用户名: 密码: 验证码:
祁连山地区降水气候特征及其成因分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用祁连山区及其周围(90~104°E,32~42°N)1960~2004年55个气象站点白天08~20时、夜间20~08时和全天20~20时逐日降水资料,天气图、云图资料、典型暴雨(雪)天气个例、1951~2004年逐月74项大气环流特征量资料和典型干湿年NCEP/NCAR再分析格点资料,重点分析了祁连山区(94~104°E,36~39°N)降水不同区域时间变化特征;不同降水强度的时空分布特征及其与海拔高度的关系;暴雨(雪)时空分布气候特征及其形成机制:并采用WRF中尺度数值模式模拟地形、植被和积雪对祁连山区降水的影响。大气环流特征量与降水的关系:从高空环流形势,青藏高原低涡、青藏高压等天气系统,以及上升运动、水汽条件、风场和冷空气等干湿变化作对比诊断分析,探讨造成祁连山区降水时空分布、干湿变化和日变化的成因机制。主要结论如下:
     1、祁连山及周边地区季节平均降水贡献百分率分别是夏季60.1%、春季18.3%、秋季17.8%和冬季3.8%。祁连山不同区域年均降水量西部为71.4mm、东北部区189.4mm、东南部区369.6mm、东中部区377.6mm;祁连山中东南部区贡献率最大为52.9%、东中部区23.1%、西部最小为6.6%。西部和东中部区80年代降水最多,东南部区60年代降水最多;东北部区90年代呈偏多趋势,东南部区90年代呈偏少趋势,进入21世纪以来除东南部区较90年代减少外,其余均呈增多趋势,80年代后有5~7年的变化周期。不同区域季节降水量年代际变化:除夏季九十年代最多外,其余均二十一世纪初最多,秋季增多最明显,二十一世纪初较90年代增加10毫米以上。干湿变化中除春季湿年次数略多于干年外,其余季节均干年多于湿年,冬季变化最大。
     2、祁连山区不同区域的降水日数和强度分布,小雨和中雨日数决定了年降水量的大小,降雨日数有3年和5~7年的年际变化周期。昼夜变化中降水日数小雨白天多于夜间,但中雨以上夜间明显多于或略强于白天。得出了不同降雨强度最大雨量的海拔高度和不同季节最大降水总量出现的海拔高度。小雨日数与海拔高度较为密切,呈线性增长;中雨以上与坡向、地理位置有关,在4850米附近降雨日数最多为143天。降雨日数和总量在海拔高度4000米左右达最大峰值,而在2000米附近为次大峰值。
     3、祁连山暴雨夜间比白天多而强度大,主要集中在7~8月占87.7%,全天暴雨强度60年代最大,日数90年代最多占28.4%。祁连山东南部区暴雨出现最多,夜间年均日数为0.25天,全天年均为0.04天,东北部区次之,夜间年均为0.08天;暴雨强度西部最大为72.0毫米,东中部区最小为52.8毫米,2到3站局地性暴雨较多占79%。暴雨出现云系有两种:午后青藏高原对流云团发展加强北抬,高原对流云团与外来云团合并加强,概率分别为38.2%,61.8%。祁连山暴雨的水汽主要来自孟加拉湾和南海,移动路径有西、中、东三条路径,概率分别占11.1%、38.3%和50.6%,暴雨主要出现在东南部区湟水谷地和东北部区黑河流域。
     4、祁连山区总降雪量与中雪日数关系最密切,东北侧降雪日数最多。不同区域分布中西部雪日最少,东中部区强度最弱,其中小雪东中部区最多、中雪中南部较多较强、大到暴雪东北部区最多东南部区最强。日际分布特点是:降雪量夜间明显较多,小到中雪强度夜间较强。年变化中:西部持续增多,东中部区70年代最少,东北部区90年代最少,但西中北部均二十一世纪初最多,东南部区70年代最多,之后持续减少。降雪日数有3~4年、5~7年和12~14年的年际变化周期。暴雪出现的主要天气环流形势为北方横槽南压型和新疆冷温槽发展东移型,分别占38.1%和52.4%。暴雪均出现在山脉冬季风的迎风坡和峡谷地带。
     5、采用WRF中尺度模式改变祁连山东北部(36-38N,100-104E)范围内地形、植被和积雪来模拟其对祁连山区降水的影响,模拟结果表明:地形对祁连山区降水的影响范围大、强度强,水平尺度达400-500公里,强度为3-4mm以上;而积雪次之,仅对实验区内水平尺度100公里海拔3500米以上的山区局地有1mm的降雪改变量;植被的影响范围更小,无论增减仅使祁连山区海拔4000米以上水平尺度几十公里的局地雨量增加1mm。地形减半会使剖面附近垂直上升运动加强,实验区内下沉运动加强,湿度显著减小30-40%,降水减少;而改变植被和积雪仅使实验区和祁连山区近地面相对湿度有不足10%的变化。
     6、当夏季西太平洋副高位置偏北,面积增大时祁连山区大到暴雨日数增加,夏秋季降雨量增多。祁连山区降水偏多时,500hPa高空环流形势为西低东高型,低层700hPa青藏高原有一强辐合区,范围较大。祁连山区垂直上升运动和700hPa青藏高原低涡的日变化,造成该区降水夜多昼少。
     7、干湿变化成因:在湿年,200hPa青藏高压和700hPa青藏高原低涡范围大、强度强;印度季风和南海低空急流强而位置偏北;200hPa高空急流和中高纬度冷空气范围大、强度强、位置偏东,但是孟加拉湾低空西南风强度弱而位置偏南。
     8、祁连山区最大降水高度的出现除了受地面海拔高度的影响外,很可能与高低空两个最大相对湿度中心及相应较强的冷空气活动中心出现高度关系密切。
Daily precipitation observations of 08-20h in daytime, 20-08h in nighttime, 20-20h in whole day from 55 meteorological stations during 1960-2004, weather charts, cloud maps and typical rainstorm(snowstorm) weather cases over the Qilian Mountain and its ambient areas (90-104°E, 32-42°N), 74 monthly atmospheric circulation characteristic indexes during 1951-2004 as well as the NCEP reanalysis gridded data of typical drought and wet years are primarily analyzed to study various regions' temporal variation characteristics; the temporal and spatial distribution of the precipitation in different categories of the intensities, the frequency and intensity of the precipitation and their relationships to elevation; rainstorm (snowstorm) temporal and spatial distribution weather-climatic characteristics as well as forming mechanism; using mesoscale weather forecast model WRF the influences of terrain,accumulated snow and vegetation coverage on precipitation are simulated. The relations between atmospheric circulation characteristic indexes and precipitation, the drought and wet changes of high circulation field , weather systems such as Qing hai-Tibetan Plateau low vortex at 700hPa and Qing hai-Tibetan ridge at 200hPa, and vertical movement, atmospheric vapor,wind field and cold air are comparatively diagnosed and analyzed, so that the causes of precipitation's emporal and spatial distribution, drought and wet changes, daily changes over the Qilian Mountain are found out. The main conclusions are following:
     1、Different mean seasonal precipitation contribution percentages are 60.1% in summer, 18.3% in spring, 17.8% in autumn and 3.8% in winter; different regions' mean annual precipitation are 71.4mm in west, 189.4mm in northern east, 369.6mm in southern east, 377.6mm in middle east; the most average precipitation contribution percent is 52.9% in southern east, next is 23.1% in middle east, the least is 6.6% in west. For the west and middle-east the most decadal precipitation occurred in 1980s, but for southern east the most decadal precipitation occurred in 1960s, precipitation in northern east was upward in 1990s, while precipitation in southern east was downward in 1990s. Except precipitation in southern east was less than 1990s, all of other regions' precipitations are increasing since 21 century early, 5-7 year's change period is obvious since 1980s. As for inter-decadal variations of variousregions' seasonal precipitations except summer's maximum precipitation occurred1990s, all of other seasons' maximum precipitations occurred 2000s, autumn'sprecipitation had obviously increased most that at the beginning of 21 century it was10mm more than 1990s.In drought and wet change, all seasonal drought years aremore than wet years except spring, winter had changed most.
     2、In distribution of precipitation's frequency and intensity in different categories, thefrequency (days) of flurry and middling rains is an important factor to determine themagnitude of the annual precipitation, and a 5-7 year's inter-annual variation periodis found from the data analysis. The diurnal-nocturnal variation shows that diurnalflurry days are more than nocturnal days, but the nocturnal heavy rains are stronger.The elevation height levels of maximum total rainfall for different precipitation'sintensities and seasons are found out. The frequency of flurry days linearly increaseswith elevation heights. The relations between middling class rainfalls and the slope aswell as geographic locations are closer over the Qilian Mountain. The most day ofrainfall is 143 at 4850m of elevation. The first peak of total rain days and rainfall is at4000m of elevation or so, the next peak of total rain days and rainfall is at 2000m ofelevation or so.
     3、The nocturnal rainstorms are more and stronger than diurnal over the Qilian Mountain, rainstorms mainly focus between July and August which account for 87.7%, whole day's rainstorms were the strongest in 1960s and the most in 1990s which account for 28.4%.The southern east rainstorm was the most, its nocturnal mean annual day is 0.25, and daily mean annual day is 0.04, next is northern east rainstorm whose nocturnal mean annual day is 0.08. For rainstorm intensity, the strongest rainstorm happened in west that is 72.0mm, the most weakly rainstorm happened in middle east that is 52.8mm, local rainstorms of occurred between 2 and 3 stations are the most which account for 79%.There are two groups of rainstorm clouds that one is afternoon Qinghai-Tibetan plateau convective clouds develop and move northward, another is that plateau convective cloud and foreign cloud unite and develop, whose frequencies are 38.2% and 61.8%, respectively. The water vapors of rainstorms are mainly come from Bengal gulf and South China Sea. The moving tracks are west, middle and east whose frequencies are 11.1%、38.3% and 50.6%, respectively. Rainstorms over the Qilian Mountain mostly occurred in Huangshui valley of its southeast side as well as HeiHe valley of its northern east.
     4、The number of middling snowfall days is the closest to the total snowfall, the most snowfall days occurred in northern east. In various regions' distribution the fewest snowfall days occurred in west, the least intensity occurred in middle east, but the most flurry days occurred in middle east, middling snowfall is more and stronger in middle and south, heavy snow and snowstorm are the most in northern east, the strongest in southern east. Nocturnal snow days are more obviously, nocturnal flurry and middling snowfall are stronger than diurnal. In annual variation, the annual snowfall was increasing continuously in west, the least occurred in 1970s of middle east and in 1990s of northern east, but the most occurred at the beginning of 21 century of west, northern east and middle east, the peak occurred in 1970s of southern east, then was decreasing continuously. For snowfall days, 3-4 year, 5-7 year and 12-14 year's change periods are obvious in inter-annual variation. The primary weather calculation backgrounds of occurring snowstorm are two types: one is northern horizontal trough of pressing southward, another is Xinjiang cold trough of developing and moving eastward, account for 38.1% and 52.4%, respectively. All snowstorms occurred in the Mountain windward slopes of winter monsoon and gorge terrain.
     5、Using meso-scale weather forecast model (WRF), the influences of changing terrain, perpetual snow and vegetation in northwest of Qilian Mountain (36-38N, 100-104E) on precipitation are simulated. The results show that changing terrains have obvious influences on precipitation of Qilian Mountain, and the width area of coverage is 400-500 km, and influencing precipitation intensity is above 3-4mnm. The second important factor is perpetual snow, only affecting 1mm of local precipitation variation above 3500m mountain in experiment area whose scale is 100 km. That of vegetation is the least. Whether vegetation increases or decreases, it can increase 1mm precipitation above 4000m local Qilian Mountain whose scale is about several tens of kilometers. When the northeast of Qilian Mountain terrain is halved, vertical ascending motion become strong nearby section, and sinking motion in experiment area become strong. So the relative humidity decreases by 30-40%, and precipitation decreases. But changing perpetual snow and vegetation only result less than 10% change of surface relative humidity in experiment area and Qilian Mountain.
     6、When the west Pacific subtropical high moves to the north side and enlarges, the days of heavy rain and rainstorm, and the total rainfall of summer and autumn increase over the Qilian Mountain. When there is relatively more rainfall amount, circulation field at 500hPa is high in east and low in west, there is large and strong low vortex at 700hPa over Qing hai-Tibetan Plateau. The daily changes of vertical raising movement and Qing hai-Tibetan Plateau low vortex at 700hPa lead to the more precipitation in nighttime than daytime.
     7、Analysis on causes of drought and wet changes: in wet years, Qing hai-Tibetan Plateau low vortex at 700hPa and Qing hai-Tibetan high at 200hPa are relative large and stronger, the monsoons of India and South China sea are also strong and on north side, high air Jet stream at 200hPa and cold air of middle-high latitude are also large, stronger and on east side, but low south-westerly Jet over Bengal gulf is weak and on south side.
     8、Except for impacted by near surface elevation, the height of peak total rainfall is possibly determined by the heights of occurring two maximum relative humidity centers and their two cold air centers in high air.
引文
1.吴国雄,王军,刘新等.欧亚地形对不同季节大气环流影响的数值模拟研究.气象学报,2005,63(5):603-611.
    2.谌芸,李泽椿.青藏高原东北部区域性大到暴雨的诊断分析及数值模拟.气象学报,2005,63(3):289-300.
    3.丁贤荣.高山增水效应及其水资源意义.山地学报,2003,21(6):681-685.
    4.宜树华,刘洪利,李维亮等.中国西北地区云时空分布特征的初步分析.气象,2003,29(1):7-11.
    5.施雅风,黄茂桓,姚檀栋等.中国冰川与环境.北京:科学出版社,2000,9-53.
    6.刘潮海,施雅风,王宗太等.中国冰川资源及其分布特征.冰川冻土,2000,22(2);106-112.
    7.沈永平,刘时银,甄丽丽等.祁连山北坡流域冰川物质平衡波动及其对河西水资源的影响.冰川冻土,20011,23(3):244-250.
    8.张强,胡隐樵.绿洲地理特征及气候效应.地球科学进展,2002,17(4):477-486
    9.丁永建,叶柏生,刘时银.祁连山区流域径流影响因子分析.地理学报,1999,54(5):431-437.
    10.康兴成,程国栋,陈发虎等.祁连山中部公元904年以来树木年轮记录的旱涝变化.冰川冻土,2003,25(5):518-525.
    11.牛最荣,扈祥来,张正强等.甘肃省最大点雨量量级分布规律及其暴雨衰减指数分析.水文,2004,24(4):21-25.
    12.牛最荣,高前兆,扈祥来等.甘肃时段暴雨主要统计参数的水平分布规律研究.干旱区地理,2004,27(3):310-314.
    13.兰晓波,杨晓玲,李岩瑛.“8·11”民勤大到暴雨天气诊断分析.干旱气象,2007,25(增刊):42-46.
    14.武威地区行政公署统计处,《武威五十年》编辑委员会.武威五十年.1999,5:10-11,35-36,220-221,283-284.
    15.李岩瑛,罗晓玲,马兴祥.气候变化和人文活动对河西走廊东部生态环境的影响及对策.干旱区资源与环境,2003,17(5):44-48.
    16.蓝永超,康尔泗,张济世等.祁连山区近50a来的气温序列及变化趋势,中国沙漠,2001,21(增刊):53-57.
    17.王兆馨.中国地下水资源开发利用.呼和浩特:内蒙出版社,1995.139-156.
    18.范锡朋.河西走廊地下水与河水的相互转化及水资源合理利用问题.水文地质及工程地质,1981,(4):1-6.
    19.李宝兴.石羊河地下水盆地的水资源构成及其合理利用问题.中国沙漠,1983,3(4):1-10.
    20.汤奇成,曲耀光,周聿超.中国干旱区水文水资源研究.北京:科学出版社,1992,139-156.
    21.张济世,康尔泗,蓝永超等.河西内陆河地表水与地下水转化及水资源利用率研究.冰川冻土,2001,23(4):375-382.
    22.汤懋苍.祁连山区天气的日变化.地理学报,1963,29(3):197-206.
    23.汤懋苍,许曼春.祁连山区的气候变化.高原气象,1984,3(4),21-33.
    24.汤懋苍.祁连山区降水的地理分布特征.地理学报,1985,40(4),323-332.
    25.李栋梁,陈丽萍.河西走廊黑河流域流量的气候特征及其预报.应用气象学报,1991,2(3),319-324.
    26.赖祖铭.祁连山东段山区温度变化与径流的关系初探[A].中国科学院兰州冰川冻土研究所集刊(7).1992,84-89.
    27.施雅风,张祥松.气候变化对西北干旱区地表水资源的影响和未来趋势.中国科学(B辑),1995,25(9):968-977.
    28.李福兴,姚建华.河西走廊经济发展与环境整治的综合研究.北京:中国环境科学出版社,1998,17-23.
    29.丁永建,叶伯生,周文娟.黑河流域过去40a来降水时空分布特征.冰川冻土,1999,21(1),42-48.
    30.胡天清.黑河春末初夏径流量与气象要素的关系.高原气象,1988,7(4):374-576.
    31.高前兆,李福兴.黑河汇流区水资源合理开发利用.兰州:甘肃科学技术出版社,1990.3-77.
    32.丁永建,叶柏生,周文娟.过去40年黑河汇流区降水时空分布特征.冰川冻土,1999,(21)1:12-48.
    33.蓝永超,康尔泗,金会军等.黑河干流出山地表径流变化特征与趋势预测.冰川冻土,1999,21(1):154-160.
    34.李栋梁,冯建英,陈雷等.黑河流量和祁连山气候的年代际变化.高原气象,2003,22(2);104-110.
    35.蓝永超,丁永建,康尔泗.近50年来黑河山区汇流区温度及降水变化趋势.高原气象,2004,23(5):723-727.
    36.张杰,李栋梁.祁连山及黑河流域雨量的分布特征分析.高原气象,2004,23(1):81-88.
    37.康兴成,程国栋,康尔泗等.利用树木年轮资料重建黑河近千年来出山口流量.中国科学(D辑),2002,32(18):675-685.
    38.史正涛,张世强,周尚哲等.祁连山第四纪冰碛物的ESR测年研究.冰川冻土,2000,22(4):353-357.
    39.赵井东,周尚哲,史正涛等.祁连山东段冷龙岭南麓白水河冰碛物ESR测年研究.兰州大学学报(自然科学版),2001,37(4):110-117.
    40.张强.中国西北云水资源开发利用研究.气象出版社,2007年11月.
    41.张强,张杰,孙国武等.祁连山区空中水汽分布特征研究.气象学报,2007,65(4):633-643.
    42.马鹤年.云系的叠置和区域性暴雨.见:北方天气文集编写组.北京方天气文集(1).北京:北京大学出版社,1981,115pp.
    43.白肇烨,徐国昌.中国西北天气.北京:气象出版,1991,442pp.
    44.《西北暴雨》编写组.西北暴雨.北京:气象出版,1991,164pp.
    45.朱乾根,施能,吴朝晖等.近百年来北半球冬季大气活动中心的长期变化及其与中国气候变化的关系.气象学报,1997,55(6):750-757.
    46.Zhu Yimin,Yang Xiuqun.Joint Propagating Patterns of SST and SLP Anomalies in the North Pacific on Bidecadal and Pentadecadal Timescales.Advances in atmospheric sciences,2003,20(5):694-710.
    47.章国材.美国WRF模式的进展和应用前景[J].气象,2004,30(12):27-31.
    48.李毅,潘晓滨.新一代天气研究预报模式WRF简介[J].教学与研究(南京),2003, 24(1):54-59.
    49.http://www.mmm.ucar.edu/wrf/users/docs/wrf-dyn.html
    50.Klemp,J.B.,W.C.Skamarock,and J.Dudhia。 Conservative split-explicit time integration methods for the compressible nonhydrostatic equations[J].Mon.Wea.Rev,2007,accepted
    51.Skamarock,W.C.,J.B.Klemp.A time-split nonhydrostatic atmospheric model for research and NWP applications.J.Comp.Phys.,special issue on environmental modeling.2007,Accepted
    52.Skamarock,W.C..Positive-Definite and Montonic Limiters for Unrestricted-Timestep Transport Schemes[J].Mon.Wea.Rev.,2006,134:2241-2250.
    53.Skamarock,W.C.,J.B.Klemp,J.Dudhia,D.O.Gill,D.M.Barker,W.Wang,J.G.Powers.A description of the Advanced Research WRF Version 2.NCAR Tech Notes-468+STR,2006
    54.Skamarock,W.C..Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra[J].Mon.Wea.,Rev.,2004,132:3019-3032
    55.Wicker,L.J.,W.C.Skamarock.Time splitting methods for elastic models using forward time schemes[J].Mon.Wea.Rev.,2002,130:2088-2097.
    56.http://www.mmm.ucar.edu/wrf/users/docs/wrf-phy.html
    57.Kessler,E..On the distribution and continuity of water substance in atmospheric circula-tion.Meteor.Monogr[J].,No.32,Amer.Meteor.Soc.,1969,84pp
    58.Lin,Y.-L.,R.D.Farley,H.D.Orville.Bulk parameterization of the snow field in a cloud model[J].Climate Appl.Meteor.,1983,22,1065-1092
    59.Tao,W.-K..An ice-water saturation adjustment[J].Mon.Wea.Rev.,1989,117:231-235
    60.Webb,E.K..Profile relationships:The log-linear range,and extension to strong stability[J].Quart.J.Roy.Meteor.Soc.,1970,96:67-90
    61.Chen,S.-H.,W.-Y.Sun.A one-dimensional time dependent cloud model[J].J.Meteor.Soc.Japan,2002,80:99-118
    62.Hong,S.-Y.,H.-M.H.Juang,Q.Zhao.Implementation of prognostic,cloud scheme for a regional spectral model[J].Mon.Wea.Rev.,1998,126:2621-2639.
    63.Zhao,Q.,F.H.Carr.A prognostic cloud scheme for operational NWP models.Mon.Wea.Rev.,1997,125:1931-1953
    64.Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,S.A.Clough.Radiative trans-fer for inhomogeneous atmosphere:RRTM,a validated correlated-k model for the long-wave[J].J.Geophys.Res.,1997,102(D14):16663-16682
    65.Fels,S.B.,M.D.Schwarzkopf.The simplified exchange approximiation:a new method for radiative transfer calculations[J].J.TMO S.Sci.,1975,32L 1475-1488
    66.Schwarzkopf,M.D.,S.B.Fels,The simplified exchange method revisited—An accurate,rapid method for computation of infrared cooling rates and fluxes[J].J.Geophys.Res.,1991,96(D5):9075-9096
    67.Dudia,J..Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].J.Atmos.Sci.,1989,46:3077-3107.
    68.Chou M.-D.,M.J.Suarez.An efficient thermal infrared radiation parameterization for use in general circulation models[J].NASA Tech.Memo.1994,104606,3,85pp
    69.Lacis,A.A.,J.E.Hansen.A parameterization for the absorption of solar radiation in the earth's atmosphere[J].J.Atmos.Sci.,1974,31,:118-133.
    70.Sasamori,T.,J.Londom,D.V.Hoyt.Radiation budget of the Southen Hemisphere.Meteor.Monogr.[J].1972,13,No.35:9-23.
    71.Paulson,C.A..The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer[J].J.Appl.Meteor.,1970,9:857-861.
    72.Dyer,A.J.,B.B.Hicks.Flux-gradient relationships in the constant flux layer[J].Quart.J.Roy.Meteor.Soc,1970,96:715-721.
    73.Janjic,Z.I..The step-mountain coordinate: physical package[J].Mon.Wea.Rev.,1990,118:1429-1443.
    74.Janjic,Z.I..The step-mountain eta coordinate model: further developments of the convection,viscous sub-layer and turbulence closure schemes[J].Mon.Wea.Rev.,1994,122:927-945.
    75.Janjic,Z.I..The surface layer in the NCEP Eta Model.Eleventh Conference on Numerical Weather Prediction,Norfolk,VA,19-23 August 1996.Amer.Meteor.Soc,Boston,MA,354-355.
    76.Beljaars,A.C.M..The parameterization of surface fluxes in large-scale models under free convection[J].Quart.J.Roy.Meteor.Soc,1994,121:255-270.
    77.Zilitinkevich,S.S..Non-local turbulent transport: pollution dispersion aspects of coherent structure of convective flows.In: Air Pollution Ⅲ-Volume I.Air Pollution Theory and Simulation (Eds.H.Power,N.Moussiopoulos and C.A.Brebbia).Computational Mechanics Publications,Southampton Boston,1995,53-60.
    78.Hong,S.-Y.,H.-L.Pan.Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J].Mon.Wea.Rev.,1996,124:2322-2339.
    79.Janjic,Z.I..Comments on "Development and Evaluation of a Convection Scheme for Use in Climate Models."[J].Journal of the Atmospheric Sciences,2000,Vol.57:3686.
    80.Janjic,Z.I..Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model.NCEP Office Note No.437,2002,61 pp
    81.Chen,F.,J.Dudia,2000.Coupling an advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system.Part Ⅰ: Model description and implementation.Mon.Wea.Rev.,in press.
    82.Kain,J.S.,J.M.Fritsch.A one-dimensional entraining/detraining plume model and its application in convective parameterization[J].J.Atmos.Sci.,1990,47:2784-2802.
    83.Kain,J.S.,J.M.Fritsch.Convective parameterization for mesoscale models:The Kain-Fritcsh scheme.The representation of cumulus convection in numerical models,K A.Emanuel and D.J.Raymond,Eds.,Amer.Meteor.Soc.,1993,246 pp.
    84.Betts,A.K..A new convective adjustment scheme.Part Ⅰ:Observational and theoretical basis[J].Quart.J.Roy.Meteor.Soc.,1986,112:677-691.
    85.Betts,A.K.,and M.J.Miller.A new convective adjustment scheme.Part Ⅱ:Single column tests using GATE wave,BOMEX,and arctic air-mass data sets[J].Quart.J.Roy.Meteor.Soc.,1986,112:693-709.
    86.Janjic,Z.I.,.Comments on “Development and Evaluation of a Convection Scheme for Use in Climate Models.”[J].Journal of the Atmospheric Sciences,2000,Vol.57,p.3686.
    87.Chung Yong-Seung,Yoon Ma-Byung,Kim Hak-Sung.On Climate Variations and Changes Observed in South Korea,Climatic Change,2004,9,66(1/2):151-161.
    88.Balling Jr Robert C.Cerveny Randall S.Compilation and Discussion of Trends in Severe Storms in the United States:Popular Perception v.Climate Reality.Natural Hazards,2003,6,29(2):103-112.
    89.Domonkos Peter.Recent Precipitation Trends in Hungary in the Context of Larger Scale Climatic Changes.Natural Hazards,2003,6,29(2):255-271.
    90.Nicholls Neville.The Changing Nature of Australian Droughts.Climatic Change,2004,4,63(3):323-336.
    91.中央气象局气象科学研究院主编,中国近五百年旱涝分布图集.北京:地图出版社,1981.
    92.王绍武,龚道溢,叶瑾琳等.1880年以来中国东部四季降水量序列及其变率.地理学报,2000,5,55(3):281-293.
    93.王绍武,蔡静宁,慕巧珍等.中国西部年降水量的气候变化.自然资源学报,2002,7,17(4):415-422.
    94.任国玉,郭军,徐铭志等.近50年中国地面气候变化基本特征.气象学报,2005,63(6):942-956.
    95.陈峪,高歌,任国玉等.中国十大流域近40多年降水量时空变化特征.自然资源学报,2005,20(5):637-643.
    96.陈少勇,董安祥.祁连山区低云量的气候变化与异常研究.高原气象,2006,6,25(3):545-548.
    97.刘永强,丁一汇.ENSO事件对我国季节降水和温度的影响.大气科学,1995,3,19(2):200-208.
    98.蓝永超,仵彦卿,康尔泗等.祁连山北麓出山径流对气候变化的响应.兰州大学学报(自然科学版),2001,8,37(4):125-132.
    99.秦爱民,钱维宏.近41年中国不同季节降水气候分区及趋势.高原气象,2006,6,25(3):495-502.
    100.严华生,万云霞,邓自旺等.用正交小波分析近百年来中国降水气候变化.大气科学,2004,1,28(1):151-157.
    101.林之光.地形降水气候学.科学出版社,1995年.
    102.朱守森,王强.祁连山区北坡降水的时空分布及近期变化.冰川冻土,1996,18(增刊):296-303.
    103.白虎志,李栋梁,陶健红等.西北地区东部年降水气候特征及变化趋势.地球科学进展,2005,9,20(增刊):38-44.
    104.林振耀,赵昕奕.青藏高原降水气温变化的空间特征.中国科学(D辑),1996,8,26(4):354-358.
    105.王颖,施能,顾骏强等.中国雨日的气候变化.大气科学,2006,30(1):162-170.
    106.奥银焕,吕世华,陈玉春.河西地区不同下垫面边界层特征分析.高原气象,2004,4,23(2):215-219.
    107.Liu Liping,Feng Jinming,Chu Rongzhong,et al.The diurnal variation of precipitation in monsoon season in the Tibetan Plateau[J],Advance in Atmospheric Sciences(in Chinese).2002,3,19(2):365-378.
    108.白肇烨,徐国昌等,中国西北天气,气象出版社,1988.
    109.张强,俞亚勋,张杰.祁连山及内陆河流域绿洲的水循环特征.大气科学,2007,31.
    110.张存杰,郭铌.祁连山区近40年气候变化特征.气象,2002,28(12):33-39.
    111.常学向,赵爱芬,王金叶等.祁连山林区大气降水特征与森林对降水的截留作用.高原气象,2002,6,21(3):274-280.
    112.高守亭,赵思雄,周晓平等.次天气尺度及中尺度暴暴雨研究进展.大气科学,2003.7,27(4):618-627.
    113.李林,王振宇,汪青春等.河湟谷地暴雨频率的研究.气象,2005,31(8):37-41
    114.Robert C.Bailing Jr Cerveny.Randall S.Cerveny.Compilation and Discussion of Trends in severe storms in the United States:Popular Perception v.Climate Reality.Natural Hazards.2003,6,29(2),103-112.
    115.Stanley A.Changnon,David Changnon.Long-Term Fluctuations in Thunderstorm Activity in the United States.Climatic Change,2002,9,50(4),489-503.
    116.吴正华,储锁龙,李海盛.北京相当暴雨日数的气候特征.大气科学,2000,1,24(1):58-66.
    117.江吉喜,范梅珠.夏季青藏高原上的对流云和中尺度对流系统.大气科学,2002,3,26(2):263-270.
    118.俞亚勋,王劲松,李青燕.西北地区空中水汽时空分布及变化趋势分析,冰川冻土,2003,25(2):149-156.
    119.任宏利,张培群,李维京等.中国西北东部地区春季降水及其水汽输送特征.气象学报,2004,62(3):365-374.
    120.林振耀,吴祥定.青藏高原水汽输送路径的探讨.地理研究,1990,9,9(3):33-40.
    121.何光碧.高原东侧陡峭地形对一次盆地中尺度涡旋及暴雨的数值试验.高原气象,2006,6,25(3):430-441.
    122.毕宝贵,刘月巍,李泽椿.秦岭大巴山地形对陕南强降水的影响研究.高原气象,2006,6,25(3):487-494.
    123.张虎,温娅丽,马力等,祁连山北坡中部气候特征及垂直气候带的划分.山地学报,2001,12,19(6):497-502.
    124.陈桂琛,彭敏,黄荣福等,祁连山地区植被特征及其分布规律.植物学报,1994,36(1):63-72.
    125.胡发成,于天明,段军红等,祁连山东部北坡植被垂直分布特征及保护措施.草 业科学,2007,24(1):13-16.
    126.毛冬艳,乔林,陈涛等。2004年7月10日北京局地暴雨数值模拟分析,气象,2008年2月,34(2):25-32。
    127.王澄海,董安祥,王式功等.高原积雪与西北春季降水的相关特征.冰川冻土,2000,12,22(4):340-346.
    128.柯长青,李培基,王采平.青藏高原积雪变化趋势及其与气温和降水的关系.冰川冻土,1997,19(4):289-294.
    129.李英年,赵新全,赵亮.祁连山海北高寒湿地气候变化及植被演替分析.冰川冻土,2003,6,25(3):243-249.
    130.蓝永超,康尔泗.河西内陆干旱区主要河流出山径流特征及变化趋势分析.冰川冻土,2000,22(2):147-152.
    131.丁永建,叶柏生,刘时银.祁连山中部地区40a来气候变化及其对径流的影响.冰川冻土,2000,22(3):193-199.
    132.王建,李文君.中国西部大尺度流域建立分带式融雪径流模拟模型.冰川冻土,1999,21(3):264-268.
    133.王建,沈永平,鲁安新等.气候变化对中国西北地区山区融雪径流的影响.冰川冻土,2001,3,23(1):28-33.
    134.沈永平,刘时银,甄丽丽等.祁连山北坡流域冰川物质平衡波动及其对河西水资源的影响.冰川冻土,2001,9,23(3):244-250.
    135.施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步探讨.冰川冻土,2002,7,24(3):219-226.
    136.王建,李硕.气候变化对中国内陆干旱区山区融雪径流的影响.中国科学(D),2005,35(7):664-670.
    137.刘华强,孙照渤,朱伟军.青藏高原积雪与亚洲季风环流年代际变化的关系.南京气象学院学报,2003,12,26(6):733-739.
    138.陈乾金,王丽华,高波等.青藏高原1985年冬季异常少雪和1986年异常多雪的环流及气候特征对比研究.气象学报,2000,4,58(2):202-213.
    139.韦志刚,黄荣辉,陈文等.青藏高原地面站积雪的空间分布和年代际变化特征.大气科学,2002,7,26(4):496-508.
    140.韦志刚,黄荣辉,陈文.青藏高原冬春积雪年际振荡成因分析.冰川冻土,2005,8,27(4):491-497.
    141.周陆生,李海红,汪青春.青藏高原东部牧区大一暴雪过程及雪灾分布的基本特征.高原气象,2000,11,19(4):450-458.
    142.马林,李锡福,张青梅等.青藏高原东部牧区冬季雪灾天气的形成及其预报.高原气象,2001,20(3):325-331.
    143.彭京备,陈烈庭,张庆云.青藏高原异常雪盖和ENSO的多尺度变化及其与中国夏季降水的关系.高原气象,2005,6,24(3):366-377.
    144.褚昭利,崔宜少,李建华.一次局地性暴雪的数值模拟分析.山东气象,2006年6月,26(105):17-19.
    145.陶健红,张新荣,张铁军等.WRF模式对一次河西暴雪的数值模拟分析.高原气象,2008年2月,27(1):68-75.
    146.张杰,韩涛,王建.祁连山区1997-2004年积雪面积和雪线高度变化分析.2005,27(5):649-654.
    147.叶笃正,高由禧等,青藏高原气象学,科学出版社,1979.
    148.洪梅,张韧,吴国雄等.副热带高压强度变化的模糊聚类诊断预测.应用气象学报,2006,8,17(4):459-466.
    149.周顺武,假拉.印度季风的年际变化与高原夏季旱涝.高原气象,2003,8,22(4):410-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700