用户名: 密码: 验证码:
利用Tet-on系统诱导缺氧诱导因子1α表达对肝癌作用的体内外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分强力霉素调控表达的人肝癌HepG2Tet-on细胞系的建立
     目的构建可以用强力霉素调控表达的人肝癌HepG2Tet-on细胞系
     方法脂质体转染法将pWHE146质粒转染到人肝癌HepG2细胞中,G418筛选出稳定表达细胞克隆;单克隆分别扩增后,瞬时转染pTRE-hyg-luc质粒,强力霉素诱导表达后,检测荧光素酶表达活性,挑选出受强力霉素调控的低背景、高表达的HepG2Tet-on细胞株。
     结果成功构建了一株受强力霉素调控的高表达低背景的HepG2Tet-on细胞株。
     结论HepG2Tet-on细胞株可用于外源基因的真核调控高表达,为研究真核基因功能提供了一种有力的实验手段。
     第二部分强力霉素调控HIF-1α表达的人肝癌HepG2Tet-on-HIF-1α双稳细胞系构建
     目的建立强力霉素调控HIF-1α表达的人肝癌HepG2Tet-on-HIF-1α双稳细胞系。
     方法脂质体转染法将重组质粒pTRE-HIF-1α转染入HepG2Tet-on细胞株,潮霉素(hyg)筛选出稳定表达细胞克隆HepG2Tet-on-HIF-1α;用强力霉素(1μg/ml)诱导后,用RT-PCR和Western-blot检测HIF-1α表达。
     结果强力霉素(1μg/ml)可诱导HepG2Tet-on-HIF-1α细胞HIF-1αmRNA(5.899±2.176倍)和蛋白表达增加(2.179±0.742倍)。
     结论成功建立强力霉素调控HIF-1α表达的人肝癌HepG2Tet-on-HIF-1α双稳细胞系,为深入研究HIF-1α在肝癌细胞中的作用提供了有力的实验手段。
     第三部分调控HIF-1α表达对人肝癌HepG2细胞增殖及侵袭能力的影响
     目的探讨体外常氧下,诱导表达HIF-1α对HepG2细胞增殖及侵袭能力的影响。
     方法常氧下,四甲基偶氮唑盐法检测缺氧诱导因子1α对细胞增殖、黏附能力的影响,Transwell法检测其对侵袭能力的影响。
     结果增殖实验中,Dox(+)组与Dox(-)组各时段A490nm值无差异(P>0.05);黏附实验中,Dox(+)组的A490nm值明显高于Dox(-)组(P=0.008);Dox(+)组侵袭细胞数(37.611±8.424)明显高于Dox(-)组(25.333±8.117)(P<0.001)。
     结论常氧下,缺氧诱导因子1α不影响HepG2细胞的增殖,但明显增加其黏附和侵袭能力。
     第四部分强力霉素调控HIF-1α表达的裸鼠肝癌皮下移植瘤模型的建立
     目的建立可以由强力霉素(Dox)诱导HIF-1α表达的裸鼠肝癌皮下移植瘤模型。
     方法注射法建立裸鼠肝癌HepG2Tet-on-HIF-1α细胞皮下移植瘤模型;口服强力霉素7周,RT-PCR和Western-blot检测皮下移植瘤中HIF-1α表达。
     结果与Dox(-)组相比,Dox(+)组裸鼠HepG2Tet-on-HIF-1α细胞皮下移植瘤中HIF-1αmRNA(4.303±1.004倍)和蛋白(1.666±0.079倍)表达增加。
     结论口服强力霉素可以有效地诱导裸鼠HepG2Tet-on-HIF-1α细胞皮下移植瘤中HIF-1αmRNA和蛋白表达增加,为体内研究HIF-1α对肝癌的作用提供了有效的实验手段。
     第五部分强力霉素调控HIF-1α表达对裸鼠肝癌皮下移植瘤的作用
     目的探讨体内调控表达HIF-1α对裸鼠肝癌皮下移植瘤生长和凋亡的影响。
     方法强力霉素诱导裸鼠肝癌HepG2Tet-on-HIF-1α细胞皮下移植瘤缺氧诱导因子1α表达;观察上调缺氧诱导因子1α表达对裸鼠皮下移植瘤生长的影响;Tunel法检测两组皮下移植瘤原位凋亡的情况;免疫组化和western blot检测两组皮下移植瘤中血管生成情况。
     结果Dox(+)组在肿瘤体积、重量、生长速度上都明显超过Dox(-)组,肿瘤内坏死面积明显小于Dox(-)组;同Dox(-)组相比,Dox(+)组裸鼠体重下降更为明显,两组均无肝、肺转移发生;Dox(+)组皮下移植瘤的细胞凋亡较Dox(-)组少,而血管则较多。
     结论体内实验中,缺氧诱导因子1α可促进肿瘤的生长;其机制可能是促进肿瘤内部血管生成,及减少肿瘤细胞凋亡
PartⅠ: Establishment of HepG2Tet-on cell line controlled by the Tet-On regulatory system
     Objective To establish tetracycline-controlled inducible system ( Tet-On) in HepG2 cell.
     Methods The HepG2 cells were transfected with pWHE146 vector by using liposome transfection reagent . The transfected cells were selected in medium containing G418 and G418-resistant clones were isolated. All individual G418-resistant clones were screened by transient transfection with plasmid pTRE-hyg-luc for clones with low background and high induction of luciferase in response to Dox.
     Results One HepG2 cell line, which exhibited high levels of induction and high gene expression levels, was obtained.
     Conclusion The HepG2 cell line can be used to highly express eukaryotic gene and this Tet-On system is available for use in eukaryotic gene function studies.
     PartⅡ: Establishment of Tet-On system in HepG2 cells to regulate HIF-1αexpression
     Objective To develop the HepG2Tet-on-HIF-1αcell line which can regulate the HIF-1αexpression by doxycycline.
     Methods The HepG2Tet-on cells were transfected with pTRE-HIF-1αvector by using liposome transfection reagent. The transfected cells were selected in medium containing hygromycin(hyg) and the double-stable cell lines(G418- and hyg-resistant) HepG2Tet-on-HIF-1αwere isolated. Induced by Dox(1μg/ml), RT-PCR and Western-blot to test the expression of HIF-1α.
     Results the HIF-1αmRNA and protein of HepG2Tet-on-HIF-1αcells could be induced up to 5.899±2.176 and 2.179±0.742 folds by doxycycline(1μg/ml).
     Conclusion The double-stable cell line HepG2Tet-on-HIF-1αwas successfully established, which could be induced HIF-1αexpression by doxycycline and provided an ideal experimental platform for further functional study of HIF-1α.
     PartⅢ: Inducible Expression of Hypoxia-Inducible factor 1αon the Proliferation and Invasion Property of HepG2 cells under Normoxia in Vitro
     Objective To study the inducible expression of HIF-1αon the proliferation and invasion property of HepG2 cells under normoxia in vitro.
     Methods Under normoxia in vitro, MTT assay was used to observe the proliferative and adhesive activity of cells, and the invasive activity was determined by transwell cell culture chamber method.
     Results There were no difference of A490nm between the Dox(+)and Dox(-)group in experiment detecting the proliferation activity(P>0.05); But in adhesive experiment, the A490nm of Dox ( + ) group was 0.662±0.058, higher than the Dox ( - ) group 0.526±0.808(P=0.008); The invasived cell number of Dox(+)group was 37.611±8.424, but in the Dox(-)group, the number was 25.333±8.117(P<0.001).
     Conclusion HIF-1αhas no influence with the proliferation activity, but it could enhance the adhesive and invasive properties of HepG2 cells.
     PartⅣ:Construction of Subcutaneous Implanted Hepatoma Model Inducible Expression of HIF-1αin Nude Mice
     Objective To constructe the subcutaneous implanted hepatoma model in nude mice with HepG2Tet-on-HIF-1αcell line which could be induced the expression of HIF-1αby doxycycline.
     Methods Constructed the subcutaneous implanted hepatoma model in nude mice with HepG2Tet-on-HIF-1αcell line; The HIF-1αmRNA and protein level of subcutaneous implanted tumors were detected with RT-PCR and Western-blot after seven weeks taking doxycycline orally.
     Results The HIF-1αmRNA and protein of subcutaneous implanted tumor in nude mice could be induced up to 4.303±1.004 and 1.666±0.079 folds by taking doxycycline orally(1mg/ml).
     Conclusion The HIF-1αmRNA and protein of subcutaneous implanted tumor with HepG2Tet-on-HIF-1αcell line in nude mice could be induced by taking doxycycline orally. It provided an ideal experimental platform for further study of the effect of HIF-1αon hepatoma in vivo.
     PartⅤ:Impact of Induced Hypoxia-Inducible Factor-1αon the Subcutaneous Implanted Hepatoma in Nude Mice in Vivo
     Objective To study the impact of induced HIF-1αon the growth and apoptosis of subcutaneous implanted hepatoma in nude mice in vivo.
     Methods The HIF-1αof the subcutaneous implanted hepatoma in nude mice were induced by doxycycline; Observed the impact of HIF-1αinduced by doxycycline on the growth of subcutaneous implanted hepatoma in nude mice and its impact on nude mice. Tunel method was used to analyze the apoptosis index of subcutaneous implanted hepatoma. Immunohistochemistry and western blot methods were used to analyze the vascularization in subcutaneous implanted hepatoma of two groups.
     Results Compared with Dox(-)group, the volume, weight and growth velocity of subcutaneous implanted hepatoma were higher in Dox(+)group, but the necrosis period of the tumor were less. The weight loss of nude mice was obvious in Dox(+)group. There was no liver or lung metastasis in either group. In Dox(-)group, the AI was higher than that of Dox(+)group. And there were much more blood vessels in subcutaneous implanted hepatoma of Dox(+) groups.
     Conclusion HIF-1αpromote the growth of subcutaneous implanted hepatoma in nude mice in vivo. The mechanism may be that HIF-1αdecrease the cell apoptosis and promot the vascularization of subcutaneous implanted hepatoma.
引文
1 Helmlinger G, Yung F, Dellian M, et al. Interstitial PH and PO2 gradients in solid tumor in vivo: high-resolution measurements reveal a lack of correlation. Nature Med, 1997, 3:177-182
    2 Piret JP, Mottet D, Raes M, et al. Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol, 2002, 64(5-6):889-892
    3 Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha .Gene Dev, 2000, 14: 34-44.
    4 Hopfl G, Wenger RH, Ziegler U, et al. Rescue of hypoxia-inducible factor-1 alpha-deficient tumor growth by wild-type cells is independent of vascular endothelial growth factor. Cancer Res, 2002, 62(10): 2962-2970
    5 Harris AL. Hypoxia--a key regulatory factor in tumor growth. Nat Rev Cancer, 2002, 2(1):38-47
    6 Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA,1992, 89(12): 5547-5551.
    7 Blau HM,Rossi FM. TetB or not tetB: Advances in tetracycline-inducible gene expression[J]. Proc Natl Acad Sci USA. 1999,96(3):797-799.
    8 Lynda C, Alice T, Jason p, et al. Essential role for oncogenic Ras in tumor maintenance. Nature, 1999,400(29):468-472.
    9 Stefania L, Giuseppe R, Cira D, et al. Stringent control of gene expression in vivo by using novel doxycycline-dependent trans-activators. Human Gene Therapy, 2002, 20(13):199-210.
    1 Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA,1992, 89(12): 5547-5551.
    2 Furth PA, St Onge L, Boger H, et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci USA, 1994, 91: 9302-9306.
    3 Shockett P, Difilippantonio M, Hellman N, et al. A modified tetracycline regulated system provides autoregulatory, inducible gene wxpression in cultured cells and transgenic mice. Proc Natl Acad Sci USA, 1995, 92: 6522-6526.
    4 Urlinger S, Baron U, Thellmann M, et al. Exploring the sequence space for tetracycline dependent transcriptional activators: Novel mutations yield expanded range and sensitivity[J]. Proc Natl Acad Sci USA, 2000, 97(14): 7963-7968.
    1. Kaelin WG Jr. How oxygen makes its presence felt[J]. Genes Dev, 2002;16:1441-1445.
    2. Giaccia AJ, SimonMC, Johnsin R. The biology of hypoxia: the role of oxygen sensing regulator in development, normal function and disease[J]. Genes, 2004, 18(11): 2183-2194.
    3 Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 2006,441:437–443
    4 Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol, 2004, 5:343–354
    5 Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 2005,105:659–669
    6 Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem, 2007,405:1–9
    7 AE Greijer, Evan der Wall. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis[J]. J Clin Pathol, 2004;57:1009–1014.
    8 Semenza GL. Signal transduction to hypoxia-inducible factor 1[J]. Biochem Pharmacol, 2002;64:993–998.
    9 Zhong H, Mabjeesh NJ,Willard MT, et al. Nuclear expression of hypoxia-inducible factor 1αprotein is heterogeneous in human malignant cells under normoxic condition[J]. Cancer Lett,2002,181 (2):233-238.
    10 Stiehl DP, Jelkmann W, Wenger RH, et al. Normoxic induction of the hypoxia inducible factor 1 alpha by insulin and interleukin-1 beta involves the phosphatidylinositol 3-kinase pathway[J]. FEBS Lett, 2002;512:157–162.
    11 Treins C, Giorgetti-Peraldi S, Murdaca J, et al. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway[J]. J Biol Chem, 2002;277:27975–27981.
    12 Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters[J]. Proc Natl Acad Sci, 1992; 89:5547-5551.
    13 Min JH, Yang H, Ivan M, et al. Structure of an HIF-1alpha-pVHL complex: Hydroxyproline recognition in signaling[J]. Science, 2002;296:1886–1889.
    1 Kaelin WG Jr. How oxygen makes its presence felt[J]. Genes Dev, 2002;16:1441-1445.
    2 Stiehl DP, Jelkmann W, Wenger RH, et al. Normoxic induction of the hypoxia inducible factor 1 alpha by insulin and interleukin-1 beta involves the phosphatidylinositol 3-kinase pathway[J]. FEBS Lett, 2002;512:157–162.
    3 Treins C, Giorgetti-Peraldi S, Murdaca J, et al. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway[J]. J Biol Chem, 2002;277:27975–27981.
    4 Zhong H, Mabjeesh NJ,Willard MT, et al. Nuclear expression of hypoxia-inducible factor 1αprotein is heterogeneous in human malignant cells under normoxic condition[J]. Cancer Lett,2002,181 (2):233-238.
    5 AE Greijer, Evan der Wall. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis[J]. J Clin Pathol, 2004;57:1009–1014.
    6 Semenza GL. Signal transduction to hypoxia-inducible factor 1[J]. Biochem Pharmacol, 2002;64:993–998.
    7 Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters[J]. Proc Natl Acad Sci, 1992; 89:5547-5551.
    8 Kaelin WG Jr. How oxygen makes its presence felt[J]. Genes Dev, 2002;16:1441–1445.
    9 Min JH, Yang H, Ivan M, et al. Structure of an HIF-1alpha-pVHL complex: Hydroxyproline recognition in signaling[J]. Science, 2002;296:1886–1889.
    10 Fujiwara S, Nakagawa K, Harada H, et al. Silencing hypoxia-inducible factor-1alpha inhibits cell migration and invasion under hypoxic environment in malignant gliomas[J]. 2007; 30: 793-802.
    1 Kaelin WG Jr. How oxygen makes its presence felt[J]. Genes Dev, 2002,16:1441- 1445.
    2 Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor-1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/ PTEN/ AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics[J].Cancer Res,2000,15;60(6):1541-1545.
    3 Jiang BH, Agani F, Passaniti A, et al. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression [J].Cancer Res, 1997,57(23): 5328-5335.
    4 Milanini J, Vinals F, Pouyssegur J, et al. p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts[J]. J Biol Chem, 1998, 273(29):18165-18172.
    5 Maxwell PH, Wiesener MS, Chang GW, et al. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis [J]. Nature, 1999, 399:271-275.
    6 Blau HM,Rossi FM. TetB or not tetB: Advances in tetracycline-inducible gene expression[J]. Proc Natl Acad Sci USA. 1999,96(3):797-799.
    7 Giaccia AJ, SimonMC, Johnsin R. The biology of hypoxia: the role of oxygen sensing regulator in development, normal function and disease[J]. Genes, 2004, 18(11): 2183-2194.
    1 Kaelin WG Jr. How oxygen makes its presence felt[J]. Genes Dev, 2002 ,16:1441-1445.
    2 Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor-1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/ FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics[J].Cancer Res,2000,15;60(6):1541-1545.
    3 Jiang BH, Agani F, Passaniti A, et al. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression [J].Cancer Res, 1997,57(23):5328-5335.
    4 Milanini J, Vinals F, Pouyssegur J, et al. p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts[J]. J Biol Chem, 1998, 273(29):18165-18172.
    5 Maxwell PH, Wiesener MS, Chang GW, et al. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis [J]. Nature, 1999,399(6733):271-275.
    6 Blau HM,Rossi FM. TetB or not tetB: Advances in tetracycline-inducible gene expression[J]. Proc Natl Acad Sci USA. 1999,96(3):797-799.
    7金炜东,陈孝平,杨盛利等.常氧下调控表达HIF-1α对HepG2细胞增殖和侵袭能力的影响[J].中华外科杂志,2007,45(23):1634-1636.
    8 Tsuzuki Y, Fukumura D, Oosthuyse B, et al. Vascular endothelial growth factor(VEGF) modulation by targeting hypoxia inducible factor 1alpha[J]. Cancer Res, 2000, 60(63): 6248-6252.
    9 Seagroves TN, Ryan HE, Lu H, et al. Transcription factor HIF-1 is a necessary mediator of the Pasteur effect in mammalian cells [J]. Mol Cell Biol, 2001, 21 (10):3436 - 3444.
    10 Zhong H, Semenza GL, Simons JW, et al. Up - regulation of hypoxia - inducible factor
    1alpha is an early event in prostate carcinogenesis [J] . Cancer Detect Prev, 2004, 28(2): 88-93.
    11 Chen WT, Huang CJ, Wu MT, et al. Hypoxia - inducible factor- 1alpha is associated with risk of aggressive behavior and tumor angiogenesis in gastrointestinal stromal tumor [J]. Jpn J Clin Oncol, 2005, 35(4): 207-213.
    1. Giaccia AJ, SimonMC, Johnsin R. The biology of hypoxia: the role of oxygen sensing regulator in development, normal function and disease[J]. Genes, 2004, 18(11): 2183-2194.
    2. Folkman J, Hahnfeldt P, Hlatky L. Cancer: looking outside the genome. Nat Rev Mol Cell Biol, 2000, 1:76–79 ology and its implications for radiation oncology. Semin Radiat Oncol, 2004,14:198–206
    3. Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology, Semin Radiat Oncol,2004, 14:198-206
    4. Vaupel P, Kallinowski F, Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review.Cancer Res, 1989; 49: 6449–6465
    5. Kim JW, Gao P, Dang CV. Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev, 2007, 26:291–298
    6. Hockel M, Vaupel P: Tumor hypoxia: defi nitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst, 2001; 93: 266–276
    7. Mahon PC, Hirota K,Semenza GL. FIH-1 :a novel protein that interacts with HIF-1αand VHL to mediate repression of HIF-1 transcriptional activity[J ]. Genes Dev, 2001, 15: 2675 - 2686.
    8. Semenza GL. HIF-1, O2 and the 3 PHDs: How animal cells signal hypoxia to the nucleus [J]. Cell, 2001, 107:1 - 3.
    9. Semanza GL. Physiology meets biophisics: visualizing the interaction of hypoxia-induced factor-1αwith p300 and CBP [J]. Proc Natl Acad Sci, 2002: 11570 - 11572.
    10. Fedele AO, Whitelaw ML, Peet DJ. Regulation of gene expression by the hypoxia-inducible factors [J]. Mol Interv, 2002, 2:229-243.
    11. Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 2006,441:437–443
    12. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol, 2004, 5:343–354
    13. Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 2005,105:659–669
    14. Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem, 2007,405:1–9
    15. Du KM, Chen GQ, Chen Z. Regulation of Hypoxia - inducible factor - 1 expression[J]. Chin Cancer, 2004, 23(9): 1098~1102 .
    16. Rakesh KJ. Molecular regulation of vessel maturation [J]. Nature Med, 2003, 9(6): 685~693.
    17. Tsuzuki Y, Fukumura D,Oosthuyse B, et al. Vascular endothelial growth factor(VEGF) modulation by targeting hypoxia inducible factor 1alpha[J]. Cancer Res, 2000, 60 (63): 6248~6252.
    18. Mazure NM, Brahimi-Horn MC, Pouyssegur J. Protein kinases and the hypoxia - inducible factor-1, two switches in angiogenesis[J]. Curr Pharm Des, 2003, 9 (5) : 531~541.
    19. Dayan F, Roux D, Brahimi-Horn MC, et al. The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res, 2006,66:3688–3698
    20. Maiuri MC, Le Toumelin G, Criollo A, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J, 2007,26:2527–2539
    21. Mazure NM, Bellot G, Garcia-Medina R, et al. Hypoxia-induced autophagy is mediated through the HIF-dependent induction of BNIP3 and BNIP3L. Bull Cancer, 2007, 94:534
    22. Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007,8:741–752
    23. Brahimi-Horn MC, Pouyssegur J. Oxygen, a source of life and stress. FEBS Lett, 2007, 581:3582–3591
    24. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9:425–434
    25. Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1 mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 2006, 3:177–185
    26. Papandreou I, Cairns RA, Fontana L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab, 2006, 3:187–197
    27. Fukuda R, Zhang H, Kim JW, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 2007,129: 111–122
    28. Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation.Cancer Cell, 2007,12:108–113
    29. Kim JW, Gao P, Liu YC, et al. HIF-1 and dysregulated c-Myc cooperatively induces VEGF and metabolic switches, HK2 and PDK1. Mol Cell Biol, 2007, 27:7381–7393
    30. Swietach P, Vaughan-Jones RD, Harris AL. Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev, 2007, 26:299–310
    31. Counillon L, Pouyssegur J. The expanding family of eucaryotic Na(+)/H(+) exchangers. J Biol Chem, 2000, 275:1–4
    32. Sardet C, Franchi A, Pouyssegur J. Molecular cloning, primary structure, and expression of the human growth factor activatable Na+/H+ antiporter. Cell, 1989, 56:271–280
    33. Shimoda LA, Fallon M, Pisarcik S, et al. HIF-1 regulates hypoxic induction of NHE1expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol, 2006, 291:941–949
    34. Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha dependent mechanism. J Biol Chem, 2006,281:9030–9037
    35. Ivanov S, Liao SY, Ivanova A, et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol,2001, 158:905–919
    36. Morgan PE, Pastorekova S, Stuart-Tilley AK, et al. Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters. Am J Physiol Cell Physiol, 2007, 293:738–748
    37. Piermarini PM, Kim EY, Boron WF. Evidence against a direct interaction between intracellular carbonic anhydrase II and pure C-terminal domains of SLC4 bicarbonate transporters. J Biol Chem, 2007, 282:1409–1421
    38. Chiche J, Laferrière J, Trottier E, et al (2007). The hypoxia-induced tumor marker carbonic anhydrase IX plays a critical role in tumor microenvironmental pH homeostasis. Keystone Symposium conference. Molecular Targets for Cancer. Abstract 134, Whistler, British Columbia, 18–23 March
    39. Sullivan R, Graham CH. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev, 2007, 26:319–331
    40. Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis. Cancer Res, 2006, 66:4549–4552
    41. Walenta S, Mueller-Klieser WF. Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol, 2004,14:267–274
    42. Erler JT, Bennewith KL, Nicolau M, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 2006, 440:1222–1226
    43. Petrella BL, Lohi J, Brinckerhoff CE. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia inducible factor-2 alpha in von Hippel-Lindaurenal cell carcinoma. Oncogene,2005, 24:1043–1052
    44. Chan DA, Giaccia AJ. Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev, 2007,26:333–339
    45. Larson SM. Positron emission tomography-based molecular imaging in human cancer: exploring the link between hypoxia and accelerated glucose metabolism. Clin Cancer Res, 2004, 10: 2203–2204
    46. Brahimi-Horn MC, Pouyssegur J. The hypoxia-inducible factor and tumor progression along the angiogenic pathway. Int Rev Cytol, 2005, 242:157–213
    47. Kaelin WG Jr. The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res, 2007,13:680–684
    48. Trastour C, Benizri E, Ettore F, et al. HIF-1 alpha and CA IX staining in invasive breast carcinomas: prognosis and treatment outcome. Int J Cancer, 2007, 120:1451–1458
    49. Van den Eynden GG, Van der Auwera I, Van Laere SJ, et al. Angiogenesis and hypoxia in lymph node metastases is predicted by the angiogenesis and hypoxia in the primary tumour in patients with breast cancer. Br J Cancer, 2005,93:1128–1136
    50. Tan EY, Campo L, Han C, et al. BNIP3 as a progression marker in primary human breast cancer; opposing functions in situ versus invasive cancer. Clin Cancer Res, 2007, 13:467–474
    51. Giatromanolaki A, Koukourakis MI, Sowter HM, et al. BNIP3 expression is linked with hypoxia-regulated protein expression and with poor prognosis in non-small cell lung cancer. Clin Cancer Res, 2004,10:5566–5571
    52. Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer, 2007, 7:475–485

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700