用户名: 密码: 验证码:
HBx对HCC细胞侵袭性的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝细胞性肝癌(HCC)是最常见的原发恶性肿瘤之一,死亡率极高,位居肿瘤发病率第五位,肿瘤死亡率第三位。在引发HCC的众多因素中,80%与乙型肝炎病毒(HBV)或/和丙型肝炎病毒(HCV)的慢性感染有关。虽然HBV的致癌机理还不完全清楚,但病毒结构蛋白尤其是HBx蛋白在HBV感染致癌中的作用仍然是科学工作者研究的焦点。本项目在体外研究了HBx对肝癌细胞系侵袭性的影响,并初步探索了NDRG1 (N-myc down-regulated gene 1)调节肿瘤侵袭性的作用机理。
     1.首先构建了可表达HBx、NDRG1 cDNA和针对NDRG1 siRNA的重组腺病毒Ad-HBx、Ad-NDRG1和Ad-NDRG1/siRNA,经单斑纯化和扩增后用PCR鉴定,以及对其感染SMMC7721细胞后的Western-blot分析等,都证实成功获得重组腺病毒,并具有良好的感染效果。成功建立了可下调NDRG1表达的稳定转染细胞系AGS/pSuppressor-NDRG1-siRNA和对照AGS/pSuppressor。
     2.将包装好的重组腺病毒Ad-HBx、Ad-HBx + Ad-NDRG1、Ad-HBx + Ad-NDRG1/siRNA、Ad-NDRG1、Ad-NDRG1/siRNA和Ad-LacZ瞬时感染SMMC7721细胞,并采用不同方法进行检测分析。(1)Matrigel体外侵袭实验结果表明,HBx可增加细胞的侵袭性;而外源表达的NDRG1则可抑制HBx诱导的细胞侵袭,并且用NDRG1 siRNA降低细胞NDRG1的表达可以增强HBx诱导的侵袭。(2)明胶酶谱法实验结果显示,HBx可上调MMP9的表达,提示HBx可能通过激活MMP9的表达促进细胞的侵袭性;NDRG1不仅可以抑制细胞本身MMP9的表达还可以抑制HBx诱导的MMP-9的表达。(3)Western-blot检测结果显示,HBx和NDRG1-siRNA可显著诱导MT1-MMP的表达,但NDRG1 siRNA并不能增强HBx诱导的MT1-MMP的表达;NDRG1可以显著降低HBx诱导的及细胞本身MT1-MMP的表达;HBx可诱导MMP2的表达,但NDRG1 siRNA和NDRG1都对HBx诱导的MMP2表达有较弱的抑制作用。(4)在AGS细胞中,NDRG1 siRNA可显著诱导细胞的侵袭,并上调MT1-MMP和MMP2的表达;而外源表达NDRG1可抑制NDRG1 siRNA诱导的侵袭。
     3.用25 MOI、50 MOI、100 MOI不同剂量的HBx感染SMMC7721细胞,Western-blot检测结果显示NDRG1的抑制表达与HBx呈剂量依赖性,而且HBx还可诱导COX-2的表达,但较弱抑制β-catenin的表达。另外无论在AGS细胞或SMMC7721细胞中NDRG1 siRNA都可以降低COX-2的表达或降低HBx诱导的COX-2表达,且在这两种细胞中都可降低β-catenin的表达。但在SMMC7721细胞中,外源性表达NDRG1也可降低β-catenin的表达。
     4.将TOPFlash、Renilla荧光素酶报告载体用脂质体法瞬时共转染感染重组腺病毒Ad-HBx、Ad-HBx + Ad-NDRG1/siRNA、Ad-HBx + Ad-NDRG1、Ad-NDRG1/siRNA、Ad-NDRG1和Ad-LacZ的SMMC7721细胞及稳定转染细胞系AGS/pSuppressor和AGS/pSuppressor-NDRG1-siRNA,测定荧光素酶活性,结果显示HBx可增强TCF/LEF转录活性,而NDRG1 siRNA则可完全抑制HBx激活的TCF/LEF转录活性;而Ad-HBx + Ad-NDRG1、Ad-NDRG1/siRNA和Ad-NDRG1对TCF/LEF的激活有所抑制,但只有Ad-NDRG1可抑制HBx诱导的侵袭性增强;在AGS细胞中,NDRG1 siRNA也抑制了TCF/LEF的转录。因此,Wnt/β-catenin通路对HBx诱导的肿瘤侵袭性增强不起主要作用,但细胞中β-catenin的表达变化有可能与E-cadherin有关,是否影响肿瘤侵袭性有待于进一步研究。
     以上研究结果提示,HBx可以增强肿瘤细胞的侵袭性,这种增强作用可能是通过诱导MT1-MMP和MMP9的表达来实现的,并且还可能与β-catenin的表达变化有关。本研究为进一步阐明HBx致HCC的机理以及NDRG1在HCC发生中的作用等提供了新的实验依据。
Hepatocellular carcinoma (HCC) is one of the most common primary malignant tumor, and remains a leading cause of death. It ranks fifth in overall frequency and third in annual mortality rate worldwide. The infection of hepatitis B virus (HBV) and/or hepatitis C virus (HCV) has been identified as a major environmental risk factors to be closely associated with HCC, which account for more than 80% of HCC cases. Although, the underlying mechanism remains unclear, much of the research on HBV hepatocarcinogenesis has been focused on the HBx gene. The aim is to investigate the effect of invasion which HBx protein exert on hepatocellular carcinoma cells and initially explore the mechanism of tumor invasion regulated by NDRG1.
     1. Firstly, recombination adenovirus expressing HBx, NDRG1 cDNA and NDRG1 siRNA were successfully constructed. After plaque purification and PCR identification of the amplifying adenovirus, and the Western-blot analysis of SMMC7721 cells transiently infected with them, these results demonstrated the recombinant adenovirus have been successfully produced, and had the favorable infected ability. The stable transfectants cell lines AGS/pSuppressor-NDRG1-siRNA and AGS/pSuppressor have been successfully established which down-regulated NDRG1 and control.
     2. After infected SMMC7721 cells with recombinant adenovirus Ad-HBx、Ad-HBx + Ad-NDRG1、Ad-HBx + Ad-NDRG1/siRNA、Ad-NDRG1、Ad-NDRG1/siRNA and Ad-LacZ, the results were analyzed using different experimental methods. (1)Matrigel results showed the invasive ability of cells infected with HBx was improved, and the promoted invasive ability was overall inhibited by exogenous NDRG1, and increased by NDRG1 siRNA. (2)The results of Gelatin Zymograph demonstrated the expression of MMP9 was increased by HBx, but not much higher, and exogenous NDRG1 inhibited intracellular MMP9, as well as inhibited the induced MMP9 expression by HBx to much lower lever. (3)The results of Western-blot showed HBx and NDRG1 siRNA could also induce MT1-MMP expression, but NDRG1 siRNA could not increased the expression of MT1-MMP which induced by HBx; The induced expression of MT1-MMP by HBx was totally inhibited by NDRG1. However, the expression of MMP2 was induced by HBx, which slightly inhibited by NDRG1 and NDRG1-siRNA. (4)NDRG1 siRNA could markly induce the invasion of AGS which inhibited by exogenous NDRG1, meanwhile upregulate the expression of MT1-MMP and MMP2.
     3.The results of Western-blot showed the inhibited expression of NDRG1 was depended on the expression of HBx, moreover HBx induced the expression of COX-2 which was decreased by both NDRG1 and NDRG1 siRNA,and weakly inhibited the expression ofβ-catenin in SMMC7721. Additionally, in AGS cells, NDRG1 siRNA inhibited the expression of COX-2 andβ-catenin.
     4.After transiently transfected SMMC7721 which infected with Ad-HBx、 Ad-HBx + Ad-NDRG1/siRNA、Ad-HBx + Ad-NDRG1、Ad-NDRG1/siRNA、Ad-NDRG1and Ad-LacZ, and stable transfectants AGS cell lines with TOPFlash and Renilla luciferase reporters, the results showed HBx could active the transcriptional activity of TCF/LEF, which was totally inhibited by NDRG1; moreover, Ad-HBx + Ad-NDRG1、Ad-NDRG1/siRNA and Ad-NDRG1 could also inhibit the transcriptional activity of TCF/LEF in SMMC7721; however, only Ad-NDRG1 inhibited the improved invasion by HBx. In AGS cells, NDRG1 could also inhibit the transcriptional activity of TCF/LEF. These results indicate Wnt/β-catenin pathway doesn’t paly an important role in induced invasion by HBx, there is relationship between the changed expression ofβ-catenin and E-cadherin, so whether the pathway affect the tumor invasion needs more further investigation.
     In summary, the tumor invasion was induced by HBx, and totally inhibited by NDRG1. The improved invasion may achieve through the expression MT1-MMP and MMP9 induced by HBx,and the induced expression of MT1-MMP and MMP9 could be inhibited by NDRG1, there exists the possibility between improved invasion and changed expression ofβ-catenin. The study provides a new experimental basis to further elucidate the roles of HBx and NDRG1 in pathogenesis of HCC.
引文
[1] el-Serag, H.B. Epidemiology of hepatocellular carcinoma. Clin Liver Dis. 2001; 5(1):87-107.
    [2] Bortolotti, F., S. Faggion, and P. Con. Natural history of chronic viral hepatitis in childhood. Acta Gastroenterol Belg. 1998; 61(2):198-201.
    [3] Parkin, D.M., F. Bray, J. Ferlay, and P. Pisani. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001; 94(2):153-6.
    [4] Wang, X.W., S.P. Hussain, T.I. Huo, C.G. Wu, M. Forgues, L.J. Hofseth, C. Brechot, and C.C. Harris. Molecular pathogenesis of human hepatocellular carcinoma. Toxicology. 2002; 181-182:43-7.
    [5] Chen, C.J., M.W. Yu, and Y.F. Liaw. Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol. 1997; 12(9-10):S294-308.
    [6] Zheng D.R., H.L., Yang Q.X.. The relationship of HBV and HCV infection with the occurrence of HCC. China Tropical Medicine. 2006; 6(1):73_80.
    [7] Feitelson, M.A., H.M. Reis, N. Lale Tufan, B. Sun, J. Pan, and Z. Lian. Putative roles of hepatitis B x antigen in the pathogenesis of chronic liver disease. Cancer Lett. 2009.
    [8] Anzola, M. Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis. J Viral Hepat. 2004; 11(5):383-93.
    [9] Bandyopadhyay, S., S.K. Pai, S. Hirota, S. Hosobe, Y. Takano, K. Saito,D. Piquemal, T. Commes, M. Watabe, S.C. Gross, Y. Wang, S. Ran, and K. Watabe. Role of the putative tumor metastasis suppressor gene Drg-1 in breast cancer progression. Oncogene. 2004; 23(33):5675-81.
    [10] Bandyopadhyay, S., S.K. Pai, S.C. Gross, S. Hirota, S. Hosobe, K. Miura, K. Saito, T. Commes, S. Hayashi, M. Watabe, and K. Watabe. The Drg-1 gene suppresses tumor metastasis in prostate cancer. Cancer Res. 2003; 63(8):1731-6.
    [11] Guan, R.J., H.L. Ford, Y. Fu, Y. Li, L.M. Shaw, and A.B. Pardee. Drg-1 as a differentiation-related, putative metastatic suppressor gene in human colon cancer. Cancer Res. 2000; 60(3):749-55.
    [12] Kurdistani, S.K., P. Arizti, C.L. Reimer, M.M. Sugrue, S.A. Aaronson, and S.W. Lee. Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer Res. 1998; 58(19):4439-44.
    [13] Tardif, K.D., G. Waris, and A. Siddiqui. Hepatitis C virus, ER stress, and oxidative stress. Trends Microbiol. 2005; 13(4):159-63.
    [14] Jiang C, Z.F., Wang S, Zou Q33. Jiang C, Zhang F, Wang S, Zou Q. Expression of cyclooxyenase-2 protain and it s relationship with HIF-1a in HCC. J Nanjing Med Univ. 2005; 19(6):299-302.
    [15] Laurent-Puig, P. and J. Zucman-Rossi. Genetics of hepatocellular tumors. Oncogene. 2006; 25(27):3778-86.
    [16] Wong, C.M. and I.O. Ng. Molecular pathogenesis of hepatocellular carcinoma. Liver Int. 2008; 28(2):160-74.
    [17] Branda, M. and J.R. Wands. Signal transduction cascades and hepatitis B and C related hepatocellular carcinoma. Hepatology. 2006; 43(5):891-902.
    [18] Cavard, C., S. Colnot, V. Audard, S. Benhamouche, L. Finzi, C. Torre, G. Grimber, C. Godard, B. Terris, and C. Perret. Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol. 2008; 4(5):647-60.
    [19] Behrens, J., B.A. Jerchow, M. Wurtele, J. Grimm, C. Asbrand, R. Wirtz, M. Kuhl, D. Wedlich, and W. Birchmeier. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998; 280(5363):596-9.
    [20] Kishida, S., H. Yamamoto, S. Ikeda, M. Kishida, I. Sakamoto, S. Koyama, and A. Kikuchi. Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J Biol Chem. 1998; 273(18):10823-6.
    [21] Fodde, R., R. Smits, and H. Clevers. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001; 1(1):55-67.
    [22] Nollet, F., G. Berx, and F. van Roy. The role of the E-cadherin/catenin adhesion complex in the development and progression of cancer. Mol Cell Biol Res Commun. 1999; 2(2):77-85.
    [23] Jeanes, A., C.J. Gottardi, and A.S. Yap. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 2008; 27(55):6920-9.
    [24] Pang, R., J. Yuen, M.F. Yuen, C.L. Lai, T.K. Lee, K. Man, R.T. Poon, S.T. Fan, C.M. Wong, I.O. Ng, Y.L. Kwong, and E. Tse. PIN1 overexpression and beta-catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene. 2004;23(23):4182-6.
    [25] Perez-Moreno, M., C. Jamora, and E. Fuchs. Sticky business: orchestrating cellular signals at adherens junctions. Cell. 2003; 112(4):535-48.
    [26] Perez-Moreno, M. and E. Fuchs. Catenins: keeping cells from getting their signals crossed. Dev Cell. 2006; 11(5):601-12.
    [27] Gloushankova, N.A. Changes in regulation of cell-cell adhesion during tumor transformation. Biochemistry (Mosc). 2008; 73(7):742-50.
    [28] Perrais, M., X. Chen, M. Perez-Moreno, and B.M. Gumbiner. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol Biol Cell. 2007; 18(6):2013-25.
    [29] Betson, M., E. Lozano, J. Zhang, and V.M. Braga. Rac activation upon cell-cell contact formation is dependent on signaling from the epidermal growth factor receptor. J Biol Chem. 2002; 277(40):36962-9.
    [30] Benn, J. and R.J. Schneider. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A. 1994; 91(22):10350-4.
    [31] Pang, R., E. Tse, and R.T. Poon. Molecular pathways in hepatocellular carcinoma. Cancer Lett. 2006; 240(2):157-69.
    [32] Kim, C.M., K. Koike, I. Saito, T. Miyamura, and G. Jay. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature. 1991; 351(6324):317-20.
    [33] Terradillos, O., O. Billet, C.A. Renard, R. Levy, T. Molina, P. Briand, and M.A. Buendia. The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene. 1997;14(4):395-404.
    [34] Slagle, B.L., T.H. Lee, D. Medina, M.J. Finegold, and J.S. Butel. Increased sensitivity to the hepatocarcinogen diethylnitrosamine in transgenic mice carrying the hepatitis B virus X gene. Mol Carcinog. 1996; 15(4):261-9.
    [35] Korenaga, M., T. Wang, Y. Li, L.A. Showalter, T. Chan, J. Sun, and S.A. Weinman. Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem. 2005; 280(45):37481-8.
    [36] Waris, G., K.W. Huh, and A. Siddiqui. Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Mol Cell Biol. 2001; 21(22):7721-30.
    [37] Diao, J., R. Garces, and C.D. Richardson. X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine Growth Factor Rev. 2001; 12(2-3):189-205.
    [38] Kang-Park, S., J.H. Lee, J.H. Shin, and Y.I. Lee. Activation of the IGF-II gene by HBV-X protein requires PKC and p44/p42 map kinase signalings. Biochem Biophys Res Commun. 2001; 283(2):303-7.
    [39] Moon, E.J., C.H. Jeong, J.W. Jeong, K.R. Kim, D.Y. Yu, S. Murakami, C.W. Kim, and K.W. Kim. Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor-1alpha. Faseb J. 2004; 18(2):382-4.
    [40] Ahn, J.Y., E.Y. Chung, H.J. Kwun, and K.L. Jang. Transcriptional repression of p21(waf1) promoter by hepatitis B virus X protein via ap53-independent pathway. Gene. 2001; 275(1):163-8.
    [41] Chung, T.W., Y.C. Lee, and C.H. Kim. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. Faseb J. 2004; 18(10):1123-5.
    [42] Ueda, H., S.J. Ullrich, J.D. Gangemi, C.A. Kappel, L. Ngo, M.A. Feitelson, and G. Jay. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet. 1995; 9(1):41-7.
    [43] Chung, T.W., Y.C. Lee, J.H. Ko, and C.H. Kim. Hepatitis B Virus X protein modulates the expression of PTEN by inhibiting the function of p53, a transcriptional activator in liver cells. Cancer Res. 2003; 63(13):3453-8.
    [44] Lee, J.O., H.J. Kwun, J.K. Jung, K.H. Choi, D.S. Min, and K.L. Jang. Hepatitis B virus X protein represses E-cadherin expression via activation of DNA methyltransferase 1. Oncogene. 2005; 24(44):6617-25.
    [45] Liu, J., Z. Lian, S. Han, M.M. Waye, H. Wang, M.C. Wu, K. Wu, J. Ding, P. Arbuthnot, M. Kew, D. Fan, and M.A. Feitelson. Downregulation of E-cadherin by hepatitis B virus X antigen in hepatocellullar carcinoma. Oncogene. 2006; 25(7):1008-17.
    [46] Jung, J.K., H.J. Kwun, J.O. Lee, P. Arora, and K.L. Jang. Hepatitis B virus X protein differentially affects the ubiquitin-mediated proteasomal degradation of beta-catenin depending on the status of cellular p53. J Gen Virol. 2007; 88(Pt 8):2144-54.
    [47] Lara-Pezzi, E., M.V. Gomez-Gaviro, B.G. Galvez, E. Mira, M.A. Iniguez, M. Fresno, A.C. Martinez, A.G. Arroyo, and M. Lopez-Cabrera. Thehepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. J Clin Invest. 2002; 110(12):1831-8.
    [48] Mayoral, R., A. Fernandez-Martinez, L. Bosca, and P. Martin-Sanz. Prostaglandin E2 promotes migration and adhesion in hepatocellular carcinoma cells. Carcinogenesis. 2005; 26(4):753-61.
    [49] Itoh, Y. and M. Seiki. MT1-MMP: a potent modifier of pericellular microenvironment. J Cell Physiol. 2006; 206(1):1-8.
    [50] Seiki, M., N. Koshikawa, and I. Yana. Role of pericellular proteolysis by membrane-type 1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Metastasis Rev. 2003; 22(2-3):129-43.
    [51] Itoh, Y., A. Takamura, N. Ito, Y. Maru, H. Sato, N. Suenaga, T. Aoki, and M. Seiki. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. Embo J. 2001; 20(17):4782-93.
    [52] Chi-Man Tang, T., R. Tung-Ping Poon, and S.T. Fan. The significance of cyclooxygenase-2 expression in human hepatocellular carcinoma. Biomed Pharmacother. 2005; 59 Suppl 2:S311-6.
    [53] Lipsky, P.E. Role of cyclooxygenase-1 and -2 in health and disease. Am J Orthop. 1999; 28(3 Suppl):8-12.
    [54] Williams, C.S., M. Mann, and R.N. DuBois. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999; 18(55):7908-16.
    [55] Kokame, K., H. Kato, and T. Miyata. Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. GRP78/BiP and novel genes. J Biol Chem. 1996; 271(47):29659-65.
    [56] van Belzen, N., W.N. Dinjens, M.P. Diesveld, N.A. Groen, A.C. van der Made, Y. Nozawa, R. Vlietstra, J. Trapman, and F.T. Bosman. A novel gene which is up-regulated during colon epithelial cell differentiation and down-regulated in colorectal neoplasms. Lab Invest. 1997; 77(1):85-92.
    [57] Park, H., M.A. Adams, P. Lachat, F. Bosman, S.C. Pang, and C.H. Graham. Hypoxia induces the expression of a 43-kDa protein (PROXY-1) in normal and malignant cells. Biochem Biophys Res Commun. 2000; 276(1):321-8.
    [58] Zhou, D., K. Salnikow, and M. Costa. Cap43, a novel gene specifically induced by Ni2+ compounds. Cancer Res. 1998; 58(10):2182-9.
    [59] Shimono, A., T. Okuda, and H. Kondoh. N-myc-dependent repression of ndr1, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant. Mech Dev. 1999; 83(1-2):39-52.
    [60] Lin, T.M. and C. Chang. Cloning and characterization of TDD5, an androgen target gene that is differentially repressed by testosterone and dihydrotestosterone. Proc Natl Acad Sci U S A. 1997; 94(10):4988-93.
    [61] Kovacevic, Z. and D.R. Richardson. The metastasis suppressor, Ndrg-1: a new ally in the fight against cancer. Carcinogenesis. 2006; 27(12):2355-66.
    [62] Lachat, P., P. Shaw, S. Gebhard, N. van Belzen, P. Chaubert, and F.T. Bosman. Expression of NDRG1, a differentiation-related gene, in human tissues. Histochem Cell Biol. 2002; 118(5):399-408.
    [63] Ellen, T.P., Q. Ke, P. Zhang, and M. Costa. NDRG1, a growth and cancer related gene: regulation of gene expression and function innormal and disease states. Carcinogenesis. 2008; 29(1):2-8.
    [64] Salnikow, K., T. Davidson, and M. Costa. The role of hypoxia-inducible signaling pathway in nickel carcinogenesis. Environ Health Perspect. 2002; 110 Suppl 5:831-4.
    [65] Stein, S., E.K. Thomas, B. Herzog, M.D. Westfall, J.V. Rocheleau, R.S. Jackson, 2nd, M. Wang, and P. Liang. NDRG1 is necessary for p53-dependent apoptosis. J Biol Chem. 2004; 279(47):48930-40.
    [66] Bandyopadhyay, S., S.K. Pai, S. Hirota, S. Hosobe, T. Tsukada, K. Miura, Y. Takano, K. Saito, T. Commes, D. Piquemal, M. Watabe, S. Gross, Y. Wang, J. Huggenvik, and K. Watabe. PTEN up-regulates the tumor metastasis suppressor gene Drg-1 in prostate and breast cancer. Cancer Res. 2004; 64(21):7655-60.
    [67] Maruyama, Y., M. Ono, A. Kawahara, T. Yokoyama, Y. Basaki, M. Kage, S. Aoyagi, H. Kinoshita, and M. Kuwano. Tumor growth suppression in pancreatic cancer by a putative metastasis suppressor gene Cap43/NDRG1/Drg-1 through modulation of angiogenesis. Cancer Res. 2006; 66(12):6233-42.
    [68] Kachhap, S.K., D. Faith, D.Z. Qian, S. Shabbeer, N.L. Galloway, R. Pili, S.R. Denmeade, A.M. DeMarzo, and M.A. Carducci. The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin. PLoS ONE. 2007; 2(9):e844.
    [69] Tu, L.C., X. Yan, L. Hood, and B. Lin. Proteomics analysis of the interactome of N-myc downstream regulated gene 1 and its interactions with the androgen response program in prostate cancer cells. Mol Cell Proteomics. 2007; 6(4):575-88.
    [70] Chua, M.S., H. Sun, S.T. Cheung, V. Mason, J. Higgins, D.T. Ross, S.T.Fan, and S. So. Overexpression of NDRG1 is an indicator of poor prognosis in hepatocellular carcinoma. Mod Pathol. 2007; 20(1):76-83.
    [71] Yan, X., M.S. Chua, H. Sun, and S. So. N-Myc down-regulated gene 1 mediates proliferation, invasion, and apoptosis of hepatocellular carcinoma cells. Cancer Lett. 2008.
    [72] HE Jing , Z.R. Correlation of NDRG1 gene with l iver tissue differentiation and hepatocarcinogenesis. Journal of PEKING University (Health Sciences). 2003; 35 (5):471-475.
    [73] Cha, M.Y., C.M. Kim, Y.M. Park, and W.S. Ryu. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology. 2004; 39(6):1683-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700