用户名: 密码: 验证码:
地下水时空变化及监测网多目标优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水水位和水质是地下水资源监测和评价的重要内容,同时也是引起干旱、半干旱地区土壤荒漠化和盐渍化等生态问题的关键因素。预测地下水水位变化趋势,研究地下水水位和水质的空间变异和分布规律,是地下水资源评价研究的热点之一;出于成本考虑,很多地区地下水监测网为”一井多用”,即每口监测井同时监测地下水水位和水质数据。研究”一井多用”型地下水监测网多目标优化建模方法,使调整后的监测网能提供满足地下水资源评价所需的地下水相关信息,对地下水资源监测与管理具有重要的意义;通过引入多目标进化算法对地下水监测网多目标优化模型进行求解,也为解决具有”一井多用”特点的地下水监测网优化问题提供了新的求解思路。
     疏勒河项目区位于我国西北的甘肃省河西走廊,是甘肃省规模最大的农业种植生产基地,也是典型的干旱半干旱地区之一。该地区降雨稀少,且时空分布不均,蒸发作用强烈,生态环境脆弱,总水资源量,尤其是地表水资源量有限,农业生产、人民生活与生态环境对地下水的依赖作用十分显著。本文在收集和整理项目区水文地质数据以及地下水监测数据的基础上,基于数值模拟、地统计学理论及多目标进化算法,从地下水数值模拟与预测、地下水空间变异与分布特征分析以及地下水监测网优化建模与求解三个方面展开了对项目区地下水资源监测与评价的研究,主要研究工作如下:
     (1)以项目区内的玉门-踏实盆地、安西-敦煌盆地和花海盆地为研究区域,在《河西走廊(疏勒河)项目中期计划调整报告》规划条件下,基于modflow模型对地下水水流进行数值模拟,计算并生成了三个区域2007-2030年地下水埋深预测数据以及等值图。对三个区域2007~2030年地下水位变化趋势进行了预测,在此基础上对地下水动态变化对环境的影响进行了分析。
     (2)基于ArcGIS地统计模块(Geostatistical analyst),对2001-2006年项目区地下水埋深均值以及2001和2006年地下水矿化度均值进行探索型空间数据分析和空间变异特征分析,采用普通克里金插值法计算生成了埋深和矿化度等值图。通过等值图与行政区划图的叠加计算,分析和预测了2001~2006年项目区地下水水位空间分布情况以及地下水矿化度时空变化趋势,并结合预测结果对项目区生态环境进行了评价。
     (3)以地统计学理论为基础,采用地下水埋深和地下水矿化度克里金估计方差(kriging variance)最小作为地下水监测网多目标优化的评价标准,构建了疏勒河项目区地下水监测网空间布局的多目标优化模型。
     (4)地下水监测网多目标优化模型的求解采用多目标粒子群算法。本文对多目标粒子群算法的粒子更新公式及其全局和局部极值选取方式进行了研究,提出了一种改进的多目标粒子群算法。通过对疏勒河项目区地下水监测网多目标优化的应用证明该方法的有效性。
At present,a quarter of global land area is classified as arid or semi-arid land. Nearly half of the country in the world are directly affected by the drought in some way.Groundwater has become an important source of water in the arid or semi-arid region,sometimes only water source. Scientific monitoring and evaluation of groundwater resources and understanding of its quantity,quality and distributionof time and space has significance for the reasonable protection of groundwater resource and maintain of arid or semi-arid region’s ecological environment in order to make groundwater resources serve for human and society sustainably.
     Groundwater level and quality is an important content of monitoring and evaluation of groundwater resources and the key factor to cause ecological problems such as soil desertification and salinization in the arid or semi-arid areas. Forecasting trends in groundwater level changes and research on spatial variability and distribution of groundwater level and quality is a hot one of groundwater reourses’evaluation.For cost reasons,many areas of groundwater monitoring network is multi-purpose,each of which monitors groundwater level and quality at the same time. It is significant to study multi-objective optimization modeling method of multi-purpose groundwater monitoring network in order to make monitoring network afford groundwater corresponding information required by groundwater resources evaluation.This paper used multi-objective evolutionary algorithm to solve multi-objective optimization model of groundwater monitoring network,which afforded new idea to solve the optimization problem of multi-purpose groundwater monitoring network.
     Shule River project area is located in northwest China's Gansu province,Hexi Corridor,which is the largest agricultural crop production base of Gansu province and typically arid and semi-arid areas. There are characteristics such as scarce rainfall,the temporal and spatial distribution inequality,strong evaporation,fragile ecological environment,the limited quantity of surface water. Agriculture,the people's living and ecological environment are significantly dependent on the groundwater. Based on the collection and processing of regional hydrological and geological data and the groundwater monitoring data,using the numerical simulation,geostatistics theory and multi-objective evolutionary algorithm,this paper studied the monitoring and evaluation of groundwater resources from the three aspects: groundwater numerical simulation and prediction,groundwater spatial variability and distribution and optimization modeling and sloving of groundwater monitoring network. The main work and research lies:
     (1) Using Yumen-Tashi basin,Anxi-Dunhuang basin and Huahai basin as study area,this paper used modflow model to simulate groundwater flow of three areas. Under the conditions of the planning,“Hexi Corridor (Shule) medium-term plan to adjust the project report”,model calculated and generated 2007-2030 groundwater level and corresponding contour maps of three regions. Forecasted groundwater level change trend of three areas from 2007 to 2030. Based on study results,analysed environment affect caused by groundwater dynamical changes.
     (2) Based on ArcGIS geostatistical analyst module,this paper did exploratory spatial data analysis and spatial variation features analysis of groundwater depth average value between 2001 and 2006 and groundwater salinity average value in 2001 as well as 2004. Based on ordinary kriging interpolation method,contour map of depth and salinity was produced. Based on the contour map overlayed by the zoning map,the spatial distribution of groundwater level and the space and time change tendency of groundwater salinity changes tendency are analyzed and forecasted.Combined with predicted results,this paper evaluated ecological environment of the project area.
     (3) Based on geostatistical theory,this paper used the kriging variance minimum of groundwater level and salinity as the evaluation criteria of groundwater monitoring network multi-objective optimization and constructed multi-objective optimization model of groundwater monitoring network of Shule river project area.
     (4) Multi-objective optimization model of groundwater monitoring network was solved by multi-objective particle swarm algorithm.This paper studied particle updating formula and selection method of global and local extreme value and proposed the improved multi-objective particle swarm optimization algorithm. The application of groundwater network multi-objective optimization of Shule river project area proved the effectiveness of the method.
引文
[1] Pinder G, Stathof S. Can the Sharp Interface Salt Fresh Water Model Capture Transient Behavior. Developments in Water Science, 1988, 35: 217-244
    [2] W G Gray, G F Pinder, C. A. Brebbia. Finite elements in water resources. in: Proceedings of the second International Conference on Finite Elements in Water Resources. London: July, 1978. 85-90
    [3] Bredehoeft, John D. The water budget myth revisited: Why hydrogeologists model. Ground Water, 2002, 40(4): 340-345
    [4] Appel, Charles A, Bredehoeft, JohnD. Status Of Ground-Water Modeling In The U. S. Geological Survey. Geological Survey Circular(United States), 1976(737)
    [5]林学任.地下水水量水质模拟及管理程序集.长春:吉林科学技术出版社, 1988. 10-50
    [6] Stone H L. Iterative solution of implicit approximations of muti-dimensional partial differential equations. J Soc. Ind. Appl. math, 1968(5): 530-558
    [7]翁帮华,刘国东.应用MODFLOW进行了气田开发地下水污染预测模型参数的测定.石油与天然气化工, 2003, 32(4): 257-262
    [8]崔亚莉,邵景力,谢振华等.应用MODFLOW进行了北京市的沉降模型研究.工程勘察, 2003(5): 19-22
    [9]邱汉学,焦超颖,刘贯群白沙河平原地下水系统数值模拟.青岛海洋大学学报, 1995, 25(2): 206-212
    [10] K. Deb. Multi-objective Optimization using Evolutionary Algorithms. NY: John
    [11] Wiley & Sons. Inc.
    [12] K Deb. Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problem. Evolutionary Computation, 1999, 7(3 ): 205-230
    [13] C A Coelo, D A Van Veldbuizen, G B Lamont. Evolutionary Algorithms for Solving
    [14] Multi-Objective Problems. Norwell, MA: Kluwer, 2002
    [15] Rosenberg R S. Simulation of genetic populations with biochemical properties: [Ph. D. dissertation]. University of Michigan, Ann Harbor, Michigan, 1967
    [16] Schafer J D. Multiple objective optimization with vector evaluate dgenetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms. Lawrence, Erlbaum, 1985: 93-100
    [17]谢涛,陈火旺,康立山.多目标优化的演化算法.计算机学报, 2003, 26(8): 997-1003
    [18] M P Fourtnan. Compaction of Symbolic Layout Using Genetic Algorithms. In: Proceedings of an International Conference on Genetic Algorithms and Their Applications, Pitsburgh, PA: 141-153, sponsored by Texas Instruments and U. S. Navy Center for A pplied Research in Artificial Intelligence
    [19] F. Kursawe. A Variant of Evolution Strategies for Vector Optimization. In: H. P. Sc hwefel and R. Manner( Eds. ). Parallel Problem Solving from Nature- Proceedings of the first workshop PPSN. Berlin: Springer, 1991. 193-197
    [20] J Andersson. A Survey of Multi-objective Optimization in Engineering Design. Technical Report No. LiTH-IKP-R-1097, Department of Mechanical Engineering, L inkoping University, Sweden, 2000
    [21] D E Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, Massachusets, 1989
    [22] Fonseca C M, Fleming PJ. An overview of evolutionary algorithms in multi-objecti ve optimization. Technical report, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U. K. 1994
    [23] Fonseca C M, Fleming P J. An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation, 1995, 3(1): 1-16
    [24] C A. Coello Coello. List of References on Evolutionary Multiobjective Optimization. [OL]/http: / /www. lania. mx/-ccoello/EMOO/EMOObib. hhn
    [25] E Zitzler, L Thiele. Multiobjective optimization using evolutionary algorithms---A comparative case study. In: Parallel Problem Solving from Nature V (PPSN-V), 1998: 292-301
    [26] Carlos A Coello Coelo. A Short Tutorial on Evolutionary Multiobjective Optimization. In: Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coelo Coello, David Come. First International Conference on EvolutionaryMulti-Criterion Optimization. Switzerland: Springer-Verlag, 2001. 21- 40
    [27] Carlos A Coello Coello. An Updated Survey of GA-Based Muiti-objective Optimization Techniques, Technical Report Lania-RD-98-08, Laboratorio National de Informatics Avanzada(L ANIA), Xalapa, Veracruz, Mdxico, December, 1998
    [28] Carlos A Coello Coello. A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques, Knowledge and Information Systems. An International Journal, 1999, 1(3): 269-308
    [29] Carlos A Coelo Coelo. A n Updated Survey of GA-Based Multiobjective Optimization Techniques. ACM Computing Surveys, 2000, 32(2): 109 -143
    [30] E Zitzler, M Laumanna, S. Bleuler. A Tutorial on Evolutionary Multiobjective Optimization. Lecture Notes in Economics and Mathematical Systems, 2004, 535: 3-37
    [31] Carlos A Coello Coelo. An Updated Survey of Evolutionary Multiobjective Optimization Techniques: State of the Art and Future Trends, In: 1999 Congress on Evolutionary Computation, Washington, D. C: IEEE Service Center, 1999. 3-13
    [32] Coello C A C. List of Reference on Evolutionary Multiobjective Optimization. /[OL] http: //www. lania mx/ccoello/EMOO/EMCObib. html
    [33] N Srinivas and K Deb. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 1995, 2: 221-248
    [34] C M Fonseca and P J Fleming. Multiobjective Optimization and Multiple constraint Handling with Evolutionary Algorithms-Part I: A Unified Formulation. IEEE Transactions on Systems, Man, &Cybernetics PartI A: Systems&Humans, 1998, 28: 26-37
    [35] C M Fonseca and J P Fleming. Multiobjective Genetic Algorithms Made Easy: Selection, Sharing and Mating Restriction. In: 1" IEE/IEEE International Conference on Genetic Algorithms in Engineering systems. Sheffield, England: 1995
    [36] J Horn, N Nafpliotis. Multiobjective Optimization Using the Niched Pareto Genetic Algorithm. Technical Report 93005, Illinois Genetic Algorithm Laboratory Dept. of General Engineering, Universith of Illinois at Urbana-Champaign, Urbana, USA, 1993
    [37] E Zitzler, M Laumanns, L Thiele. SPEAII: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. John. Wiley& Sons: 2001
    [38]陈植华,丁国平,胡成.用于水资源系统观测网空间布局优化设计的技术方法.地质科技情报, 2000, 19(4): 83-88
    [39] USGS. Water Fact Sheet, History of water resources activities of the USGS. USGS Open-File Report, 1995: 85-646
    [40]周仰效,李文鹏.区域地下水位监测网优化设计方法.水文地质工程地质, 2007, 34(1): 1-9
    [41] Jousma G, F J Roelofsen. World-wide inventory on groundwater monitoring. The Netherlands: International Groundwater Resources Assessment Centre, 2004
    [42]戴长雷,迟宝明.地下水监测研究进展.水土保持研究, 2005, 12(2): 86-88
    [43] Marios S, Olea R A. Groundwater network design for northwest Kansas using the theory of regionalized variables. GroundWater, 1982, 20(1): 95-99
    [44] Spruill T B, Candela L. Two approaches to design of monitoring networks. GroundWater, 1990, 28(3): 78-84
    [45] Zhou Yangxiao. Design and analysis of the groundwater levelmonitring network for Zhengzhou City. In: Proc. of Beijing Symposium. China, 1990. 27-31
    [46]戴长雷,迟宝明.地下水监测研究进展.水土保持研究, 2005, 12(2): 86-88
    [47]陈植华,丁国华,胡成.用于水资源系统观测网空间布局优化设计的技术方法.地质科技情报, 2000, 19(4): 83-87
    [48] Matheron G. Principles of geostatistics. Economic Geology, 1963, 58: 1246-1266
    [49] ASCE Task Committee on Geostatistical Techniques in Geohydrology of the GroundWater Hydrology Committee of the ASCE Hydraulics Division. Review of geostatistics in geohydrology, I: Basic concepts. Journal of Hydraulic Engineering, 1990, 116(5): 612-632
    [50] ASCE Task Committee on Geostatistical Techniques in Geohydrology of the Ground Water Hydrology Committee of the ASCE Hydraulics Division. Review of geostatistics in geohydrology II: Applications. Journal of Hydraulic Engineering,1990, 116(5): 633-658
    [51] Deutsch C V, Journel A G. GSLIB: Geostatistical Software Library and User’s Guide (2nd). New York: Oxford University Press, 1998
    [52] J P Hughes, D P Lettenmater, Data requirements for kriging: Estimation and network design, Water Resource. 1981, 17(6): 1641-1650
    [53]郭占荣,刘志明,朱延华.克立格法在地下水观测网优化设计中的应用.地球报, 1998, 19(4): 429-433
    [54]仵彦卿.地下水动态观测网优化设计研究.地质灾害与环境保护, 1994, 5(3): 56-64
    [55] Loaiciga H A, Charbeneau R J, Everett L G, et al. Review of ground-water quality monitoring network design. Hgdro Engrg ASCE, 1992, 118(1): 11-37
    [56] Fethi B J, Marino M A, Loaiciga H A, et al. Multivariate geostatistical design of ground-water monitoring network. Water Resources Planning and Management, 1994, 120(4): 502-522
    [57] Woldt W, Bogardi I. Ground water monitoring network design using multiple criteria decision making and geostatistics. Water Resources Bulletin, 1992, 28(1): 45-62
    [58] Grabow G L, Mote C R, Sanders W L, et al. Groundwater monitoring network design using minimum well density. Water Science and Technology, 1993, 28: 327-335
    [59] Cameron K, Hunter P. Optimization of LTM networks: Statistical approaches to spatial and temporal redundancy. In: proceedings from the American Institute of Chemical Engineers, Spring National Meeting, Remedial Process Optimization Topical Conference. Atlanta, Georgia: 2000
    [60] E Bonabeau, M Dorigo, G Theraulaz. Swarm Intelligence: From Natural to Artifical Systems. NY: Oxford Univ Press, 1999
    [61] J Kennedy, R C Eberhart, Y Shi. Swarm Intelligence. San Francisco: Morgan Kaufmann Publishers, 2001
    [62] R C Eberhart, J Kennedy. A new Optimizer Using Particle Swarm Theory. In: Proceedings of the Sixth International Symposium on Micro Machine and HumanScience, Nagoya, Japan: 1995. 39-43
    [63] J Kennedy, R C Eberhart. Particle Swarm Optimization. Proceedings of the 1995 IEEE international Conference on Neural Networks, Piscataway, N J, Perth, Australia: IEEE service center, 1995. 1942-1948
    [64] Eberhart R, ShiY. Tracking and optimizing dynamics ystem with swarms. In: Proc. of the Congress on Evolutionary Computation, 2001
    [65] Kennedy J, Eberhart R, Shi Y. Swarm intelligence. Morgan Kaufmann, San Francisco: 2001
    [66] Yoshida H, Kawata K, Fukuyama Y, Takayama S, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. Transactions of the Institute of Electrical Engineers of Japan, 11 9-B(12): 1462-1469, 1999
    [67] Parsopoulos K E, Vrahatis M N. Particle Swarm Optimization Method in Multiobjective Optimization. In: Proc of the S AC, 2002
    [68] X Hu, R C Eberhart. Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization. In: Proceedings of the IEEE World Congress on Computational Intellige nce, Hawaii, USA: 2002. 1666 -1670
    [69] X Hu, R C Eberhart, Y Shi. Particle Swarm with Extended Memory for Multiobjective Optimization. In: IEEE Swarm Intelligence Symposium 2003. Indianapolis, USA: 2003
    [70] J E Fieldsend, S Singh. A Multi-objective Algorithm Based upon Particle Swarm Optimisation---An Eficient Data Structure and Turbulence. In: Proceedings of the 2002 U. K. Workshop on Computational Intelligence. Birmingham, U K: 2002. 37-44
    [71] S Mostaghim, J R Teich. Strategies for Finding Local Guides in Multi-objective Particle Swarm Optimization(MOPSO). In: Proceedings of the IEEE Swarm Intelligence Symposium 2003(SIS2003), Indianapolis, Indiana, USA: 2003. 26-33
    [72] Xiaohui Hu, Russell C. Eberhart, Yuhui Shi. Particle Swarm with Extended Memory for Multiobjective Optimization. In: Swarm Intelligence Sysposium. USA: 2003. 193-197
    [73] G T Pulido, C A C Coello. Using clustering techniques to improve the performanceof a multi-objective particle swarm optimizer. In: Genetic and Evolutionary Computation. Berlin: Springer, 2004. 225-237
    [74] M A Villalobos-Arias, G T Pulido, C A C Coello. A Proposal to Use Stripes to Maintain Diversity in a Multi-objective Particle Swarm Optimizer. In: Swarm Intelligence Symposium. Mexico: 2005. 1-14
    [75] C A Coello Coello, M S Lechuga. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation(CEC2002), Honolulu, Hawaii, USA: 2002
    [76] Issaks E H. sdvastava R M. An introduction to applied geostatistics. New York: Oxford Univ. Press, 1989. 21- 32
    [77] Webster R. Quantitative spatial analysis of soil in the field. Advanced in soil science, 1985
    [78]王仁铎,胡光道.线性地质统计学.北京:地质出版社, 1987. 1-60
    [79]候景儒,黄竞先.地质统计学及其在矿产储量计算中的应用.北京:地质出版社, 1982. 12-45
    [80]候景儒,黄竞先.地质统计学的理论和方法.北京:地质出版社, 1990. 11-36
    [81]侯景儒,郭光裕.矿床统计预测及地质统计学的理论和应用.北京:冶金工业出版社, 1993. 15-43
    [82] Vieira S R, J L Hatfield, D R Nielsen, J W Biggar. Geostatistical theory and application to variability of some agronomical properties. Hilgardia. 1983, 51: 1-75
    [83]陈亚新,史海滨.地质统计学在水资源系统的应用和发展.内蒙古水利, 1997(1): 12-16
    [84] Davis, John C. Statistics and Data Analysis in Geology. 3rdEdition. New York: John Wiley & Sons, 2002. 57-61
    [85] Goovaerts P, Webster R. Scale-dependent correlation between topsoil copper and cobalt concentrations in Scotland. Euro J Soil Sci, 1994, 45: 79-95
    [86] Parks Kevin P, Bentley Laurence R. Enhancing data worth of EM survey in site assessment by cokriging. Ground Water, 1996, 34(4): 597-604
    [87] Mohammed B Lahkim, Lusi A Garcia, John R Nuckols. spatial and temporal properties of environmental exposure assessments related to ground watercontamination. Environmental Modeling and Assessment, 1999, 4: 165-178
    [88] G Passarella, M Vurro, V D’Agostino et al. Cokriging Optimization of Monitoring Network Configuration Based on Fuzzy and Non-Fuzzy Variogram Evaluation. Environmental Monitoring and assessment, 2003, 82: 1-21
    [89] Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications: [PhD thesis], Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, November 1999
    [90] Horn Jefrey. Handbook of evolutionary computation. Chap. Multicriterion Decision Making, 1997(1): F1. 9: 1-Fl. 9: 1
    [91] Deb K. Evolutionary algorithms for multi-criterion optimization in engeering design. In: Proceeding of Evolutionary Algorithms in Engineering and Computer Science, 1999
    [92] Fonseca C M, Fleming P J. An overview of evolutionary algorithms in multi- objective optimization. Evolutionary Computation, 1995, 3(1): 1-16
    [93] K Deb, A. Pratap, S Agarwal, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans, Evol. Comput, 2002, 6(2): 182 -197
    [94] Eckart Zitzler, Lothar Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271
    [95] P. Husbands. Distributed Coevolutionary Genetic Algorithms for multi-Criteria and Multi-Constraint Optimisation, Lecture Notes in Computer Science, 1994, 1(865): 150 -165
    [96] Valenzuela-Rendon, Uresti-Charre. A non-generational genetic algorithm for multi-objective optimization. In: Proceedings of the Seventh International Conference on Genetic Algorithms. San Francisco, California, MorganK aufmann: 1997. 658-665
    [97] Wolpert D H, Macready W G. No free lunch theorems for optimization. IEEE Transactions in Evolutionary Computation, 1997, 1(1): 67-82
    [98] Carlos A Coelo Coello. Evolutionan multiobjective optimization: past, present and future. In: Workshops and Tutorials of the Seventh International Conference on Parallel problem Solving from Nature. Granada. Spain: September, 2002
    [99] Ripley B D. Spatial Statistics. New York: Wiley, 1981. 78-79
    [100] Matheron G. les variable regionalisees et leur estimation. Massion, Paris, 1965
    [101] M R Prakash, V S Singh. Network design for groundwater monitoring-a case study. Environmental Geology, 2000, 39(6): 628
    [102] C A C Coello, G T Pulido, M S Lechuga. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput, 2004, 3(3): 256-279
    [103] J E Fieldsend, S Singh, A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence. In: Proc. U. K. Workshop Comput. Intell., Birmingham, U. K: 2002. 37-44
    [104] S Mostaghim, J Teich. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proc. IEEE Swarm Intell. Symp. Indianapolis: 2003. 26-33
    [105] K E Parsopoulous, M N Vrahatis. Particle swarm optimization method in multimobjective problems. In: Proc. ACM SAC, Madrid, Spain: 2002. 603-607
    [106] Joshua D, Knowles, David W Corne. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Evolutionary Computation, 2000, 8(2): 149 -172
    [107] Wang Cheng, Jiang Qing, Li Li-jun. Novel Strategies for Better Spread and Convergence for Multi-objective Particle Swarm Optimization. Journal of Computational Information Systems, Binary Information Press, 2007: 2169 -2176
    [108] Qing Jiang, Mutao Huang, Cheng Wang. A Novel Method for Finding Good Local Guides in Multi-objective Particle Swarm Optimization. In: the Third International Conference on Natural Computation(ICNC). Wuhan: IEEE, 2007. 737-741
    [109]宫辉力,赵文吉,李小娟等.地下水地理信息系统----设计,开发与应用.北京:科学出版社, 2006
    [110]王家华,高海余,周叶.克里金地质绘图技术----计算机的模型和算法.北京:石油工业出版社, 1999. 74-75
    [111]苏里坦,宋郁东,张振羽.新疆渭干河流域地下含盐量的时空变异特征.地理学报, 2003, 58 (6): 854-860
    [112]杨玉玲,文启凯,田长彦等.土壤空间研究现状与展望.干旱区研究, 2001,18(2): 50-55
    [113]秦耀东.土壤空间变异的半方差问题.农业工程学报, 1998, 14(4): 42-47
    [114]孙永堂,朱燕丽.空间插值方法及其在地下水数值模拟中的运用.吉林水利, 2000(3): 1-4
    [115]胡克林,李保国,陈德立.区域浅层地下水埋深和水质的空间变异性特性.水科学进展, 2000, 11(4): 408-414
    [116]李保国,白由路,胡克林等.黄淮海平原浅层地下水中NO-3 -N含量的空间变异与分布特征.中国工程科学, 2001, 3(4): 42-46
    [117]张展羽,郭相平,詹红丽等.微咸水灌溉条件下土壤和地下水含盐量空间变异分析.灌溉排水, 2001, 20 (3): 6-9
    [118]苏里坦,宋郁东,张展羽.新疆渭干河流域地下水含盐量的时空变异特征.地理学报, 2003, 58 (6): 854-860
    [119]幕富强.最近25年来疏勒河流域气候变化于水文水资源的响应: [硕士学位论文].兰州:兰州大学, 2006
    [120]冯建英,李栋梁.甘肃省河西内陆河流量长期变化特征.气候与环境研究, 2001, 4
    [121] Anselin L, Getis. A spatial statistical analysis and geographic information systems. The Annals of Reglonal Science, 1922, 26: 19-33
    [122]刘湘南,黄方,王平等. GIS空间分析原理与方法.北京:科学出版社, 2005. 185-223
    [123]李保国,白由路,胡克林等.黄淮海平原浅层地下水中NO-3 -N含量的空间变异与分布特征.中国工程科学, 2001, 3(4): 42-46
    [124] [OL]/http: //www. tik. ee. ethz. ch/-zitzler/testdata. html
    [125] Wang Cheng, Jiang Qing, LI Lijun. An Integration of GIS and Virtual Reality for Visualization of Large Irrigated Area Spatial Information”International Conference on Space Information Technology, SPIE, 2007: 67955R

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700