用户名: 密码: 验证码:
痕量DDT与纳米二氧化钛协同诱导人胚肝细胞氧化应激和遗传毒性作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DDT是最早人工合成的有机氯杀虫剂,早先用于灭蚊防疟疾,战后开始广泛用于农业生产。由于DDT化学性质稳定,残留期长,到目前为止,土壤、水及动物脂肪组织中仍能检测到较高浓度的DDT及其代谢产物。大量研究表明DDT能够引起人类染色体断裂、白血病、肺癌等危害,国际癌症研究署(IARC)已将其列为人类可能致癌物。常规的物理、化学、生物方法难以满足净化处理在技术和经济上的要求,有机氯污染物的处理技术成为研究的热点。近些年发展了多项技术用于处理DDT污染的土壤和地表水,随着研究的深入,TiO2辅助的光催化技术应运而生并有了快速的发展。然而,关于光降解过程中的中间产物的毒性变化仍不清楚。本研究显示了在模拟太阳光光照12 h的过程中,中间产物对细胞的存活率和DNA损伤的影响逐渐降低。但是在光照条件不能满足时,DDT与nano-TiO2共存的情况并未考虑。当机体暴露在混合毒物时,共存的已知毒性的化合物在体内的相互作用,常常是通过改变机体的功能状态或代谢能力而实现的。它可发生在毒物摄入、吸收、分布、代谢转化、排泄等过程中,或是作用于同一靶器官而产生的相关作用效应。因此,研究纳米颗粒物与其它毒物之间的相互作用对评估人体健康效应具有非常重要的实用价值。
     通常情况下TiO2被认为是相对低毒的化合物。但是近来大量研究显示了TiO2对人体健康的不利影响。研究发现nano-TiO2较相同化学成分的大颗粒TiO2的毒作用更明显。纳米颗粒在理化性质发生巨变的同时,其生物学效应的性质和强度也可能发生质的变化。nano-TiO2刺激机体的免疫反应,引起炎症反应、DNA损伤、脂质过氧化。纳米颗粒诱导损伤的机制尚不明确,但是跟炎症反应和氧化应激有关。纳米材料具有大量的界面,具有很强的吸附能力,从而能对金属离子或有机物产生吸附作用。当纳米材料大量进入环境后,特殊的表面效应使得其极易与环境中的多种污染物结合。DDT广泛存在于环境当中,可吸附到nano-TiO2的表面,与nano-TiO2相互作用,纳米颗粒的理化性质利于污染物的吸收,促使其穿越各种生物屏障。二者对机体可能导致的各种健康效应有何变化,至今尚无研究。
     环境污染物一般都是痕量存在,因此本试验系统了解痕量nano-TiO2与环境常见污染物DDT的联合作用所致健康效应。本研究以体外培养的正常人类来源胚胎肝细胞(L-02细胞)为靶细胞,探究nano-TiO2与DDT联合作用对细胞ROS生成、DNA断裂损伤、染色体损伤及脂质过氧化等情况的影响,系统研究nano-TiO2与DDT联合作用所致氧化应激效应。本文在以往DDT与nano-TiO2的毒作用机理研究的基础上,用体外试验探讨了二者之间的相互作用及可能的毒作用机制,进一步完善光催化反应的毒理学评价,为nano-TiO2介导的光降解反应的可行性提供理论基础,为进一步深入了解环境中纳米金属氧化物的健康效应提供实验依据。
     本研究分为三个部分:
     第一部分纳米二氧化钛光催化降解DDT及中间产物的DNA损伤效应研究
     目的:观察纳米二氧化钛(nano-TiO2)光催化降解DDT不同时段的中间产物对人胚肝细胞株(L-02)毒性作用的变化。方法:采用nano-TiO2光催化降解法处理DDT的水溶液12 h,初始浓度为50μg/mL,取不同时段的中间产物染毒L-02细胞,染毒时间为24 h,检测其对L-02细胞的存活率、DNA损伤效应的影响。结果:50μg/mL的DDT能显著降低细胞的存活率(P < 0. 05),并引起明显的DNA损伤效应(P < 0. 05)。不同时段的DDT中间产物处理后,在0 min、2 min、5 min、10 min、30 min、40 min、50 min、1 h、1.5 h、2 h时间点L-02细胞的存活率与溶剂对照组比有显著性差异(P < 0. 05),且随着时间的增加存活率逐渐升高,在3 h以后的中间产物对细胞的存活率与溶剂对照组相比无显著性差异(P > 0. 05)。彗星试验显示40 min之前的DDT降解产物具有显著的DNA损伤作用(P < 0. 05),随着时间的增加DNA损伤效应逐渐减小,50 min以后的中间产物对细胞的DNA损伤效应与溶剂对照组相比无显著性差异(P >0. 05)。结论:DDT对L-02细胞具有细胞毒性和DNA损伤作用,但是随着光降解反应的进行,DDT光催化降解产物的毒性逐渐降低。
     第二部分DDT联合纳米二氧化钛协同诱导人胚肝细胞氧化应激作用目的:观察DDT、纳米二氧化钛(nano-TiO2)单独及联合作用对人胚肝细胞(L-02)内活性氧(reactive oxygen species,ROS)含量及氧化应激能力的影响。方法:生长良好的人胚肝细胞,分别加入0.001、0.01、0.1μmol/L的DDT,0.01、0.1、1μg/mL的nano-TiO2,以及上述各浓度的DDT和nano-TiO2联合作用,二甲基亚砜(DMSO,1 mL/L)为溶剂对照,将L-02细胞染毒24小时后,运用DCFH-DA作为荧光探针,采用流式细胞检测技术检测DDT与nano-TiO2联合作用下L-02细胞内ROS含量,同时检测L-02细胞内抗氧化酶超氧化物歧化酶(SOD)、脂质过氧化产物丙二醛(MDA)。结果:1μg/mL的nano-TiO2单独作用可引起ROS增加(P < 0.05);0.01μmol/L以上的DDT作用24h引起ROS增加(P < 0.05);nano-TiO2与DDT联合作用细胞内ROS水平较溶剂对照组有显著升高(P < 0.05)。与溶剂对照相比,0.1、1μg/mL的nano-TiO2单独作用使L-02细胞中抗氧化酶SOD活力显著性降低(P < 0.001,P < 0.001);0.1μmol/L的DDT作用24h显著降低SOD水平(P < 0.001);nano-TiO2与DDT联合作用细胞内SOD水平较溶剂对照组有显著降低(P < 0.05)。0.01、0.1、1μg/mL的nano-TiO2单独作用能明显增加L-02细胞中脂质过氧化产物MDA的含量(P<0.05,P<0.001,P<0.001);0.01、0.1μmol/L的DDT可诱导MDA含量显著增加(P < 0.001,P < 0.001);二者联合作用可促进MDA的生成(P < 0.05)。析因分析结果显示两种受试物混和染毒存在交互作用,反应曲面模型提示二者之间的相互作用为协同作用(P < 0.05)。在本试验浓度范围内,L-02细胞的SOD活力水平与ROS生成量呈负相关(r = -0.86901,P < 0.01),MDA含量与ROS生成量呈正相关(r = 0.91175,P < 0.01)。结论:痕量DDT和nano-TiO2联合作用可诱导L-02细胞氧化应激,使其脂质过氧化反应增强、抗氧化作用降低;二者引发的脂质过氧化反应和抗氧化力下降有可能是导致机体氧化损伤的影响因素。
     第三部分DDT与纳米二氧化钛对人胚肝细胞遗传毒性的协同效应研究
     目的:观察DDT、纳米二氧化钛(nano-TiO2)单独及联合作用对人胚肝细胞株(L-02)DNA、染色体损伤的影响。方法:生长良好的人胚肝细胞,分别加入0.001、0.01、0.1μmol/L的DDT,0.01、0.1、1μg/mL的nano-TiO2,以及上述各浓度的DDT和nano-TiO2联合作用,二甲基亚砜(DMSO,1 mL/L)为溶剂对照,L-02细胞处理时间为24h;运用碱性和中性两种彗星试验和DNA氧化损伤标志物8-OHdG的含量检测各组DNA断裂损伤程度,对各染毒组进行体外微核试验计算其微核率的改变。结果:各浓度的nano-TiO2均不能引起DNA单链断裂增加(P > 0.05);0.01μmol/L以上的DDT作用24h后DNA单链断裂增加(P<0.05);二者联合作用可促进DNA单链断裂损伤作用。而在中性彗星试验中,各实验组均无明显的DNA损伤(P > 0.05)。1μg/mL的nano-TiO2使L-02细胞中DNA氧化损伤标志物8-OHdG生成量显著性增加(P < 0.05);0.001μmol/L以上的DDT作用L-02细胞8-OHdG生成量显著增加(P<0.05, P<0.001, P<0.001);二者联合作用可促进8-OHdG的生成。各浓度的nano-TiO2均不能引起微核率增加(P > 0.05);0.01μmol/L以上的DDT作用L-02细胞微核率明显增加(P<0.001);二者联合作用可促进微核率的增加。析因分析结果显示两种受试物混和染毒存在交互作用(P < 0.05),反应曲面模型提示二者的相互作用为协同作用(P < 0.05)。在本试验浓度范围内,L-02细胞的DNA单链断裂损伤程度与ROS生成量呈正相关(r = 0.85838,P < 0.01);8-OHdG水平与ROS生成量呈正相关(r = 0.86691,P < 0.01);微核率水平与ROS生成量亦呈正相关(r = 0.80569,P < 0.01)。结论:痕量DDT和nano-TiO2联合作用可协同增加各自对L-02细胞内DNA损伤及染色体损伤的影响,对细胞的损伤作用增大。诱导产生自由基并导致DNA损伤以及非整倍体诱变作用导致染色体损伤很可能是DDT和nano-TiO2引起机体损伤的主要机制之一。
DDT is an organochlorine insecticide which could cause chromosomal damage, leukemia and lung cancer in humans. International Agency for Research on Cancer (IARC) has placed DDT on the list of possibly human carcinogen. It has been widely used in agriculture in the past and now still exists at high concentrations along with its metabolites throughout the world for the reason of its long half-lives in soil, water and adipose tissue of animals. Conventional water treatment plants are typically not effective in remediating organochlorine contaminants. Many technologies have been developed to deal with DDT-polluted earth and surface waters in recent years. TiO2-assisted photocatalysis stands out from various environmental technologies. However, little was known about toxicity changes of intermediates with time during the process of degradation. In the experiment, the toxic effects of DDT degradation intermediates on human derived fetal hepatocytes were investigated. The results showed that the survival rate and DNA damage of cells gradually decreased in the time period 0– 12 h after the start of illumination using a simulated sun. But coexistence of DDT and nano-TiO2 in the absence of light was not considered yet. When organisms exposed to a mixture of different toxicants, their simultaneous presence that biologically modify cellular conformation and metabolic activity might induce non-overlapping toxic effects although the toxicity of the single compounds might be well known. The interaction may happen during the process of absorption, distribution, metabolic transformation and excretion or depend among other things on the affinity to target sites at cellular level. Therefore, studies of interactions among nanoparticles and other toxicants are of fundamental interest and practical importance to evaluate the exact health impact.
     In general, TiO2 was thought as a relatively low toxic compound. But recently numerous studies showed adverse effect of TiO2 on health. Several studies found that nano-TiO2 were more toxic than equivalent larger fine particles of the same chemical composition. Nano-TiO2 could stimulate immune response and cause inflammation, DNA damage and lipid peroxidation. The mechanism of nanoparticles induced DNA damage is not understood, but appears to be related to inflammation and oxidative stress. Nanomaterials have massive interface and strong adsorption ability. Thus nanomaterials can adsorb mental ions or organic compounds efficiently. Because of nanomaterials’special surface effect, they will combine with existed pollutants after they enter the environment. DDT in environment can be easily absorbed on the surface of TiO2 and interact with DDT. In addition to facilitating the absorption of pollutants, the physicochemical characteristics of nanoparticles enable them to cross various biological barriers without a specific transporter. But to the best of our knowledge, no study focused on health effect resulted from DDT and nano-TiO2 was reported yet.
     Environmental pollutants normally exist in trace concentration, therefore the co-effects of trace nano-TiO2 and DDT in human fetal hepatocytes (L-02) cells were studied in this study. This paper mainly discuss the effect of nano-TiO2 and DDT on ROS generation, DNA strand breaks, chromosome damage and lipid peroxidation in L-02 cells by a series of in vitro experiments, which were used to explore the oxidative stress level. Based on departed researches on toxicity of DDT and nano-TiO2, the interaction of both compounds was studied and potential toxicological mechanisms were also evaluated in vitro studies, further consummated the toxicology evaluation of photocatalyzed reactions, then provided the theory basis for photodegradation mediated by nano-TiO2 and provide experiment evidences to the health impact of nanoparticles.
     The whole study was composed of the following three parts:
     PartⅠ: Degradation of DDT in water using nano-TiO2 photocatalyst and DNA damage effect caused by intermediate products
     Objective: To observe the toxic effects of DDT degradation intermediates on human derived fetal hepatocytes.
     Methods: An initial DDT concentration of 50μg/mL in water was degraded by nano-TiO2 photocatalyzed reactions under simulated sun for 12 h. Human derived fetal hepatocytes were exposed to DDT degradation intermediates. Survival rate and DNA damage were measured.
     Results: 50μg/mL DDT could decrease the cell viability (P < 0.05) and induce obvious DNA damage effect (P < 0.05). After being exposed to DDT degradation intermediates in the time period 0-2 h after the start of illumination, the survival rate of L-02 cells significantly decreased in comparison with the control (P < 0.05). Cell viability increased with time and the intermediates was similar to the control after 3 h. The comet assay indicated that significant DNA damage was observed exposed intermediates before 40 min (P < 0.05) and the damage effect decreased with time.
     Conclusion: DDT could cause cytotoxic effect and DNA damage to L-02 cells. With the development of photocatalyzed reaction, the toxicity of DDT degradation intermediates decreased.
     PartⅡ: Oxidative stress induced by DDT and nano-TiO2 in human derived fetal hepatocytes
     Objective: To investigate the levels of oxidative stress induced by DDT, nano-TiO2, DDT+nano-TiO2 in human derived fetal hepatocytes.
     Methods: L-02 cells were exposed to single DDT (0.001, 0.01, 0.1μmol/L), single nano-TiO2 (0.01, 0.1, 1μg/mL), combined different concentration of DDT with nano-TiO2 respectively. DMSO (1 mL/L) was used as solvent control. Reactive oxygen species (ROS) level was determined by flow cytometry. SOD, MDA, which were the product of the representative of antioxidative enzyme, lipid peroxidation respectively, were detected in L-02 cells after exposure.
     Results: It can be observed that cells treated with 0.01μmol/L or above concentration of DDT or 1μg/mL nano-TiO2 alone respectively showed a significantly increased level of ROS production compared with control cells (P < 0.05). ROS level generated by a mixture of nano-TiO2 and DDT was markedly elevated (P < 0.05). 0.1μg/mL or above concentration of nano-TiO2 alone and 0.1μmol/L DDT alone significantly decreased SOD activity (P < 0.001) in comparison with solvent control. The content of MDA was significantly increased in L-02 cells exposed to nano-TiO2 alone at the concentration of 0.01μg/mL or above concentration (P<0.05, P<0.001, P<0.001). Cells treated with greater than 0.01μmol/L DDT showed a significantly increased level of MDA (P < 0.001,P < 0.001). Mixture of trace amount of DDT and nano-TiO2 was synergistic to decrease SOD level (P < 0.05), increase MDA generation (P < 0.05) and ROS formation (P < 0.05). The results of factorial analysis showed an interaction between both compounds (P < 0.05). Response surface model indicated that the interaction was synergism (P < 0.05). During the concentration tested, there was a negative association between SOD level and ROS generation (r = -0.86901,P < 0.01) and a striking positive association between MDA content and 8-OHdG level (r = 0.91175,P < 0.01).
     Conclusion: Our study indicated that coexistence of trace amount of DDT and nano-TiO2 could induce oxidative stress in L-02 cells including increase of lipid peroxidation and decrease of antioxidative enzyme. Oxidative damage in L-02 cells might be ascribed to DDT and nano-TiO2 induced lipid peroxidation and the weakening of antioxidation ability.
     PartⅢ: Synergistic genotoxicity caused by DDT and nano-TiO2 in human derived fetal hepatocytes
     Objective: To investigate the effects of DDT, nano-TiO2, DDT+nano-TiO2 on DNA and chromosome damage level in human derived fetal hepatocytes.
     Methods: L-02 cells were exposed to single DDT (0.001, 0.01, 0.1μmol/L), single nano-TiO2 (0.01, 0.1, 1μg/mL), combined different concentration of DDT with nano-TiO2 respectively. DMSO (1 mL/L) was used as solvent control. DNA damage was measured by comet assay and 8-OHdG which is the marker of DNA oxidative damage. And chromosome change was investigated using micronucleus test.
     Results: No significant effects on DNA damage were observed in single nano-TiO2 groups (P > 0.05) and 0.01μmol/L or above concentration of DDT could induce DNA damage (P < 0.05). There was no statistically significant increase of OTM in all groups compared with control group in neutral comet assay (P > 0.05). 1μg/mL nano-TiO2 could increase 8-OHdG formation significantly (P < 0.05). And 0.001μmol/L or above concentration of DDT alone significantly increase 8-OHdG level (P<0.05, P<0.001, P<0.001). Nano-TiO2 could not induce MN frequency in concentrations ranging from 0 to 1μg/mL (P > 0.05). MN frequency significantly increased in the cells treated with greater than 0.01μmol/L DDT (P<0.001). Coexistence of both compounds could enhance the MN frequency. Factorial design showed that there was an interaction between both tested substances (P < 0.05) and response surface model indicated that the interaction was synergism (P < 0.05). There was a striking positive association between DNA single strand breaks and ROS generation (r = 0.85838, P < 0.01), between 8-OHdG level and ROS generation (r = 0.86691, P < 0.01) and between MN frequency and ROS generation (r = 0.80569, P < 0.01) in L-02 cells exposed to DDT and nano-TiO2 with concentrations tested.
     Conclusion: Exposure with trace amount of DDT and nano-TiO2 synergistically enhanced their capability in DNA damage and chromosome change on L-02 cells. The primary mechanism of toxicity may be that DDT and nano-TiO2 can induce the free radical generation, followed by DNA damage and result in chromosome damage via aneugenic activity.
引文
1. Vallack HW, Bakker DJ, Brandt I, Brostrom-Lunden E, Brouwer A, Bull KR, Gough C, Guardans R, Holoubek I, Jansson B, Koch R, Kuylenstierna J, Lecloux A, Mackay D, McCutcheon P, Mocarelli P, Taalman RDF. Controlling persistent organic pollutants-what next? Environ Toxicol Pharmacol. 1998, 6(3):143-175.
    2. Xu Y, Zhang J, Li W, Schramm KW, Kettrup A. Endocrine effects of sublethal exposure to persistent organic pollutants (POPs) on silver carp (Hypophthalmichthys molitrix). Environ Pollut. 2002, 120(3):683-690.
    3. ATSDR. Toxicological Profile for DDT, DDE, and DDD. Atlanta, GA.: Agency for Toxic Substances and Disease Registry, Division of Toxicology; 2002.
    4. Turusov V, Rakitsky V, Tomatis L. Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect. 2002, 110(2):125-128.
    5. Zhang C, Bennett GN. Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol. 2005, 67(5):600-618.
    6. Murena F, Gioia F. Catalytic hydrotreating of 2,4'-DDT and 4,4'-DDT. J Hazard Mater. 2004, 112(1-2):151-154.
    7. Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P. Remediation of DDT-contaminated water and soil by using pretreated iron byproducts from the automotive industry. J Environ Sci Health B. 2006, 41(8):1291-1303.
    8. Pirnie EF, Talley JW, Hundal LS. Abiotic transformation of DDT in aqueous solutions. Chemosphere. 2006, 65(9):1576-1582.
    9. Megharaj M, Kantachote D, Singleton I, Naidu R. Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut. 2000, 109(1):35-42.
    10. Daneshvar N, Salari D, Niaei A, Khataee AR. Photocatalytic degradation of theherbicide erioglaucine in the presence of nanosized titanium dioxide: comparison and modeling of reaction kinetics. J Environ Sci Health B. 2006, 41(8):1273-1290.
    11. Liu Z, He Y, Li F, Liu Y. Photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide. Environ Sci Pollut Res Int. 2006, 13(5):328-332.
    12. Lin C, Lin KS. Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures. Chemosphere. 2007, 66(10):1872-1877.
    13. Bhatkhande DS, Pangarkar VG, Beenackers AA. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: chemical effects and scaleup. Water Res. 2003, 37(6):1223-1230.
    14. Li Y, Li X, Li J, Yin J. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 2006, 40(6):1119-1126.
    15. Mosier AR, Guenzi WD, Miller LL. Photochemical Decomposition of DDT by a Free-Radical Mechanism. Science. 1969, 164(3883):1083-1085.
    16. Gab S, Nitz S, Parlar H, Korte F. Beitrage zur okologischen chemie CV : Photomineralisation of certain aromatic xenobiotica. Chemosphere. 1975, 4(4):251-256.
    17. Galadi A, Bitar H, Chanon M, Julliard M. Photosensitized reductive dechlorination of chloroaromatic pesticides. Chemosphere. 1995, 30(9):1655-1669.
    18. Wolfe NL, Zepp RG, Paris DF, Baughman GL, Hollis RC. Methoxychlor and DDT degradation in water: rates and products. Environ Sci Technol. 1977, 11(12):1077-1081.
    19. Kulovaara M, Backlund P, Corin N. Light-induced degradation of DDT in humic water. Sci Total Environ. 1995, 170(3):185-191.
    20. Stromberg JR, Wnuk JD, Pinlac RA, Meyer GJ. Multielectron transfer at heme-functionalized nanocrystalline TiO2: reductive dechlorination of DDT and CCl4 forms stable carbene compounds. Nano Lett. 2006, 6(6):1284-1286.
    21. Jang SJ, Kim MS, Kim BW. Photodegradation of DDT with the photodeposited ferric ion on the TiO2 film. Water Res. 2005, 39(10):2178-2188.
    22. Quan X, Zhao X, Chen S, Zhao H, Chen J, Zhao Y. Enhancement of p,p'-DDT photodegradation on soil surfaces using TiO2 induced by UV-light. Chemosphere. 2005, 60(2):266-273.
    23. Zaleska A, Hupka J, Wiergowski M, Biziuk M. Photocatalytic degradation of lindane, p,p'-DDT and methoxychlor in an aqueous environment. J Photochem Photobiol A. 2000, 135:213-220.
    24. de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy. 2006, 36(11):1469-1479.
    25. Donaldson K, Beswick PH, Gilmour PS. Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett. 1996, 88(1-3):293-298.
    26. Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita. 2003, 39(3):405-410.
    27. Donaldson K, Stone V, Gilmour PS, Brown DM, Macnee W. Ultrafine particles: Mechanisms of lung injury. Philos Transact A Math Phys Eng Sci. 2000, 358(1775):2741-2749.
    28. Gurr JR, Wang AS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005, 213(1-2):66-73.
    29. Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, Schiffmann D. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect. 2002, 110(8):797-800.
    30. Renwick LC, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol. 2001, 172(2):119-127.
    31. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett. 2007, 171(3):99-110.
    32. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6(8):1794-1807.
    33.司徒镇强,吴军正.细胞培养.第三版.西安:世界图书出版西安公司, 2004.
    34. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988, 175(1):184-191.
    35. Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ. Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem Mater. 2002, 14(9):3808-3816.
    36. Zhang Q, Gao L, Guo J. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl Catal B. 2000, 26(3):207-215.
    37.戴智铭,朱中南,古宏晨.半导体气固相光催化氧化反应介绍.化学反应工程与工艺. 2000, 16(2):185-192.
    38.蔡乃才,简翠英,董庆华.二氧化钛光催化剂表面载铂方法的研究.催化学报. 1989, 10(2):138-141.
    39. Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem Rev. 1995, 95(3):735-758.
    40. Yamazaki S, Matsunaga S, Hori K. Photocatalytic degradation of trichloroethylene in water using TiO2 pellets. Water Res. 2001, 35(4):1022-1028.
    41. Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJD. A structural investigation of titanium dioxide photocatalysts. J Solid State Chem. 1991,92(1):178-190.
    42. Sun B, Vorontsov AV, Smirniotis PG. Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation. Langmuir. 2003, 19(8):3151-3156.
    43.李功虎,马胡兰,安纬珠.纳米二氧化钛气相光催化降解三氯乙烯.催化学报. 2000, 21(4):350-354.
    44. Hussain A, Tirnazi SH, Maqbool U, Asi M, Chauqhtai FA. Studies of the effects of temperatures and solar radiation on volatilization, mineralization and binding of 14C-DDT in soil under laboratory conditions. J Environ Sci Heal B. 1994, 29:141-151.
    45. Van Zwieten L, Ayres MR, Morris SG. Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environ Pollut. 2003, 124(2):331-339.
    46. Sapozhnikova Y, Bawardi O, Schlenk D. Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA. Chemosphere. 2004, 55(6):797-809.
    47. Eichelberger JW, Lichtenberg JJ. Persistence of pesticides in river water. Environ Sci Technol. 1971, 5(6):541-544.
    48. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental Applications of Semiconductor Photocatalysis. Chem Rev. 1995, 95(1):69-96.
    49. Ross RD, Crosby DG. The photooxidation of aldrin in water. Chemosphere. 1975, 4(5):277-282.
    50. Accinni R, Rosina M, Bamonti F, Della Noce C, Tonini A, Bernacchi F, Campolo J, Caruso R, Novembrino C, Ghersi L, Lonati S, Grossi S, Ippolito S, Lorenzano E, Ciani A, Gorini M. Effects of combined dietary supplementation on oxidative and inflammatory status in dyslipidemic subjects. Nutr Metab Cardiovasc Dis. 2006, 16(2):121-127.
    51. Dani V, Dhawan D. Zinc as an antiperoxidative agent following iodine-131 induced changes on the antioxidant system and on the morphology of red blood cells in rats. Hell J Nucl Med. 2006, 9(1):22-26.
    52. Kirimlioglu V, Kirimlioglu H, Yilmaz S, Ozgor D, Coban S, Karadag N, Yologlu S. Effect of fish oil, olive oil, and vitamin E on liver pathology, cell proliferation, and antioxidant defense system in rats subjected to partial hepatectomy. Transplant Proc. 2006, 38(2):564-567.
    53. Curtin JF, Donovan M, Cotter TG. Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods. 2002, 265(1-2):49-72.
    54. Yamawaki M, Sasaki N, Shimoyama M, Miake J, Ogino K, Igawa O, Tajima F, Shigemasa C, Hisatome I. Protective effect of edaravone against hypoxia-reoxygenation injury in rabbit cardiomyocytes. Br J Pharmacol. 2004, 142(3):618-626.
    55. Tallarida RJ, Stone DJ, Jr., McCary JD, Raffa RB. Response surface analysis of synergism between morphine and clonidine. J Pharmacol Exp Ther. 1999, 289(1):8-13.
    56. Afeltra J, Dannaoui E, Meis JF, Rodriguez-Tudela JL, Verweij PE. In vitro synergistic interaction between amphotericin B and pentamidine against Scedosporium prolificans. Antimicrob Agents Chemother. 2002, 46(10):3323-3326.
    57. White DB, Slocum HK, Brun Y, Wrzosek C, Greco WR. A new nonlinear mixture response surface paradigm for the study of synergism: a three drug example. Curr Drug Metab. 2003, 4(5):399-409.
    58. Manyam SC, Gupta DK, Johnson KB, White JL, Pace NL, Westenskow DR, Egan TD. Opioid-volatile anesthetic synergy: a response surface model with remifentanil and sevoflurane as prototypes. Anesthesiology. 2006, 105(2):267-278.
    59. el-Masri HA, Reardon KF, Yang RS. Integrated approaches for the analysis of toxicologic interactions of chemical mixtures. Crit Rev Toxicol. 1997, 27(2):175-197.
    60.朱燕萍,徐连来,李长福.纳米颗粒团聚问题的研究进展.天津医科大学学报. 2005, 11(02):338-341.
    61.陈瑷,周玫.自由基医学.北京:人民军医出版社, 1991:231-256.
    62. Floyd RA. Role of oxygen free radicals in carcinogenesis and brain ischemia. Faseb J. 1990, 4(9):2587-2597.
    63. Kim KB, Lee BM. Oxidative stress to DNA, protein, and antioxidant enzymes (superoxide dismutase and catalase) in rats treated with benzo(a)pyrene. Cancer Lett. 1997, 113(1-2):205-212.
    64. Sato M, Kitahori Y, Nakagawa Y, Konishi N, Cho M, Hiasa Y. Formation of 8-hydroxydeoxyguanosine in rat kidney DNA after administration of N-ethyl-N-hydroxyethylnitrosamine. Cancer Lett. 1998, 124(1):111-118.
    65. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000, 408(6809):239-247.
    66. Malecki EA. Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull. 2001, 55(2):225-228.
    67. Hartley A, Stone JM, Heron C, Cooper JM, Schapira AH. Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson's disease. J Neurochem. 1994, 63(5):1987-1990.
    68.徐辉碧,杨祥良.纳米医药.北京:清华大学出版社, 2004.
    69. De Giorgi F, Lartigue L, Bauer MK, Schubert A, Grimm S, Hanson GT, Remington SJ, Youle RJ, Ichas F. The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. Faseb J. 2002, 16(6):607-609.
    70. Fernandes MAS, Santos MS, Vicente JAF, Moreno AJM, Velena A, Duburs G, Oliveira CR. Effects of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) on mitochondrial bioenergetics and oxidative stress: a comparative study. Mitochondrion. 2003, 3(1):47-59.
    71. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005, 19(7):975-983.
    72. Chan WH, Shiao NH, Lu PZ. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett. 2006, 167(3):191-200.
    73. Qi L, Xu Z, Chen M. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. Eur J Cancer. 2007, 43(1):184-193.
    74. Dick CA, Brown DM, Donaldson K, Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol. 2003, 15(1):39-52.
    75. Olmedo DG, Tasat DR, Guglielmotti MB, Cabrini RL. Effect of titanium dioxide on the oxidative metabolism of alveolar macrophages: an experimental study in rats. J Biomed Mater Res A. 2005, 73(2):142-149.
    76. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006, 311(5761):622-627.
    77. Perez-Maldonado IN, Herrera C, Batres LE, Gonzalez-Amaro R, Diaz-Barriga F, Yanez L. DDT-induced oxidative damage in human blood mononuclear cells. Environ Res. 2005, 98(2):177-184.
    78. Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect. 2004, 112(10):1058-1062.
    79. Derfus AM, Chan WCW, Bhatia SN. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004, 4(1):11-18.
    80. Knaapen AM, Borm PJ, Albrecht C, Schins RP. Inhaled particles and lung cancer. Part A: Mechanisms. Int J Cancer. 2004, 109(6):799-809.
    81. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003, 111(4):455-460.
    82. Hiura TS, Li N, Kaplan R, Horwitz M, Seagrave JC, Nel AE. The role of amitochondrial pathway in the induction of apoptosis by chemicals extracted from diesel exhaust particles. J Immunol. 2000, 165(5):2703-2711.
    83. Jin X, Nguyen D, Zhang WW, Kyritsis AP, Roth JA. Cell cycle arrest and inhibition of tumor cell proliferation by the p16INK4 gene mediated by an adenovirus vector. Cancer Res. 1995, 55(15):3250-3253.
    84. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond). 2003, 91(2):179-194.
    85. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India. 2004, 52:794-804.
    86.方允中,郑荣梁.自由基生物学的理论与应用.北京:科学出版社, 2002:467-468.
    87. Afaq F, Abidi P, Matin R, Rahman Q. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol. 1998, 18(5):307-312.
    88.冯晶,肖冰,陈敬超.纳米材料对生物体及环境的影响.材料科学与工程学报. 2006, 24(03):462-465.
    89.曹纯章,卜丽莎,高申,杨同书.过氧化氢对培养心肌细胞损伤作用的研究.生物化学与生物物理进展. 2000, 27(06):628-632.
    90. Kopjar N, Zeljezic D, Vrdoljak AL, Radic B, Ramic S, Milic M, Gamulin M, Pavlica V, Fucic A. Irinotecan toxicity to human blood cells in vitro: relationship between various biomarkers. Basic Clin Pharmacol Toxicol. 2007, 100(6):403-413.
    91.萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南.第三版ed.北京:科学出版社, 2002.
    92. Knasmuller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge.Toxicology. 2004, 198(1-3):315-328.
    93. Pouget JP, Douki T, Richard MJ, Cadet J. DNA damage induced in cells by gamma and UVA radiation as measured by HPLC/GC-MS and HPLC-EC and Comet assay. Chem Res Toxicol. 2000, 13(7):541-549.
    94. Fenech M. The in vitro micronucleus technique. Mutat Res. 2000, 455(1-2):81-95.
    95. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996, 313 ( Pt 1):17-29.
    96. Demple B, Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 1994, 63:915-948.
    97. TICE RR. The single cell gel/comet assay: A microgel electrophoretic technique for the detection of DNA damage and repair in individual cells. In: Phillips DH, Venitt S (eds). Environ Mutagen. Oxford, UK: Bios Scientific, 1995:315-339.
    98. Yanez L, Borja-Aburto VH, Rojas E, de la Fuente H, Gonzalez-Amaro R, Gomez H, Jongitud AA, Diaz-Barriga F. DDT induces DNA damage in blood cells. Studies in vitro and in women chronically exposed to this insecticide. Environ Res. 2004, 94(1):18-24.
    99. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett. 1997, 418(1-2):87-90.
    100. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol. 2006, 40(14):4346-4352.
    101. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J Biol Chem. 1992, 267(1):166-172.
    102. Wei H, Cai Q, Rahn R, Zhang X. Singlet oxygen involvement in ultraviolet (254 nm) radiation-induced formation of 8-hydroxy-deoxyguanosine in DNA. Free Radic Biol Med. 1997, 23(1):148-154.
    103. Burrows CJ, Muller JG. Oxidative Nucleobase Modifications Leading to Strand Scission. Chem Rev. 1998, 98(3):1109-1152.
    104. Kamiya H, Miura K, Ishikawa H, Inoue H, Nishimura S, Ohtsuka E. c-Ha-ras containing 8-hydroxyguanine at codon 12 induces point mutations at the modified and adjacent positions. Cancer Res. 1992, 52(12):3483-3485.
    105. Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991, 349(6308):431-434.
    106. Grollman AP, Moriya M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 1993, 9(7):246-249.
    107. Feig DI, Reid TM, Loeb LA. Reactive oxygen species in tumorigenesis. Cancer Res. 1994, 54(Suppl 7):1890s-1894s.
    108. Griffiths HR, Moller L, Bartosz G, Bast A, Bertoni-Freddari C, Collins A, Cooke M, Coolen S, Haenen G, Hoberg AM, Loft S, Lunec J, Olinski R, Parry J, Pompella A, Poulsen H, Verhagen H, Astley SB. Biomarkers. Mol Aspects Med. 2002, 23(1-3):101-208.
    109. Van Goethem F, Lison D, Kirsch-Volders M. Comparative evaluation of the in vitro micronucleus test and the alkaline single cell gel electrophoresis assay for the detection of DNA damaging agents: genotoxic effects of cobalt powder, tungsten carbide and cobalt-tungsten carbide. Mutat Res. 1997, 392(1-2):31-43.
    110. Gauthier JM, Dubeau H, Rassart E. Induction of micronuclei in vitro by organochlorine compounds in beluga whale skin fibroblasts. Mutat Res. 1999, 439(1):87-95.
    111. Tarin JJ. Potential effects of age-associated oxidative stress on mammalianoocytes/embryos. Mol Hum Reprod. 1996, 2(10):717-724.
    112. Hesterberg TW, Butterick CJ, Oshimura M, Brody AR, Barrett JC. Role of phagocytosis in Syrian hamster cell transformation and cytogenetic effects induced by asbestos and short and long glass fibers. Cancer Res. 1986, 46(11):5795-5802.
    113. Wamer WG, Yin JJ, Wei RR. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radic Biol Med. 1997, 23(6):851-858.
    114. Kawanishi S, Murata M. Mechanism of DNA damage induced by bromate differs from general types of oxidative stress. Toxicology. 2006, 221(2-3):172-178.
    1. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006, 114(2):165-172.
    2. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004, 77(2):347-357.
    3. Kim D, Sass-Kortsak A, Purdham JT, Dales RE, Brook JR. Associations between personal exposures and fixed-site ambient measurements of fine particulate matter, nitrogen dioxide, and carbon monoxide in Toronto, Canada. J Expo Sci Environ Epidemiol. 2006, 16(2):172-183.
    4. Renwick LC, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol. 2001, 172(2):119-127.
    5. Warheit DB, Webb TR, Reed KL. Pulmonary toxicity screening studies in male rats with TiO2 particulates substantially encapsulated with pyrogenically deposited, amorphous silica. Part Fibre Toxicol. 2006, 3:3.
    6.金一和,孙鹏,张颖花.纳米材料对人体的潜在性影响问题.自然杂志. 2001, 23(05):306-307.
    7. Lu W, Tan YZ, Hu KL, Jiang XG. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood-brain barrier. Int J Pharm. 2005, 295(1-2):247-260.
    8. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol. 2005, 39(5):1378-1383.
    9. Bailey MR, Ansoborlo E, Guilmette RA, Paquet F. Updating the Icrp HumanRespiratory Tract Model. Radiat Prot Dosimetry. 2008.
    10. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A. 2002, 65(20):1531-1543.
    11. Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder AC. Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst. 2000, (96):5-74; disc 75-86.
    12. Hunter DD, Dey RD. Identification and neuropeptide content of trigeminal neurons innervating the rat nasal epithelium. Neuroscience. 1998, 83(2):591-599.
    13. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004, 77(1):126-134.
    14. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004, 77(1):117-125.
    15. Oberdorster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994, 102(Suppl 5):173-179.
    16. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003, 111(4):455-460.
    17. Boland S, Baeza-Squiban A, Fournier T, Houcine O, Gendron MC, Chevrier M, Jouvenot G, Coste A, Aubier M, Marano F. Diesel exhaust particles are taken up by human airway epithelial cells in vitro and alter cytokine production. Am J Physiol. 1999, 276(4 Pt 1):L604-613.
    18. Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V. Calcium and ROS-mediated activation of transcription factors andTNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol. 2004, 286(2):L344-353.
    19. Zhang Q, Kusaka Y, Sato K, Nakakuki K, Kohyama N, Donaldson K. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J Toxicol Environ Health A. 1998, 53(6):423-438.
    20. Donaldson K, Stone V, Borm PJ, Jimenez LA, Gilmour PS, Schins RP, Knaapen AM, Rahman I, Faux SP, Brown DM, MacNee W. Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med. 2003, 34(11):1369-1382.
    21. Brown DM, Donaldson K, Stone V. Effects of PM10 in human peripheral blood monocytes and J774 macrophages. Respir Res. 2004, 5:29.
    22. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005, 113(7):823-839.
    23. Nohynek GJ, Lademann J, Ribaud C, Roberts MS. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol. 2007, 37(3):251-277.
    24. Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol. 1999, 12(5):247-256.
    25. Pflucker F, Wendel V, Hohenberg H, Gartner E, Will T, Pfeiffer S, Wepf R, Gers-Barlag H. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol. 2001, 14(Suppl 1):92-97.
    26. Schulz J, Hohenberg H, Pflucker F, Gartner E, Will T, Pfeiffer S, Wepf R, Wendel V, Gers-Barlag H, Wittern KP. Distribution of sunscreens on skin. Adv Drug DelivRev. 2002, 54(Suppl 1):S157-163.
    27. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett. 1997, 418(1-2):87-90.
    28. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005, 289(5):L698-708.
    29. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett. 2005, 155(3):377-384.
    30. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdorster G, Ziesenis A. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002, 65(20):1513-1530.
    31. Jani PU, McCarthy DE, Florence AT. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm. 1994, 105(2):157-168.
    32.何继亮.纳米材料的的毒理学研究进展.中华劳动卫生职业病杂志. 2006, 24(08):502-505.
    33. Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int. 2006, 32(8):967-976.
    34. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir. 2002, 18(17):6679-6686.
    35. Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect. 2006, 114(11):1697-1702.
    36. Zhu Y, Zhao Q, Li Y, Cai X, Li W. The interaction and toxicity of multi-walled carbon nanotubes with Stylonychia mytilus. J Nanosci Nanotechnol. 2006, 6(5):1357-1364.
    37. Smith CJ, Shaw BJ, Handy RD. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol. 2007, 82(2):94-109.
    38. Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S, Ke PC, Rao AM, Klaine SJ. In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol. 2007, 41(8):3025-3029.
    39. Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect. 2004, 112(10):1058-1062.
    40. Maricq MM, Chase RE, Xu N. A comparison of tailpipe, dilution tunnel, and wind tunnel data in measuring motor vehicle PM. J Air Waste Manag Assoc. 2001, 51(11):1529-1537.
    41. Dowling A, Clift R, Grobert N, Hutton D, Oliver R, O'Neill O, Pethica J, Pidgeon N, Porritt J, Ryan J, Seaton A, Tendler S, Welland M, Whatmore R. Nanoscience and nanotechnologies: opportunities and uncertainties. London: The Royal Society and Royal Academy of Engineering 2004 29 July 2004.
    42. Sioutas C, Delfino RJ, Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect. 2005, 113(8):947-955.
    43. Fu J, Ning Z, Su LP, Jiang DH, Zi XY. Study on the evolution characteristics of the particle distribution in the vehicle exhaust plume. Huan Jing Ke Xue. 2007, 28(5):952-957.
    44. Lin CC, Chen SJ, Huang KL, Hwang WI, Chang-Chien GP, Lin WY. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside aheavily trafficked road. Environ Sci Technol. 2005, 39(21):8113-8122.
    45. Ball JC, Straccia AM, Young WC, Aust AE. The formation of reactive oxygen species catalyzed by neutral, aqueous extracts of NIST ambient particulate matter and diesel engine particles. J Air Waste Manag Assoc. 2000, 50(11):1897-1903.
    46. Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol. 2002, 184(3):172-179.
    47. Borm PJ, Cakmak G, Jermann E, Weishaupt C, Kempers P, van Schooten FJ, Oberdorster G, Schins RP. Formation of PAH-DNA adducts after in vivo and vitro exposure of rats and lung cells to different commercial carbon blacks. Toxicol Appl Pharmacol. 2005, 205(2):157-167.
    48. Kawasaki S, Takizawa H, Takami K, Desaki M, Okazaki H, Kasama T, Kobayashi K, Yamamoto K, Nakahara K, Tanaka M, Sagai M, Ohtoshi T. Benzene-extracted components are important for the major activity of diesel exhaust particles: effect on interleukin-8 gene expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2001, 24(4):419-426.
    49. Fahy O, Tsicopoulos A, Hammad H, Pestel J, Tonnel AB, Wallaert B. Effects of diesel organic extracts on chemokine production by peripheral blood mononuclear cells. J Allergy Clin Immunol. 1999, 103(6):1115-1124.
    50. Derfus AM, Chan WCW, Bhatia SN. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004, 4(1):11-18.
    51. Knaapen AM, Borm PJ, Albrecht C, Schins RP. Inhaled particles and lung cancer. Part A: Mechanisms. Int J Cancer. 2004, 109(6):799-809.
    52. Stone V, Tuinman M, Vamvakopoulos JE, Shaw J, Brown D, Petterson S, Faux SP, Borm P, MacNee W, Michaelangeli F, Donaldson K. Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black. Eur Respir J. 2000, 15(2):297-303.
    53. Hiura TS, Li N, Kaplan R, Horwitz M, Seagrave JC, Nel AE. The role of a mitochondrial pathway in the induction of apoptosis by chemicals extracted from diesel exhaust particles. J Immunol. 2000, 165(5):2703-2711.
    54. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6(8):1794-1807.
    55. Silvano G, Claudio B, Valter B, Giorgio G, Claudio N. Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology. 2006, 17(2):391-397.
    56. Nimmagadda A, Thurston K, Nollert MU, McFetridge PS. Chemical modification of SWNT alters in vitro cell-SWNT interactions. J Biomed Mater Res A. 2006, 76(3):614-625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700