.
    [31]Degenhardt T,Saram(a|¨)ki A,Malinen M.Three Members of the Human Pyruvate Dehydrogenase Kinase Gene Family Are Direct Targets of the Peroxisome Proliferator-activated Receptor beta/delta[J].J Mol Biol.2007;372(2):341-55.
    [32]Rangwala,S.M.et al.Estrogen-related receptor alpha is essential for the expression of antioxidant protection genes and mitochondrial function.Biochem.Biophys.Res.Commun.2007;357:231-236.
    [33]赵婷婷,丁树哲.大鼠游泳运动后骨骼肌PGC-1αmRNA表达的时相性变化.上海体育学院学报,2006;30(3):41-45.
    [34]苏丽;姜宁;张玥.有氧运动对C57BL/6小鼠骨骼肌PGC-1α表达和肌纤维类型影响的研究.体育科学,2008;28(4):43-48.
    [35]Chounghun Kang,Jonathan Ross Dickman,Lola Awoyinka.ROS play a role in regulating exercise-induced mitochondrial biogenic pathway.FASEB J.2007;21:732-7.
    [36]Scott K,Andreas N.,Keith C.Mechanisms of disuse muscle atrophy:role of oxidative stress.Am J Physiol Regul Integr Comp Physiol,2005;288:R337-R344.
    [1]David C.Chan.Mitochondrial Fusion and Fission in Mammals.Annual Review of Cell and Developmental Biology.2006,22(11):79-99.
    [2]漆正堂,丁树哲,贺杰.线粒体融合蛋白Mitofusin在胰岛素抵抗发生与防治中的作用.生命科学.2008,20(4):599-602.
    [3]Chen H,Chan D.Mitochondrial dynamics in mammals.Curr Top Dev Biol.2004,59:119-44.
    [4]Bach D,Pich S,Soriano F,et al.Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism.A novel regulatory mechanism altered in obesity.J Biol Chem.2003,278(19):17190-7.
    [5]Bach D,Naon D,Pich S.Expression of Mfn2,the Charcot-Marie-Tooth neuropathy type 2A gene,in human skeletal muscle:effects of type 2 diabetes,obesity,weight loss,and the regulatory role of tumor necrosis factor alpha and interleukin-6.Diabetes.2005,54(9):2685-93.
    [6]付玉环,姜广建,夏庆安.线粒体融合蛋白Mfn1/2的结构和功能.生命的化学,2007;27(6):511-514.
    [7]Dirk M.Walther,Doron Rapaport.Biogenesis of mitochondrial outer membrane proteins.Biochimica et Biophysica Acta,2009;1793:42-51.
    [8]Cipelat S,Rudka T,Hartmann D,et al.Mitochondiral rhomboid PARL regulates cytochrome c release duirng apoptosis via OPAl-dependent cfistae remodeling[J].Cell,2006;126:163-175.
    [9]Florence Malka,Olwenn Guillery,Carmen Cifuentes-Diaz.Separate fusion of outer and inner mitochondrial membranes.2005;6(9):853-860.
    [10]Suzanne Hoppins,Jodi Nunnari.The molecular mechanism of mitochondrial fusion.Biochimica et Biophysica Acta,2009;1793:20-26.
    [11]Yan Zhang,David C.Chan.New insights into mitochondrial fusion.FEBS Letters,2007;581(11):2168-2173.
    [12]Chen H,Detmer SA,Ewald AJ,et al.Mitofusins Mfnl and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development.J Cell Biol.2003 Jan;160(2):189-200.
    [13]Chen H,Chomyn A,Chan DC.Disruption of fusion results in mitochondrial heterogeneity and dysfunction.J Biol Chem.2005 Jul;280(28):26185-92.
    [14]Pich,Sara;Bach,Daniel;Briones,Paz;et al.The Charcot-Marie-Tooth type 2A gene product,Mfn2,up-regulates fuel oxidation through expression of OXPHOS system.Human Molecular Genetics.2005;14(11):1405-1415.
    [15]Z(?)ichner S,Mersiyanova IV,Muglia M,et al.Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A.Nat Genet.2004;36(5):449-51.
    [16]Scott A.Detmer and David C.Chan.Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations.J.Cell Biol.2007;176:405-414.
    [17]Graham P.Holloway,Christopher G.R.Perry,A.Brianne Thrush,et al.PGC-1α's relationship with skeletal muscle pahnitate oxidation is not present with obesity despite maintained PGC-1α and PGC-1β protein.Am J Physiol Endocrinol Metab,Jun 2008;294:E1060-E1069.
    [18]Cartoni R,L(?)ger B,Hock MB,et al.Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise.J Physiol.2005,567(Pt 1):349-58.
    [19]Gamier A,Fortin D,Zoll J,et al.Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle.FASEB J.2005,19(1):43-52.
    [20]Liesa M,Borda-d'Agua B,Medina-G(?)mez G,et al.Mitochondrial fusion is increased by the nuclear coactivator PGC-lbeta.PLoS ONE.2008;3(10):e3613.
    [21]孙卫东,丁虎,刘晓然.骨骼肌线粒体对细胞能量需求的快速应答:mfn1/2与fisl基因在急性运动中的动态表达.中国运动医学杂志,2008;27(5):544-551.
    [22]Yoon Y.,Krueger E.W.,Oswald B.J.et al.The mitochondrial protein hFisl regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1.Mol.Cell.Biol.2003;23(15):5409-5420.
    [23]Jofuku,A.,Ishihara,N.and Mihara,K.Analysis of functional domains of rat mitochondrial Fisl,the mitochondrial fission-stimulating protein.Biochem.Biophys.Res.Commun.2005;333 (2):650-659.
    [24]Richard J.Youle,Mariusz Karbowski.Mitochondrial fission in apoptosis.Nature Reviews,Molecular Cell Biology,2005;6(8):657-664.
    [25]N.Taguchi,N.Ishihara,A.Jofuku,T.Oka and K.Mihara.Mitotic phosphorylation of dynamin-related GTPase Drpl participates in mitochondrial fission.J.Biol.Chem.2007;282:11521-11529.
    [26]C.R.Chang,C.Blackstone.Cyclic AMP-dependent protein kinase phosphorylation of Drpl regulates its GTPase activity and mitochondrial morphology.J.Biol.Chem.2007;282:21583-21587.
    [27]G.M.Cereghetti,A.Stangherlin,O.Martins de Brito,et al.Dephosphorylation by calcineurin regulates translocation of Drpl to mitochondria.Proc.Natl.Acad.Sci.U.S.A.2008;105:15803-15808.
    [28]J.T.Cribbs,S.Strack.Reversible phosphorylation of Drpl by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death.EMBO Rep.2007;8:939-944.
    [29]X.J.Han,Y.F Lu,S.A.Li,et al.CaM kinase Ⅰ alpha-induced phosphorylation of Drpl regulates mitochondrial morphology.J.Cell Biol.2008;182:573-585.
    [30]P.A.Parone,S.Da Cruz,D.Tondera,et al.Preventing mitochondrial fission impairs mitochondrial function and leads to loss ofmitochondrial DNA.PLoS ONE,2008;3:e3257.
    [31]Z.Harder,R.Zunino,H.McBride.Sumol conjugates mitochondrial substrates and participates in mitochondrial fission,Curr.Biol.2004;14:340-345.
    [32]R.Zunino,A.Schauss,P.Rippstein,M.Andrade-Navarro and H.M.McBride,The SUMO protease SENP5 is required to maintain mitochondrial morphology and function,J.Cell.Sci.2007;120:1178-1188.
    [33]S.Wasiak,R.Zunino and H.M.McBride,Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death,J.Cell Biol.2007;177:439-450.
    [34]Detmer SA,Chan DC.Functions and dysfunctions of mitochondrial dynamics.Nat Rev Mol Cell Biol.2007 Nov;8(11):870-9.
    [1]Booth FW,Holloszy JO.Cytochrome c turnover in rat skeletal muscle.J Biol Chem,1977,252(2):416-419.
    [2]Terjung RL.Cytochrome c turnover in skeletal muscle.Biochem Biophys Res Commun.1975;66(1):173-178.
    [3]朱玉山,陈俭.线粒体与细胞凋亡调控.生命科学.2008,20(4):506-510.
    [4]Essig,DA.Contractile activity-induced mitochondrial biogenesis in skeletal muscle.Exerc.Sport Sci.Rev.1996,24:289-319.
    [5]Holloszy,JO.Biochemical adaptations in muscle.Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle.J.Biol.Chem.1967,242:2278-2282.
    [6]Yan Z,Salmons S,Dang YL,et al.Increased contractile activity decreases RNA-protein interaction in the 3'-UTR of cytochrome c mRNA.Am.J.Physiol.1996,271 (Cell Physiol.40):C1157-C1166.
    [7]Damien Freyssenet,Michael K.Connor,Mark Takahashi,et al.Cytochrome c transcriptional activation and mRNA stability during contractile activity in skeletal muscle.Am J Physiol Endocrinol Metab,1999;277(7):E26-E32.
    [8]B.Pelster,A.M.S(a|¨)inger,M.Siegele,et al.Influence of swim training on cardiac activity,tissue capillarization,and mitochondrial density in muscle tissue of zebrafish larvae.Am J Physiol Regulatory Integrative Comp Physiol,2003;285(8):339-347.
    [9]Marcel den Hoed,Matthijs K.C.Hesselink,Gerrit P.J.van Kranenburg,et al.Habitual physical activity in daily life correlates positively with markers for mitochondrial capacity.J Appl Physiol,2008;105(8):561-568.
    [10]F.W.Booth.Cytochrome c protein synthesis rate in rat skeletal muscle.J Appl Physiol,1991;71(10):1225-1230.
    [11]Michael F.N.O'Leary,David A.Hood.Effect of prior chronic contractile activity on mitochondrial function and apoptotic protein expression in denervated muscle.J Appl Physiol,2008;105(7):114-120.
    [12]Frank W.Booth,Wei Lou,Marc T.Hamilton,et al.Cytochrome c mRNA in skeletal muscles of immobilized limbs.J Appl Physiol,1996;81(11):1941-1945.
    [13]Desplanches D,Kayar SR,Sempore B,et al.Rat soleus muscle ultrastructure after hindlimb suspension.J Appl Physiol.1990;69(2):504-508.
    [14]Morey-Holton E,Globus RK,Kaplansky A,and Durnova G.The hindlimb unloading rat model:literature overview,technique update and comparison with space flight data.Adv Space Biol Med,2005;10:7-40.
    [15]Morey-Holton ER,Globus RK.Hindlimb unloading rodent model:technical aspects.J Appl Physiol,2002;92:1367-1377.
    [16]Eric Solary,Fabrizio Giordanetto,Guido Kroemer.Re-examining the role of cytochrome c in cell death.Nature Genetics,2008;40 (4):379-380.
    [17]F.Haddad,R.R.Roy,H.Zhong,et al.Atrophy responses to muscle inactivity.Ⅰ.Cellular markers of protein deficits.J Appl Physiol,2003;95(8):781-790.
    [18]Esther E,Beau A,Cathy M,et al.Nuclear translocation of EndoG at the initiation of disuse muscle atrophy and apoptosis is specific to myonuclei.Am J Physiol Regulatory Integrative Comp Physiol,2006;291(12):R1730-R1740.
    [19]Parco M,Emidio E,Stephen E.Apoptotic responses to hindlimb suspension in gastrocnemius muscles from young adult and aged rats.Am J Physiol Regulatory Integrative Comp Physiol,2005;289(10):R1015-R1026.
    [20]邓树勋,王健主编.高级运动生理学[M],高等教育出版社,2003:419-422.
    [21]田野主编.运动生理学高级教程[M],北京体育大学出版社,2003:23-29.
    [22]Gregory R.Adams,Daniel C.Cheng,Fadia Haddad.Skeletal muscle hypertrophy in response to isometric,lengthening,and shortening training bouts of equivalent duration.J Appl Physiol,2004;96(5):1613-1618.
    [23]张国华,曾凡星.AMPK 抑制运动中骨骼肌蛋白合成的研究进展.中国运动医学杂志,2008;27(7):536-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700