用户名: 密码: 验证码:
工作面顶板涌水量预测的渗流与应力耦合方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中的渗流现象天然地存在于两种不同的介质中:孔隙介质和裂隙(缝)介质。流体渗流模拟的连续介质方法通常适用于多孔地质体,目前常用的地下水模拟方法均基于地下水是在连续的地质体中流动,这并不一定适用于裂隙岩体;由于裂隙分布及其特征与孔隙差异较大,若流体渗流主要受裂隙的控制,对于一定尺寸的裂隙岩体,多孔介质假设则较难刻划裂隙岩体的渗流特征。
     当煤层周围赋存有含水层时,巷道的开挖及煤层的开采会造成岩体应力重新分布,特别是煤层被采出之后,其上覆岩层与底板岩层的原始应力平衡状态会遭到破坏,形成垮落带、裂隙带(导水裂隙带)、弯曲整体移动带三个带,将导致岩体的渗透性能发生变化。从水文地质、工程地质、开采扰动、岩体力学等诸多方面入手,研究采动条件下裂隙网络的渗流场及其演变规律,研究顶板冒裂诱发工作面涌水规律及其主要影响因素,对于正确认识由于采动而引起的工作面的涌水机理,评价和预测工作面涌水及其工作面涌水量非常必要。本文分两大部分进行了渗流与应力耦合模型预测工作面顶板涌水量的理论和应用研究。
     第一部分重点就采动裂隙岩体渗透性及工作面顶板涌水量预测进行了理论分析和数学推导,推导和讨论了裂隙岩体渗透特征,研究了采动应力场,对工作面回采过程中覆岩的垮落过程进行了数值模拟,并对应力场与渗流场的相互关系进行耦合研究。对裂隙岩体中所存在的渗流场与应力场之间的相互影响称为耦合作用,其主要表现在以下两个方面:a、当裂隙岩体中有渗流发生时(即存在渗流场),地下水渗流在裂隙岩体中引起的渗流作用力(包括静水压力和动水压力)将改变岩体中原始存在的应力状态(即裂隙岩体赋存的应力场环境);b、裂隙岩体中应力状态的改变,又将影响岩体结构,进而改变裂隙岩体的渗透性能,表现为裂隙岩体中地下水渗流场的改变。
     第二部分针对榆阳煤矿2301工作面开采过程中遇到的顶水开采的具体问题,研究了煤层顶板含水层的富水特性及采动覆岩运动破坏规律,预测了采动工作面的涌水量,数值模拟计算和根据经验公式计算得出导水裂隙带高度65m,已经发育到真武洞砂岩含水层内,开采直接沟通该含水层:为防止基岩风化带潜水含水层导入工作面内,需留设的防水安全煤岩柱的高度是111.35m,而煤层顶板距基岩风化带含水层底板距离为163.09m,可以实现安全开采。并通过与实际涌水量进行对比,检验了计算方法的正确性,为矿井安全生产提供了依据。
     通过理论分析与模拟实验研究,根据采动对上覆岩层的破坏特征尤其是对渗透特征的改变,首次将裂隙带划分为网络裂隙区、方向裂隙区和离层裂隙区;首次提出了考虑多层含水层充水及含水层弹性释水的垮落法工作面涌水量计算公式,计算方法更精确、符合实际。
Seepage exists naturally in two different kinds of media: porous medium and fracture medium. Continuous medium method simulating liquid seepage is generally suitable to porous geological bodies, groundwater simulation method commonly used at present is based on continuous movement of groundwater in geological bodies and is not certainly suitable to fractured rocks. Since the distribution and characteristics of fractures are considerably different from those of pores, if liquid seepage is mainly controlled by fractures, assumption of porous medium has difficulty in characterizing seepage of fractured rocks.
     When an aquifer exist around a coal seam, excavation of roadways and extraction of coal seam may induce redistribution of rock stress, particularly after extraction of coal seam, the equilibrium status of original stress in rocks of overlying strata and floor is destroyed, forming three zones: collapsed zone, fractured zone and bending zone, inducing variation of rock permeability. From the aspects such as hydrogeology, engineering geology, mining disturbance and rock mechanics etc, to study the seepage field and the evolution regularities of fracture network, the regularities of inflow induced by collapse and fracturing of roof at working face and their main inflowing factors, is very necessary for correctly understanding inflow mechanism induced by mining disturbance at working face, evaluating and predicting inflow and inflow volume at working face. The paper consists of tow parts studying the theory and application of prediction of inflow volume in roof at working face by seepage-stress coupling model.
     The first part focuses on theorical analysis and mathematical derivation for prediction of permeability of disturbed fractured rocks and inflow volume in roof at working face, derived and discussed characteristics of permeability in fractured rocks, studied stress field under mining disturbance, conducted numerical simulation for collapse process of overlying rocks during stopping at working face, studied the relation between stress field and seepage field. The coupling effect formed due to multual impact of seepage field and stress field in fractured rocks was represented by two following aspects: a. when seepage occurred in fractured rocks(i.e. when seepage field existed), seepage action( including static pressure and dynamic pressure) induced by groundwater seepage in fractured rocks would change the original stress status in rocks(i.e. stress field environment in fractured rocks); b.the change of stress status in fractured rocks would impact the structure of rocks, so changing the performance of permeability in fractured rocks, which was represented by variation of groundwater seepage field in fractured rocks.
     The second part of the paper studied water abundance characters of roof aquifer of coal seam and regularities of movement and destruction of disturbed overlying rocks on the basis of the actual problem of roof water encountered during extraction at working face 2301 in Yuyang mine, predicted the inflow volume at disturbed working face. From calculation of numerical simulation and empirical equation, the height of water-conducting fracture zone was 65 m, and the zone had developed into Zhenwudong sandstone aquifer, and mining directly connected the aquifer. In order to prevent water from phreatic aquifer in weathered zone of bedrock from coming into working face, water prevention pillars of 111.35 m height were left, while the distance from the roof of coal seam to the floor of aquifer in weathered zone of bedrock was 163.09 m, therefore safe mining could be realized. Through comparison with actual inflow volume, the calculation method was proved correct, providing basis for safe production of mine.
     Through theorical analysis and study of simulation test, on the basis of destruction characteristics of overlying rocks and variation of permeability characteristics due to mining, we subdivided for first time the fracture zone into network fracture zone, directional fracture zone and separated layer fracture zone, firstly proposed formula for calculation of water inflow at collapsed working face in consideration of water filling of multiple aquifers and elastically desaturation of aquifer. The calculation method is more accurate and more corresponding to the actuality.
引文
[1]煤炭科学研究院北京开采研究所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [2]虎维岳,矿山水害防治理论与方法[M],煤炭工业出版社,2005.
    [3]仵彦卿,张倬元,岩体水力学导论[M],西南交通大学出版社,1995
    [4]切尔内绍夫(苏)著,水在裂隙网络中的运动[M],地质出版社,1987.
    [5]Snow D.T.,A parallel plates model of fractured permeable media,Ph D.Thesis.University of California,Berkcley,1966.
    [6]Snow D.T.,Rock fracture spacings and porosites,J.Soil Mech.Found.Div.,Proc.ASCE,1968.
    [7]Louis C.,"Groundwatre flow in rock masses and its influence on sability"Rock mechres,Report 10 imperial college UK,1969.
    [8]Louis C.,Rock Hydraulics in Rock Mechanics,edited by L.Muller,Verlay wien,New York,1974.
    [9]Warren T E,Root P J.The behaviour of naturally fractured reservoirs.Soc.Pet.Engg.j.,1963(3):234-255.
    [10]Long J.C.S.,Gilmour,P.,Witherspoon,P.A.,A Model for Steady Fliud in Random Three Dimensional Networks of Disc-shaped Fractures,Water Resources Res.Vol.21,No.8,
    [11]Oda M.,An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses,Water Resources Research,1986(13):1845-1856.
    [12]陶振宇,沈小莹,库区应力场的耦合分析[J],武汉水利电力学院学报,1988,21(1):8-13.
    [13]张有天.裂隙岩体渗流数学模型研究现状[R].北京:水利水电科学研究院结构材料所,1989.
    [14]常小林,岩体稳定渗流宇应力状态的耦合分析及其工程应用初探,第一届全 国计算岩土力学研讨会论文集,成都:西南交通大学出版社,1987:335-343.
    [15]陈宏胜,王鸿儒,熊文林,节理面渗流性质的探讨[J],武汉水利电力学院学报,1989(1):53-60.
    [16]段小宁,李继初,刘继山,应力场和渗流场相互作用下的裂隙岩体水流运动的数值模拟[J],大连理工大学学报,1992,32(6):712-717.
    [17]王媛,徐志英,速宝玉.裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J].水利学报,1998,(7):55-59.
    [18]王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报,1998,26(2):26-30.
    [19]田开铭,开展对低渗透介质的水文地质学研究[J],水文地质与工程地质,2000,27(2):27-28..
    [20]田开铭、万力,各向异性裂隙介质渗透性研究与评价[M],学苑出版社,1989.
    [21]田开铭,论裂隙岩石的水文地质模型[J],勘察科学技术,1984(4).
    [22]田开铭,渗透度张量,水文地质与工程地质论丛[M],地质出版社,1986.
    [23]王恩志 杨成田,裂隙网络地下水数值模型及非连通裂隙网络水流的研究[J],水文地质工程地质,1992,1:12-14.
    [24]毛昶熙.裂隙岩体渗流计算方法研究[J].岩土工程学报,1991,13(6):1-10.
    [25]任长吉 黄涛 裂隙岩体渗流场与应力场耦合数学模型的研究[J].武汉大学学报(工学版)2004,37(2):8-12.
    [26]黄涛 渗流场与应力场耦合环境下裂隙围岩型隧道涌水量预测的研究[D].成都:西南交通大学。
    [27]杨立中 黄涛 隧道含水围岩体非均质各向异性渗透特性的研究[J].铁道工程学报
    [28]王洪涛,裂隙网络渗流与离散元耦合分析充水岩质边坡的稳定性[J],水文地质与工程地质,1988(2)。
    [29]Erichsen,C.,Gekoppclte Spannungs-Sickerstromungsberechnungcn von Bauwerken in kluftigem fels under Berucksichtigung dcs nichtilinearcn Spannung-Sverschungsverhaltens von Trennflachcn,Verofllentlichungen dcs Institutes fur Grundbau,Bodcnmechanik,Felsmechanik und Verchswasscrbau der RWTH Aachen,1987.
    [30]Barton N,Bandis S and Bakhtar K.,1985 "Strength,deformation and coupling of rock joints" Int.J.Rock Mech.Min,Sci &Geomech.Abstr 3,121-140.
    [31]刘继山,机构面力学参数与水力参数耦合关系及其应用[J],水文地质与工程地质,1988(2)。
    [32]刘继山,单裂隙受正应力作用时的渗流公式[J],水文地质与工程地质,1987(2).
    [33]Walsh J B.effect os pore pressure and confining pressure on fracture permeability.Int.J.Rock mech.Min.Sci.Geomech.Abstr.,1981,18(5):429-435
    [34]Derek Elsworth,Mao Bai,Flow-deformation of dual-porosity media,Journal of Geotechnical Engineering,Vol.18,No.1,1992.
    [35]Elsworth,D.(1989)."Thermal permeability enhancement of blocky rocks:one dimensional flows" Int.J.Rock Mech..Min.Sci.Geomech.Abstr.,26(3/4),329-339.
    [36]伍法权,统计岩体力学原理[M],中国地质大学出版社,1993.
    [37]赵阳升,煤体—瓦斯耦合数学模型及数值解法[J],岩石力学与工程学报,1994(3):229-239.
    [38]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [39]王芝银,李云鹏,地下工程反分析法及程序[M],陕西科学技术出版社,1993。
    [40]Bai.M Elsworth D.Modelling of subsidence and stress-dependent hydraulic conductivity for intact and fractured porous media.Rock Mech Rock Engng,1994,27(4):209-234.
    [41]张金才,张玉卓,应力对裂隙岩体渗流影响的研究[J],岩土工程学报,1998,No.2.Vol.20.
    [42]张金才 刘天泉 张玉卓 裂隙岩体渗透特征的研究[J],煤炭学报1997,22(5):481-485.
    [43]张金才 张玉卓 应力对裂隙岩体渗流影响的研究[J],岩土工程学报,1998, 20(2):19-22.
    [44]张玉卓 张金才 裂隙岩体渗透与应力耦合的试验研究[J],岩土力学,18(4),59-62,1997.
    [45]薛禹群,朱学愚,地下水动力学[M],地质出版社,1979,7。
    [46]陈崇希,地下水动力学[M],中国地质大学出版社,1999.
    [47]J.贝尔,多孔介质液体动力学[M],李竞生,陈崇希译,北京:中国建筑工业出版社,1983。
    [48]罗焕炎,陈雨孙著,地下水运动的数值模拟[M].中国建筑工业出版社,北京,1988.
    [49]李俊亭主编地下水流数值模拟[M],地质出版社,1989.
    [50]姚磊华,非平稳随机地下水流模拟[J],煤炭学报,2000年增刊.
    [51]武强等,东欢坨矿顶板涌水条件与工作面水量动态预测[J],煤田地质与勘探,2000,28(6):32-35.
    [52]房佩贤等,专门水文地质学[M],地质出版社,1989
    [53]陈崇希,地下水流动问题数值方法[M],中国地质大学出版社,2002
    [54]张宏仁,有限差分法与有限单元法渗流问题中的对比,水文地质工程地质,1984(4).
    [55]薛禹群,谢春红,水文地质学的数值法[M],煤炭工业出版社,1980;
    [56]薛禹群,谢春红,地下水数值模拟[M],科学出版社,2007
    [57]孙衲正,地下水流的数学模型和数值方法[M],地质出版社.1981
    [58]虎维岳,地下水疏干井群优化设计的遗传算法[J],煤田地质与勘探,1999(1)。
    [59]虎维岳,地下水管理模型中的参数随机性问题[J],煤炭学报,2000(6)。
    [60]虎维岳,论机会约束地下水管理模型[J],工程勘察,2001(5).
    [61]虎维岳,修正单元法及其在矿井疏干井群优化设计中的应用[J],工程勘察,1999(2).
    [62]虎维岳、李竞生 地下水系统随机模拟与管理[M],地质出版社,2003.
    [63]虎维岳 李竞生 李玉林 地下水随机规划模型的Taylor展开解法[J],西安工程学院学报,1999(2).
    [64]田开铭 万力,各向异性裂隙介质渗透性的研究与评价[M],学苑出版社,1989
    [65]赵阳升,煤岩流体力学[M],煤炭工业出版社,1993.
    [66]罗惕乾等,流体力学[M],机械工业出版社,1998.
    [67]王恩志,韩小妹,黄远智,低渗岩石非线性渗流机理讨论[J],岩土力学,2003,24(增).
    [68]李世平,岩石渗透性试验研究与工程应用[R],国家自然科学基金研究报告,中国矿业大学,1992.
    [69]Blot M A,General theory of three-dimensional consolidation,j.appl.phys,1941,12.
    [70]钱鸣高 刘听成,矿山压力及其控制[M],煤炭工业出版社,1984。
    [71]肖树芳 杨淑碧,岩体力学[M],地质出版社,1987.
    [72]姜福兴、王同旭等,矿山压力与岩层控制[M],煤炭工业出版社,2004.
    [73]煤科院北京开采所,煤矿地表移动与覆岩破坏规律及应用[M],煤炭工业出版社,1981.12
    [74]邹友峰 胡友健 郭增长,采动损害与防护[M],中国矿业大学出版社,1995.
    [75]赵阳升主编,有限元法及其在采矿工程中的应用[M].煤炭工业出版社,北京,1993.
    [76]王泳嘉 邢纪波,离散单元法及其在岩土工程中的应用[M],东北工学院出版社,1991.
    [77]王泳嘉 邢纪波,离散单元法同拉格朗日法及其在岩土力学中的应用[J],岩土力学,1996,16(2),1-14.
    [78]麻凤海、范学理、王泳嘉,岩层移动动态过程的离散单元法分析[J],煤炭学报,1996,21(4):388-392.
    [79]唐春安等.岩石破裂过程数值试验[M].北京:科学出版社2003.5
    [80]唐春安,徐曾和,徐小荷.岩石破裂过程分析[J].辽宁工程技术大学学报,18(5):456-459
    [81]Tang.C.A..Numerical simulation of progressive rock failure and associated seis Micity[J].Int.J.Rock Mech.Min.Sci,1997,34(2):249-261
    [82]唐春安.脆性材料破坏过程分析的数值试验方法[J].力学与实践,1999,21 (2)::21-24
    [83]岑传鸿.顶板灾害防治[M].徐州:中国矿业大学出版社,1989
    [84]杨天鸿 唐春安等,岩石破裂过程的渗透特性[M],科学出版社,2004.
    [85]杨天鸿,赵兴东,开采引起围岩渗透性规律的数值模拟,岩石力学与工程学报,2003,22(s1)2386-2389.
    [86]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].徐州:中国矿业大学出版社,2000.9
    [87]黄庆享.浅埋煤层厚沙土层顶板关键块动态载荷分布规律[J].煤田地质与勘探,2003(06):0022-03
    [88]黄庆享.神府浅埋煤层的矿压特征及浅埋煤层定义[J].岩石力学与工程学报,2002(8):1174-1177
    [89]黄庆享,钱鸣高,石平五.浅埋煤层老顶周期来压的结构分析[J].煤炭报,1999,24(6):581-585
    [90]张金才 采动岩体破坏与渗流特征研究[D],北京,煤炭科学研究总院。
    [91]Hubbert,M.K.(1940):The theory of ground water motion.J.Geol.48,785-944.
    [92]Krumbein,W.C.,Monk,G.D.(1943):Permeability as a function of the size parameters of whole and jointed Barre granite.Int.T.Rock Mech.Min.Sci.Geomech,Abstr.16(3),225-234.
    [93]Freeze,R.A.,Cherry,J.A.(1979):Groundwater,Prentice-Hall,Englewood Cliffs,604.pp
    [94]Gangi,A.F.(1978):Variation of whole and fractured porous rock permeability with confining pressure.Int.J.Rock Mech.Min.Sci.Geomech.Abstr.(513),249-257.
    [95]M.Bai,and D.Elsworth,modeling of subsidence and stress-dependent hydraulic conductivity for intact and fractured porous media,Rock Mechanics and Rock Engineering,1994.
    [96]Kozeny,J.,Ber,S.(1972):Wiener Akad,Abt.2a,b6,271.
    [97]Whole J.B.and Brace W.F.Elasticity of rock:a reviewof some recent theoretical studies.Rock Mech.Min.Engng.Geol.4,1966.
    [98]Hobbs N.B.Factors affecting the prediction of settlement of structures on rock:with particular reference to the Chalk and Triass.In Settlement of structures,pp.579-610.Pentech Press,London(1975).
    [99]Lomize,G.M.,Flow in Fractured Rock(in Russian),Gosemergoizdat,Moscow,1951.
    [100]Carlsson,A.and Olsson,T,The Analysis of Fractures,Stress and Water Flow for Rock Enginerring Project,Comprehensive Rock Engineering,Vol.2,1993:415-437.
    [101]杨天鸿,唐春安,梁正召等,脆性岩石破裂过程损伤与渗流耦合数值模型研究[J],力学学报,2003,35(3)。
    [102]杨天鸿,唐春安,刘元红,承压水底板突水失稳过程的数值模型初探[J],地质力学学报,2003,9(3)。
    [103]杨天鸿,赵兴东,开采引起围岩渗透性演化规律的数值模拟[J],岩石力学与工程学报,2003,22(S1).
    [104]杨天鸿,张哲,基坑开挖引起围岩变形破坏机制的数值模拟[J],岩土工程技术,2002,11(5)。
    [105]张金才,张玉卓,刘天泉,岩体渗流与煤层底板突水[M],地质出版社,1997.
    [106]张玉卓,煤矿上覆岩层运动竖向不连续位移分析,见:跨世纪的矿业科学与高新技术,煤炭工业出版社,1996.
    [107]杨栋,赵阳升,裂隙底板采场流固耦合的数值模拟[J],煤炭学报,1998,23(1)。
    [108]康永华.采煤方法对导水裂缝带发育规律的影响[J].煤炭学报,1998,23(3):262-266.
    [109]张浩.厚松散含水层下特厚煤层轻放开采可行性分析[J].煤炭技术,2003,22(4):94-95.
    [110]康永华,孔凡铭.巨厚含水砂层下顶水开采试验[J].煤炭科学技术,1998,26(9):35-38.
    [111]许延春.工作面涌水量预测[J].煤田地质与勘探,1995,23(2):41-44.
    [112]张壮路,含水层下特厚煤层开采顶板透水性预测[J]西部探矿工程2007(2).
    [113]黄涛.裂隙岩体渗流-应力-温度耦合作用研究[J].岩石力学与工程学报,2002,(01)
    [114]王媛.多孔介质渗流与应力的耦合计算方法[J].工程勘察,1995,(02)
    [115]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,(04)
    [116]黄庆享,钱鸣高,石平五.浅埋煤层老顶周期来压的结构分析[J].煤炭报,1999,24(6):581-585
    [117]吕军,侯忠杰.影响浅埋煤层矿压显现的因素[M].矿山压力与顶板管理.2002(2):39-42
    [118]余学义,张恩强.开采损害学[M].北京:煤炭工业出版社,2004
    [119]涂敏,余忠林,巨厚松散强含水层下开采覆岩移动破坏分析[J],矿山压力与顶板管理,2004(2).
    [120]石平五,刘洋,张嘉凡.浅埋区小煤矿发展长壁开采的技术途径[J].煤矿开采,2005(02):0001-02
    [121]石平五,刘洋.规范小煤矿开采方法防止大面积顶板事故[J].陕西煤炭,2005(01):00094-02
    [122]刘洋,石平五.长壁留煤柱支撑法开采顶板结构分析及应用[J].采矿与安全工程学报学报,2007(06):0565-05
    [123]刘洋,石平五.长壁留煤柱支撑法开采存在问题[J].煤炭学报,2007(06):0565-05.
    [124]刘丹 李启彬 秦岭特长隧道涌水量的预测[J],煤田地质与勘探,2005,33(1):41-44.
    [125]李德忠 赖达金 工作面顶板砂岩裂隙水综合防治技术[J],煤炭科学技术,2004,32(3):30-32.
    [126]张壮路,常村煤矿N2-7陷落柱涌水水源分析[J],西安科技学院学报2004.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700