用户名: 密码: 验证码:
藏狐的活动规律、家域特征及生境选择的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藏狐主要分布于青藏高原海拔3500 m以上的区域,多在地势开阔的高原草原和高山草甸生境中活动。藏狐主要捕食高原鼠兔和草原啮齿类,在控制草原鼠害、维持高原生态系统平衡方面具有十分重要的生态学作用。长期以来,藏狐的生物学信息比较匮乏,开展针对藏狐的基础生态学研究将有助于我们深入了解高原极端环境中藏狐采取的适应性生活史对策,为高原动物资源的管理和保护,高原生态环境的改善和治理奠定理论基础。
     2006年4月和9-10月、2007年3-5月和9-10月、2008年3-4月,我们在青海省都兰县沟里乡捕捉到5只藏狐(4雄,1雌)。通过无线电遥测技术追踪藏狐,记录其活动位点,并观察藏狐的行为。根据藏狐活动位点的分布及在该点的行为,分析藏狐昼间行为在时间和空间上的分布特征,并探讨藏狐活动指数与环境变量之间的关系;应用地理信息系统扩展软件计算藏狐的家域面积及藏狐的利用分布特征,并尝试寻找核心活动区;通过在藏狐利用分布可能性与环境变量属性间建立多元线性回归模型,探讨藏狐对环境变量的选择利用特征;根据藏狐对环境因子的喜好,开展生境评价,并计算适宜生境中藏狐的空间环境容纳量;除此之外,我们还研究了藏狐的家域功能分区及其生物学特性、藏狐的洞穴生境选择、藏狐的食性组成及其他同域分布的物种的生物学信息。
     1.藏狐昼间活动规律研究结果表明:藏狐主要在晨昏时段活动(χ~2检验,P<0.05),其昼间活动节律分配存在显著季节性变化(Wilcoxon Signed RanksTest,Z=-2.366,P=0.018)。藏狐在暖季的活动指数((?)=0.60,SD=0.14)高于冷季((?)=0.49,SD=0.15)。藏狐的活动高峰时段主要集中在早8:00-12:00时和傍晚16:00-20:00时,其他时段活动程度较低。藏狐行为受地形因子的影响,在空间上存在集中分布区。藏狐的活动指数与坡度因子属性呈负相关(B=-0.099),与高原鼠兔的密度呈正相关(B=0.022),鼠兔密度和坡度因子的交互作用对藏狐行为的影响更明显(B=0.073);此外,藏狐的活动指数与海拔因子属性呈负相关(B=-0.023)。
     2.幼龄藏狐昼间行为分配在持续时间(χ~2=124.160,df=5,P=0.000)和发生频率(χ~2=78.785,df=5,P=0.000)上均为非正态分布,以休息行为为最主要行为(持续时间百分比为55.1%,频率百分比为45.0%),其次为捕食行为(持续时间百分比为20.0%,频率百分比为19.0%)和嬉戏行为(持续时间百分比为16.7%,发生频率百分比为39.0%)。幼龄藏狐主要选择晨昏活动,早8:00-9:00时以捕食和嬉戏行为为主,9:00时以后休息行为逐渐增加并在13:00-14:00时达到最高,14:00-15:00时捕食和嬉戏行为再次增多,休息行为减少,直至15:00-16:00时,重新以休息为主。成体藏狐出现时,幼龄藏狐的行为表现出高度的活跃性(持续时间,χ~2=157.546,df=5,P=0.000;发生频率,χ~2=213.642,df=5,P=0.000),以嬉戏(持续时间百分比为50.0%,发生频率百分比为54.7%)和奔跑(持续时间百分比为16.2%,发生频率百分比为18.6%)行为为主。
     3.应用固定核空间法、调和平均值法和最小多边形法估算藏狐的家域面积,并应用独立区域法(AIM)划分核域。固定核空问法计算结果:暖季节藏狐家域面积从2.81 km~2到3.29 km~2不等((?)=2.95 km~2,SD=0.22),核域面积((?)=0.88km~2,SD=0.37)约占家域面积的17.3%-38.1%;冷季节家域面积从1.99 km~2到3.70 km~2不等((?)=3.36 km~2,SD=1.07),核域面积((?)=1.00 km~2,SD=0.49)占家域面积的15.7%-36.3%((?)=29.9%,SD=9.5%)。调和平均值法表明:暖季节藏狐的家域面积为0.87 km~2-2.89 km~2不等((?)=1.67 km~2,SD=1.08),核域面积((?)=0.33 km~2,SD=0.14)占家域面积的16.6%-34.5%((?)=22.7%,SD=10.2%);冷季节藏狐家域面积1.33 km~2-4.99 km~2不等((?)=3.09 km~2,SD=1.68),核域面积为0.29 km~2-1.11 km~2不等((?)=0.64 km~2,SD=0.40)。藏狐不同个体间家域及核域有不同程度的重叠:暖季节不同藏狐个体间家域重叠度指数((?)=0.24,SD=0.12)小于冷季节((?)=0.36,SD=0.19)(Mann-Whitney U,Z=-1.037,P=0.300)。在暖季节,两只雄性个体家域重叠程度较大(OI=0.38),而在寒冷季节,重叠主要发生在雌(F1)和雄(M3)个体间(OI=0.74)。核域的重叠程度显著小于家域的重叠(Mann-Whitney U,Z=-3.112,P=0.001)。核域的重叠主要表现在冷季节F1和M3个体间((OI=0.29)。
     4.应用无线电遥测技术和空间分析技术,将藏狐在家域范围内的空间利用分布和行为分布相结合,把藏狐的家域划分为四类功能区:核心活动区、核心非活动区、周边活动区和周边非活动区,分析家域的不同功能分区展示的生物学特性。藏狐核心活动区面积((?)=0.45km~2,SD=0.16)均小于核心非活动区((?)=0.51km~2,SD=0.16),周边活动区面积((?)=0.84km~2,SD=0.12)则大于周边非活动区((?)=0.63 km~2,SD=0.19)。藏狐家域的核心活动区(Mann-Whitney U test,Z=-6.364,P=-0.000)和周边活动区(Mann-Whitney U test,Z=-4.192,P=0.000)中高原鼠兔密度均显著高于对应的非活动区。同核心非活动区相比,藏狐的核心活动区多选择坡度较缓(Mann-Whitney U test,Z=-3.011,P=0.003),海拔较低(Mann-Whitney U test,Z=-2.570,P=0.000),中坡位或下坡位(χ~2=23.229,df=5,P=0.000)的区域;同周边非活动区相比,周边活动区多选择坡位较低(χ~2=11.257,df=5,P=0.047)的区域,对坡度(Mann-Whitney U test,Z=-1.778,P=0.075)和海拔(Mann-Whitney U test,Z=-0.881,P=0.378)无显著选择性。
     5.基于多元线性回归模型对藏狐的生境选择进行初步分析。模型筛选中,高原鼠兔密度及其平方项均为藏狐生境选择重要的影响因子,地形起伏度、坡度和海拔亦重要的回归变量。在温暖季节,最佳简约模型包含高原鼠兔密度及其平方项、地形起伏度、坡度、海拔、鼠兔密度与地形起伏度和坡度的交互作用项等(k=8),模型的AICc权重值为AICcw=0.998;在寒冷季节,最佳简约模型中包含高原鼠兔密度及其平方项、地形起伏度、坡度、海拔、鼠兔密度与坡度的交互作用项等(k=7,AICcw=0.374)。藏狐在冷季和暖季均对高原鼠兔密度因子呈现非线性选择,其活动范围主要集中于鼠兔密度中等的区域;藏狐对地形起伏度呈现正选择,而对地形起伏与鼠兔密度的交互项呈负选择;藏狐回避高海拔区域。藏狐对坡度的选择在不同季节呈现相反的选择趋势。藏狐活动点与河流因子的距离((?)=806.4m,SD=301.9)显著小于随机点((?)=917.9m,SD=467.6)(ANOVA,F=7.876,P=0.005),同时对道路呈现正选择性利用(ANOVA,F=10.556,P=0.001)。藏狐对人类活动无明显回避行为,距离较近,但没有呈现显著选择(ANOVA,F=2.830,P=0.093)。
     6.将藏狐洞穴划分为繁殖洞穴和休息洞穴,洞穴的生境选择利用存在以下特征:繁殖洞穴位点对坡向没有明显的选择性(Rayleigh Test,P>0.05),但休息洞穴主要位于阳坡((?)=43.0°,SD=6.9)和半阳坡((?)=98.2°,SD=18.0)区域(Rayleigh Test,P<0.05)。地形起伏较大的区域常被藏狐利用作为洞穴生境(Mann-Whitney U Test,P<0.05),并且藏狐洞穴位点的视野范围显著大于随机点(Mann-Whitney U Test,P<0.05)。藏狐的休息洞穴多位于陡坡、低鼠兔密度、与其他洞穴距离较近的区域。藏狐洞穴位点并未呈现出对人类活动的回避,海拔、光照指数、与水源和公路的距离等对藏狐的洞穴生境影响亦不明显(Mann-Whitney U Test,P>0.05)。
     7.应用粪便分析法初步研究了藏狐的食性组成。分析检测到的食物条目包括高原鼠兔、啮齿类、草原旱獭,牦牛、鸟类、两栖类、昆虫和植被等。藏狐对不同食物的条目具有选择性(9-10月份:χ~2=360.61,df=9,P=0.000,3-5月份:χ~2=358.17,df=10,P=0.000)。食物组成中,高原鼠兔出现比例最高((?)=84.8%,SD=10.6),其次为啮齿类((?)=17.3%,SD=13.4)。在鼠兔密度较低的3-5月份,藏狐食物组分中草原旱獭出现频率较高。牦牛、藏原羚、岩羊等仅在少数样本中发现。9-10月份高原鼠兔的密度((?)=4.15,95%置信区间为3.42-4.88)显著高于3-5月份((?)=2.67,95%置信区间2.31-3.03)(U=2376,Z=-3.961,P<0.001),但藏狐食性组成无季节性的显著变化(χ~2=9.14,df=11,P=0.609)。藏狐全年的食物生态位宽度为1.32,Shannon-Weaver多样性指数和均匀性指数分别为2.29和0.66。
     8.依据藏狐的“出现点”数据,基于海拔、坡度、坡位和地形起伏度等4个地形因子对藏狐的生境质量进行初步评价,并基于藏狐最小空间需求估算研究地区该物种的空间环境容纳量。通过比较藏狐对各因子的利用及其可获得性建立单个因子的评价准则,并依据各因子的分布特征进行综合生境评价。藏狐最适宜的海拔高度为4050-4300 m,坡度为5-20°,坡位为上坡位和下坡位,对地形起伏度因子没有明显的喜好。根据藏狐对不同生境因子的利用,及不同个体对生境利用的一致性,建立综合评价准则:(?)。研究地区适宜性区域面积约为17.4 km~2,占总研究地区面积的38.8%,其中最适宜生境仅0.4 km~2。藏狐的最小空间需求为2.09-3.55 km~2,研究地区藏狐的空间环境容纳量为7-12只。
     9.通过指数法调查高原鼠兔的空间密度分布特征。暖季节高原鼠兔种群密度显著高于冷季节(U=2376,Z=-3.961,P<0.001),并在空间分布上呈现季节性变动。高原鼠兔的密度分布与海拔因子呈非线性相关(y=-20.484 x~2+20.501x,r~2=0.324),随着海拔的升高,鼠兔密度呈下降趋势,在海拔高度达到4300 m以上鼠兔密度降到最低,并逐渐趋于稳定;高原鼠兔对坡度因子呈负选择(y=-0.784 x~2+0.737 x,r~2=0.218),对地形起伏度的选择利用主要选择较平坦和较起伏的区域(y=1.415 x~2-1.455 x,r~2=0.246)。
The Tibetan fox distributed in Qinghai-Tibet plateau with elevation higher than 3500 m, and prefer broad alpine steppe and meadow areas. Tibetan fox prey mainly on Plateau pika and alpine rodents, which is necessary to maintain grassland quality and keep balance of alpine ecosystem. For a long time, the biological information of Tibetan fox is scarce and little is known about this species. Therefore, research works on fundamental ecology about Tibetan fox is helpful to understand the living pattern adapted by this species in extreme environment, and provide theorietical basis for specis conservation and habitat enhancement.
     We captured 5 Tibetan foxes ( 4 M, 1 F ) in Gouli township, Dulan county, Qinghai Province in April 2006, September-October 2006, March-May 2007, September-October 2007 and March-April 2008. Radio telemetry technique was used to locate all collared foxes, and the behavior happened at each location was recorded. The temporal and spatial distribution characteristics of the diurnal behavior of Tibetan fox were analyzed, and the relationship between activity index and habitat variables was studied by regression; Based on locations, the home range and home range core of Tibetan fox were estimated through extensions of GIS software; Multi-linear regression model was set to explore the relationship between the probability of utilization distribution and environmental variable attributes; Habitat quality was evaluated according to animal preference (or avoidance) to certain habitat, and the spatial carrying capacity was calculated for Tibetan fox in suitable habitat; We also sepetated fox home range into different biological function areas, studied the denning habitat selection of Tibetan fox, analyzed the food habits of Tibetan fox and provide biological information of some species sympatric with Tibetan fox.
     1. Diurnal activity characteristics: Tibetan fox moves mainly at dawn and dusk (x~2 test, P < 0.05 ) , and there is significant seasonal difference in behavior rhythm ( Wilcoxon Signed Ranks Test, Z =-2.366, P = 0.018 ) . The fox activity index in warm season ((x|-) =0.60, SD = 0.14) is higher than that in cold season ((x|-)= 0.49, SD = 0.15) . In both warm and cold season, foxes were more active at 8:00-12:00 and 16:00-20:00 and less active at other periods. The spatial distributon of fox activities are influenced by topographic factors. There is minus correlation between fox activity index and slope attributes (B = -0.099), and the activity index is positively correlated with pika density (B - 0.022) . The interaction between pika density and slope affects fox activity index positively (B = 0.073). Foxes will be less active with the increasing of elevation (B = -0.023) .
     2. The diurnal behavior rhythm of Tibetan fox pups: The diurnal behavior rhythm of young pups was not normally distributed (χ~2 test, P < 0.05) , and mainly composed by resting (Time percentage is 55.1 %; Frequency percentage is 45.0 %) , hunting (Time percentage is 20.0 %; Frequency percentage is 19.0 %) and gamboling behavior (Time percentage is 16.7 %; Frequency percentage is 39.0 %) . The pups were active at dawn and dusk; they are active at 8:00-9:00 and 15:00-16:00, and less active 13:00-14:00. Young foxes were much active when adult fox appeared(χ~2 test, P < 0.05), and their behavior were mainly composed by gamboling (Time percentage is 50.0 %; Frequency percentage is 54.7 %) and running behavior (Time percentage is 16.2 %; Frequency percentage is 18.6 %) .
     3. Fixed kernel, Harmonic mean and Minimum convex polygon estimators were used to calculate the home range of Tibetan fox, and the home range core was determined by Area of independent method (AIM). Fixed kernel estimator: In warm season, the home range size of Tibetan fox was 2.81 km~2-3.29 km~2 ((?) = 2.95 km~2, SD = 0.22) , the home range core ( (?) = 0.88 km~2, SD = 0.37) take a percentage of 17.3 %-38.1 % of the total home range; in cold season, the home range size is 1.99 km(?)-3.70 km(?) ((?) = 3.36 km~2, SD = 1.07), and the home range core size ((?)= 1.00 km~2, SD = 0.49) is 15.7 %-36.3 % ((?) = 29.9%, SD = 9.5%) of the total home range. Harmonic mean estimator: In warm season, the home range size is 0.87 km~2-2.89 km~2 ((?) = 1.67 km~2, SD= 1.08), and the home range core ((?) = 0.33 km~2, SD = 0.14) take a percentage of 16.6 %-34.5 % ((?) =22.7 %, SD = 10.2 %); In cold season, the home range size of Tibetan fox is 1.33 km~2-4.99 km~2 ((?) = 3.09 km~2, SD = 1.68) , and the home range core size is 0.29 km~2-1.11 km~2 ((?)= 0.64 km~2, SD = 0.40)。There is overlap between home range and core area of different fox individuals. The home range overlap in warm season ((?) =0.24, SD = 0.12) is significantly lower than that in cold season ((?) = 0.36, SD = 0.19) (Mann-Whitney U, Z = -1.037, P = 0.300) . The overlap between home range cores is significantly lower than that between home ranges (Mann-Whitney U, Z = -3.112, P = 0.001) .
     4. Based on the behaviors and spatial distributions of resource use, we partitioned home ranges into 4 main functional regions: core active region, core inactive region, peripheral active region, and peripheral inactive region. We measured biological characteristics of each region. Core active regions ((?) - 0.45km2, SD = 0.16) were smaller than core inactive regions ((?) = 0.51 km2, SD = 0.16), and the peripheral active regions ((?) = 0.84km2, SD = 0.12) were larger than peripheral inactive regions ((?) = 0.63 km2, SD = 0.19). Pika (Ochotona curzoniae) densities in both the core active region (Mann-Whitney U test, Z=-9.310, P = 0.000) and peripheral active region (Mann-Whitney U test, Z=-4.762, P = 0.000) were significantly higher than those in counterpart inactive regions. Compared with core inactive regions, core active regions were more likely to be located in areas with gentle slopes (Mann-Whitney U test, Z =-3.011, P = 0.003) , lower elevations(Mann-Whitney U test, Z =-2.570, P = 0.000) and lower positions on slopes(χ~2 =23.229, df- 5, P=0.000) . Compared with peripheral inactive regions, lowerslope positions (χ~2 =11.257, df- 5, P= 0.047) were preferred by Tibetan foxes forperipheral active areas, whereas slope (Mann-Whitney U test, Z =-1.778, P = 0.075)and elevation (Mann-Whitney U test, Z =-0.881, P = 0.378) did not differ.
     5. Habitat selection of Tibetan fox was studied based on multi-linear regression model. Pika density, terrain ruggedness, slope and elevation are all important impacts on habitat selection by Tibetan fox. In warm season, the most parsimonious model contains pika density, the quadratic term of pika density, terrain ruggedness, slope, elevation, the interaction between pika density and terrain ruggedness, the interaction between pika density and slope (k = 8), the AICcw value is 0.998; In cold season, the most parsimonious model contains pika density, the quadratic term of pika density, terrain ruggedness, slope, elevation, the interaction between pika density and slope (k = 7, AICcw = 0.374) . There is no-linear relationship between pika density and utilization distribution, and Tibetan fox more prefer moderate pika density areas; Tibetan fox keep avoidance to higher elevations, use terrain ruggedness with no-linear selection and showed reverse selection on slope in different season. The distances of fox locations from river ((?) = 806.4 m, SD = 301.9) are significantly shorter than those of random points((?) = 917.9 m, SD = 467.6) (ANOVA, F= 7.876, P = 0.005). Comapred with random points, Tibetan fox shows positive selection to road (ANOVA, F = 10.556, P = 0.001), and did not avoid human activities (ANOVA, F = 2.830, P = 0.093) .
     6. Tibetan fox dens were classified into natal dens and resting burrows. Tibetan foxes did not use special slope aspects for natal dens (Rayleigh Test, P > 0.05) , but use sunny ((?) =43.0°,SD =6.9) and half-sunny ((?)=98.2°,SD=18.0) slope aspects for resting burrows (Rayleigh Test, P < 0.05) . Tibetan fox choose more rugged area for both natal dens and resting burrows (Mann-Whitney U Test, P < 0.05) . The visible viewshed gird number of natal den and resting burrow sites were significantly larger than those of random points (Mann-Whitney U Test, P < 0.05) . Resting burrows located at areas with steeper slopes, lower pika abundance, smaller distance to other dens. Locations of dens and burrows were not significantly affected by elevation, sun index, distances to river and road. Tibetan foxes did not avoid manmade features for their resting natal dens and resting burrows (Mann-Whitney U Test, P> 0.05) .
     7. The diet composition of Tibetan fox was analyzed by frequency of occurrence method based on scat-analysis in periods of September-October (high pika density) and March-May (low pika density) . The food items contain plateau pika, rodents, marmmot, yak, birds, reptile, insect and plant. Tibetan fox did not prey food item randomly ( September-October,χ~2 =360.61, df = 9, P = 0.000; March-April,χ~2 =358.17, df = 10, P = 0.000) . Black lipped pika ((?) =84.8%, SD=10.6) and rodents ((?)=17.3%, SD=13.4) served as the main food components of Tibetan fox. Marmot, Blue sheep, Tibetan gazelle were found in fox scats, and more frequently detected in March-May season. In September-October season, the pika density ((?)= 4.15, 95% confidence interval is 3.42 - 4.88) is significantly higher than that in March-May season ((?) = 2.67, 95% confidence interval is 2.31 -3.03) (U= 2376, Z= -3.961, P < 0.001), but the diet composition of Tibetan fox did not significantly changed (χ~2 = 9.14, df=11,P = 0.609) . The food niche breadth of Tibetan fox is 1.32, the Shannon-Weaver diversity index and evenness index are separately 2.29 and 0.66.
     8. Habitat quality evaluation: Based on "Presence data", we assessed the habitat quality of Tibetan fox in Gouli Township, Dulan County, Qinghai Province, China. We also estimated the spatial carrying capacity of Tibetan fox according to their minimum space requirements. A total of 4 topographical factors, elevation, slope, terrain ruggedness and slope position, were used to conduct habitat assessment for Tibetan fox. The suitability of habitat factors were determined by comparing the utilization by Tibetan fox and its availability based on 95% Bonferroni confidence interval. A comprehensive assessment criterion was set up for all topographic factors. For Tibetan fox, the elevations of 4050-4300m, the slopes of 5-20°, the upper and lower slope positions were suitable habitat. Tibetan fox use terrain ruggedness non-selectively. According to the utilization of Tibetan fox on different topographic factors and the consistence of habitat utilization by different fox individuals, we setthe comprehensive criterion as: (?). The area of suitable habitat is about 17.4 km~2, which take a percentage of 38.8% of research area. The area of most suitable habitat is only 0.4 km~2. The home range of Tibetan fox ranges from 2.53 km~2 to 4.99 km~2, and the overlap index (OI) of different individuals were 0.16-0.66. The minimum space requirements of Tibetan fox are 2.09-3.55 km~2, and the spatial carrying capacity of Tibetan fox in suitable habitat is 7-12.
     9. Index of pika abundance was used to investigate the spatial density distribution characteristics. The pika density in warm season is significantly higher than that in cold season (U = 2376, Z = -3.961, P < 0.001) , and the spatial distribution changed. The pika density distribution was correlated with elevation attributes (y = -20.484 x~2 + 20.501 x,r~2= 0.324), the pika density will decrease with the enhancement of elevation, when the elevation attributes reached 4300 m, the pika density will not decrease any more. The regression relationship between pika density and slope was: y = -0.784 x~2 + 0.737 x, r~2 = 0.218, and plateau pika prefer flat or most rugged areas (y= 1.415 x~2-1.455 x, r~2=0.246) .
引文
白生立.2005.都兰县天然草地资源调查报告.青海草业,14(3):51-55.
    蔡博峰,于嵘.2008.景观生态学中的尺度分析方法.生态学报,28(5):2279-2287.
    戴捷.2004.藏狐(Vulpes ferrilata)的系统发育研究.华东师范大学硕士学位论文.上海,1-12.
    冯祚建,蔡桂全,郑昌琳.1986.西藏哺乳类,北京:科学出版社.
    高耀亭.1987.中国动物志第八卷(兽纲).北京:科学出版社.
    龚明昊,胡锦矗.2003.四川西北高原藏狐的夏季微生境选择.兽类学报,23(3):266-269.
    胡锦矗,王酉之.1984.四川资源动物志第二卷.成都:四川科学技术出版社.
    蒋志刚.2004.动物行为原理与物种保护方法.北京:科学出版社.
    蒋志刚,徐爱春.2006.雪豹.动物学杂志,41(4):128.
    蒋志刚、夏武平,1987,高寒草甸生态系统牦牛、藏羊和高原鼠兔的生态龛(niche)研究.高原生物学集刊,6:115-146.
    金龙如,孙克萍,贺红士,周宇飞.2008.生境适宜度指数模型研究进展.生态学杂志,27(5),841-846.
    来德珍,孙宝琛,贺有龙,马玉寿,董全民.2006.果洛地区高原鼠兔繁殖特性种群数量和对天然草地的危害.青海畜牧兽医杂志,36(2):4-6.
    李玉春,本间和敬,大仲幸作,小金泽正昭,2006.日本日光地区森林中梅花鹿的夏季巢区面积和内部利用.动物学报,52(2):235-241.
    梁泽胜.2004.都兰县2003年冬季鼠害灭治效果显著.青海草业,13(4):56-57.
    梁泽胜,侯秀敏.2007.柴达木盆地荒漠草原生态建设规划与建设模式设计.草业与畜牧,145(12):31-34.
    刘汉武,周立,刘伟,周华坤.2008.退化高寒草甸上高原鼠兔的扩散研究.草业与畜牧,153(8):8-11.
    刘群秀,王正寰,王小明.2009.两种核域估算方法在野生藏狐(Vuples ferrilata)家域研究中的比较.兽类学报.29(1):112-119.
    刘群秀,Harris RB,王小明,王正寰.2007.青海省都兰县藏狐家域范围及重叠度.兽类学报.27(4):370-375.
    刘东升.2005.浅谈都兰县畜牧业的可持续发展.青海畜牧兽医杂志,35(1):23-24.
    卢纹岱.2006.SPSS for windows统计分析.北京:电子工业出版社.
    路纪琪,张知彬.2004.捕食风险及其对动物觅食行为的影响.生态学杂志.23(2):66-72.
    马德寿.2003.都兰县鼠虫害及毒草调查.青海草业,12(2):43-45.
    马明东,罗承德,张健,胡庭兴,刘跃建.2006.云杉天然林分生境条件数量分类研究.中国生态农业学报,14(2):159-163.
    梅朵.2008.都兰地区夏季云系及降水特征初步分析.青海气象,3:21-24.
    欧阳志云,刘建国,肖寒,谭迎春,张和民.2001.卧龙自然保护区大熊猫生境评价.生态学报.21(11):1869-874.
    欧阳志云,王如松,符贵南.1996.生态位适宜度模型及其在土地利用适宜性评价中的应用.生态学报.16(2):113-120.
    朴仁珠.1989.藏狐种群数量调查.野生动物,52:22-26.
    邱加闽,陈兴旺,任敏,罗成香,刘大伦,刘晓棠,何多龙.1995.青藏高原泡球蚴病流行病学研究.实用寄生虫病杂志,3(3):106-109.
    曲家鹏,杨敏,李文靖,李克欣,张堰铭,Smith AT.2008.高原鼠兔家群结构的季节变异.兽类学报,28(2):144-150.
    尚玉昌.2005,动物的模仿和玩耍学习行为.生物学通报, 40(11):14-15.
    尚玉昌.2001a.行为生态学.北京:北京大学出版社.
    尚玉昌.2001b,动物的捕食行为.生物学通报, 36(2):13-14.
    盛和林,大泰司纪之,陆厚基.1999.中国野生哺乳动物.北京:中国林业出版社.72-73.
    宋延龄,曾治高,张坚,王学杰,巩会生,王宽武.2000.秦岭羚牛的家域研究.兽类学报,20(4):241-249.
    汤国安,杨听.2006.ArcGIS地理信息系统空间分析实验教程.科学出版社.
    王丽焕,郑群英,肖冰雪,道里刚,范康,杨满业.2005.我国草地鼠害防治研究进展,四川草原,114(5):48-50.
    王薇娟,谢秉君.1999.青海草业.8(1):50-52.
    王淯,王小明,王正寰,Giraudoux P,Kenichi Takahashi,Alastair G. 2004.高原鼠兔生境选择的初步研究.四川大学学报(自然科学版).41(4):1041-1045.
    王正寰,王小明,吴巍,Giraudoux P,邱加闽,高桥健一,Craig PS.2003.四川西部石渠地区夏季藏狐巢穴选择的生境分析.兽类学报,23(1):31-38.
    王正寰,王小明.2006a.四川省石渠县藏狐洞穴的生态特征分析.动物学研究,27(1):18-22.
    王正寰,王小明.2006b.资源选择函数拟合藏狐洞穴生境利用特征的有效性分析.生物多样性,14(5):382-391.
    王正寰,王小明,鲁庆斌.2004.四川省石渠县藏狐昼间行为特征观察.兽类学报,24(4):357-360.
    王正寰.2005.四川省石渠县藏狐的生态学研究.上海:华东师范大学博士学位论文.
    魏万红,曹伊凡,张堰铭,殷宝法,王金龙.2004a.赤狐气味对高原鼠兔繁殖的影响.兽类学报,24(2):145-151.
    魏万红,曹伊凡,张堰铭,殷宝法,王金龙.2004b.捕食风险对高原鼠兔行为的影响.动物学报,50(3):319-325.
    武高林,杜国祯.2007.青藏高原退化高寒草地生态系统恢复和可持续发展探讨.自然杂志.29(3):159-164.
    徐世晓,赵新全,孙平,赵伟,赵同标.2002.青海省草地鼠害现状及其治理.家畜生态,23(1):47-49.
    徐卫华,欧阳志云,李宇,刘建国.2006.基于遥感和GIS的秦岭山系大熊猫生境评价.遥感技术与应用.21(3):238-242.
    殷宝法,淮虎银,张镱锂,周乐,魏万红.2007.可可西里地区藏羚羊、藏原羚和藏野驴的营养生态位.应用生态学报,18(4):766-770.
    张佰莲,田秀华,刘群秀.2007.人工饲养大鸨雏鸟行为变化趋势及日节律,动物学杂志,42(6):57-63.
    张明海,李言阔.2005.动物生境选择研究中的时空尺度.兽类学报,25(4):395-401.
    张娜.2006.生态学中的尺度问题:内涵与分析方法.生态学报,26(7):2340-2355.
    郑生武.1985.藏狐的食性资料.兽类学报,5(3):222.
    周兴民,王质彬,杜庆.1987.青海植被.青海人民出版社.
    周婷,彭少麟.2008.边缘效应的空间尺度与测度.生态学报,28(7):3322-3333.
    宗浩,夏武平.1987.高原鼠兔似昼夜活动节律的研究.兽类学报,7(3):211-223.
    Abies E D. 1969. Home range studies of red foxes (Vulpes vulpes). Journal of Mammalogy, 50: 708-720.
    Ackerman B B, Leban G A, Garton E O, Samuel M D. 1988. User's manual for program home range. Forestry, Wildlife and Range Experiment Station Eechnical Report. Moscow: University of Idaho.
    Aebischer NJ, Roberston PA, Kenward RE. 1993. Compositional analysis of habitat use from animal radio-tracking data. Ecology. 74: 1313-1325.
    Alldredge JR, Ratti JT. 1992. Further comparison of some statistical techniques for analysis of resource selection. Journal of Wildlife Management. 56: 1-9.
    Anthony RM. 1997. Home ranges and movements of Arctic fox in western Alaska. Arctic, 50(2): 147-157.
    Aschoff J. 1964. Survival value of diurnal rhythms. Symposia of Zoological Society of London. 13: 79-98.
    Atwood TC, Weeks HP. 2003. Spatial home range overlap and temporal interaction in eastern coyotes: the influence of pair types and fragmentation. Canadian Journal of Zoology, 81,1589-1597.
    Badyaev AV, Martin TE, EtgesWJ. 1996. Habitat sampling and habitat selection by female wild turkeys: ecological correlates and reproductive consequences. Auk, 13 (3): 636-646.
    Bagchi S, Namgail T, Ritchie ME. 2006. Small mammalian herbivores as mediators of plant community dynamics in the high-altitude arid rangelands of Trans-Himalaya.Biological conservation, 127:438-442.
    Bagchi S, Goyal SP, Sankar K. 2003. Habitat separation among ungulates in dry tropical forests of Ranthambhore national park Rajasthan. Tropical Ecology, 44(2): 177-183.
    Beasom SL, Wiggers EP, Giardino JR. 1983. A technique for assessing landscape surface ruggedness. Journal of Wildlife Management, 47:1163-1166.
    Becker DM, Carolyn HS. 1987. Home range and habitat utilization of breeding male Merlins Falco columbarius in southeastern Montana. Canadian Field-Naturalist. 101(3): 398-403.
    Beyer HL. 2004. HawthsTools.
    Blundell GM, Maier JAK, Debevec EM. 2001. Liner home ranges: effects of smoothing, sample size and autocorrelation on Kernel estimates. Ecological Monographs, 71(3): 469-489.
    Boulanger J G, White G C. 1990. A comparison of home-range estimators using Monte Carlo simulation. Journal of Wildlife Management, 54: 310-315.
    Bowers M A, Gregario K, Brame C J, Matter S F, Dooley J L. 1996. Use of space and habitats by meadow voles at the home range, patch and landscape scales. Oecologia, 105(1): 107-115.
    Boyce M, McDonald L. 1999. Relating populations to habitats using resource selection function. Trends in Ecology and Evolution, 14, 268-272.
    Boyce MS,Vernier PR,Nielsen SE, Schmiegelow FKA. 2002. Evaluating resource selection functions. Ecological Modeling, 157, 281-300.
    Brunjes KJ, Ballard WB, Humphrey MH, Harwell F, Mcintyre NE, Drausman PR, Wallance MC. 2006. Habitat use by sympatric Mule and White-Tailed deer in Texas. Journal of Wildlife Management, 70(5): 1351-1359.
    Brunner H, Coman BJ. 1974. The Identification of Mammalian Hair. Melbourne: Inkata Press.
    Burt WH. 1943. Territoriality and home range concepts as applied to mammals. Journal of Mammalogy, 24: 346-352.
    Beyer HL. 2004. HawthsTools.
    Byers CR, Steinhorst RK. 1984. Clarification of a technique for analysis of utilization-availability data. Journal of Wildlife Management, 48(3): 1050-1053.
    Cacoullos T. 1966. Estimation of a multivariate density. Annals of the Institute of Statistical Mathematics, 18: 179-189.
    Cavallini P, Lovari S. 1994. Home range, habitat selection and activity of the red fox in a Mediterranean coastal ecotone. Acta Theriologica. 39(3): 279-287.
    Chamberlain MJ, Leopold BD. 2000. Spatial use patterns, seasonal habitat selection, and interactions among adult Gray foxes in Mississippi. Journal of Wildlife Management, 64(3): 742-751.
    Clark, H.O, Jr., Newman, D.P., Murdoch, J.D., Tseng, J., Wang, Z.H., Harris, R.B. 2008. Vulpes ferrilata. Mammalian Species 821, 1-6.
    Christ A, Hoef JV, Zimmerman DL. 2008. An animal movement model incorporating home range and habitat selection. Environmental and Ecological Statistics, 15: 27-38.
    Ciucci, P.L., Boitani, E.R., Pelliccioni, M.R., Guy, I.1996. A comparison of scat-analysis methods to assess the diet of the wolf (Canis lupus). Wildlife Biology, 2, 37-48.
    Coates G D, Downs C T. 2005. A telemetry-based study of bushbuck (Tragelaphus scriptus) home range in Valley Bushveld, African Journal of Ecology, 43: 376-384.
    Corbett, J.K. 1989. Assessing the diets of dingos from feces: a comparison of 3 methods. Journal of Wildlife Management, 53, 343-346.
    Debinski DM, Brussard PR 1994. Using biodiversity data to assess species-habitat relationships in Glacier National Park, Montana. Ecological Applications, 4, 833-843.
    Dettmers R, Bart J. 1999. A GIS modeling method applied to predicting forest Songbird habitat. Ecological Applications, 9(1), 152-163.
    Devereux CL, Whittingham MJ, Fern(?)ndez-Juricic E, Vickery JA, Krebs JR. 2006: Predator detection and avoidance by starlings under differing scenarios of predation risk. Behavioral Ecology 17(2): 303-309.
    Dixon D R, Chapman J A, 1980, Harmonic mean measure of animal activity areas. Ecology, 61: 1040-1044.
    Dobson FS, Smith AT, Wang XG. 1998. Social and ecological influences on dispersal and philopatry in the Black lipped pika (Ochotona curzoniae). Behavior. Ecology, 9: 622-635.
    Dobson FS, Smith AT, Wang XG. 2000. The mating system and gene dynamics of plateau pikas. Behavioural Processes 51: 101-110.
    Downs JA, Gates RJ, Murray AT (2008) Estimating carrying capacity for sandhill cranes using habitat suitability and spatial optimization models. Ecological Modelling, 214,284-292.
    Eide NE, Nellemann C, Prestrud P. 2001. Terrain structure and selection of denning areas by Arctic fox on Svalbard. Polar Biology, 24: 132-138.
    Erlinge S, Hoogenboom I, Agrell J, Nelson J, Sandell M (1990) Density-related home-range size and overlap in adult field voles (Microtus agrestis) in southern Sweden. Journal of Mammalogy, 71, 597-603.
    ESRI Inc. 2006 . ESRI(?) ArcMAP~(TM). 9.2 ed.
    ESRI (Environmental Systems Research, Inc.). 2002. ArcView 3.3. ESRI, Redlands, California, USA.
    Fedriani J. M., Fuller T. K., Sauvajot R. M. and York E. C. 2000. Competition and intraguild predation among three sympatric carnivores. Oecologia, 125: 258-270.
    Ferguson SH, Taylor MK, Born EW, Rosing-Asvid A, Messier F. 1999. Determinants of home range size for polar bears (Ursus maritimus). Ecology Letters, 2:311-318.
    Fieberg J, Kochanny C O. 2005. Quantifying home-range overlap: the importance of the utilization distribution. Research and Management Viewpoint, 69(4): 1346-1359.
    Floyd, T.J., Mech, L.D., Jr., Jordan, P.A. 1978. Relating wolf scat content to prey consumed. Journal of Wildlife Management, 42, 528-532.
    Foerster CR, Vaughan C. 2002. Home range, habitat use, and activity of Baird's Tapir in Costa Rica. Biotropica. 34(3): 423-437.
    Frafjord K, Prestrud P. 1992. Home range and movements of Arctic foxes Alopex lagopus in Svalbard. Polar Biology, 12: 519-526.
    Frafjord K. 1992. Denning behaviour and activity of arctic fox Alopex lagopus pups: Implications of food availability. Polar Biology, 12(8):707-712.
    Fretwell SD, Lucas HL. 1970. On terrestrial behavior and other factors influencing habitat distribution in birds. Acta Biotheor,19: 16-36.
    Fridell RA, Litvaitis JA. 1991. Influence of resource distribution and abundance on home-range characteristics of southern flying squirrels. Canadian Journal of Zoology, 69: 2589-2593.
    Fritz H, Said S,Weimerskirch H. 2003. Scale-dependent hierarchical adjustments of movement patterns in a long-range foraging seabird. The royal society (London), 270: 1143-1148.
    Garshelis DL. 2000. Delusions in habitat evaluation: measuring use, selection, and importance. In: Research Techniques in Animal Ecology (eds Boitani L, Fuller TK), pp.111-164. Columbia University Press, New York.
    Gautestad AO, Mysterud 1.1995. The home range ghost. Oikos. 74: 195-204.
    Gavashelishvili A, Lukarevskiy V. 2007. Modelling the habitat requirements of leopard Panthera pardus in west and central Asia. Journal of Applied Ecology, 45(2), 579-588.
    Geffen E, Hefner R, Macdonald DW, Ucko M. 1992. Habitat selection and home range in the Blanford's fox Vulpes cana: Compatibility with the resource dispersion hypothesis. Oecologia. 91: 75-81.
    Geraldine, M.B. 1978. The use of scat samples in primate diet analysis. Primates. 19, 215-221.
    Gitzen R A, Millspaugh J J, Kernohan B J. 2006. Bandwidth selection for Fixed-kernel analysis of animal utilization distributions. Journal of Wildlife Management. 709. 1334-1343.
    Golla W, Hofer H, East M L. 1999. Within-Utter sibling aggression in spotted hyaenas: effect of maternal nursing, sex and age. Animal Behaviour. 58(4): 715-726.
    Hall DK, Sturm M, Benson CS, Chang ATC, Foster JL, Garbeil H, Chacho E. 1991. Passive microwave remote and in situ measurements of arctic and sub-arctic snow covers in Alaska. Remote Sensing of the Environment 38:161-172.
    Hardenbrook DB. 1987. Habitat usage and den sites of kit foxes in west-central Nevada. M.S. thesis, Humboldt State University, Arcata, Calif.
    Harris RB, Wang ZH, Zhou JK, Liu QX. 2008. Notes on the biology of the Tibetan fox. Canid News.URL:http://www.canids.org/canidnews/11/biology of Tibetan fox.pdf
    Harris, R.B.2007.Wildlife Conservation in China: Preserving the Habitat of China's Wild West.M.E.Sharpe, Inc., Armonk, N.Y.
    Harris, R.B., Wang, Z.H., Zhou, J.K., Liu, Q.X.2008.Notes on biology of the Tibetan fox (Vulpesferrilata).Canid News, 11:1-7.(http://www.canids.org/canidnews/ll/Biology_of_Tibetan_fox.pdf).
    Hawth.2006.Hawth's Analysis Tools for Arc GIS;http://www.spatialecology.com/htools/tooldesc.php.
    Hayssen V, van Tienhoven A, van Tienhoven A.1993.Asdell's patterns of mammalian reproduction: A compendium of species-specific data.Comstock Publishing Associates, Ithaca, New York, USA.
    Hirzel AH, Lay GL, Heifer V, Radin C, Guisan A.2006.Evaluating the ability of habitat suitability models to predict species presence.Ecological Modeling, 199, 142-152.
    Hooge PN, Eichenlaub W, Solomon E.1999.The animal movement program.USGS,Alaska Biological Science Center, Anchorage, USA.
    Horner MA, Powell RA.1990.Internal structure of home ranges of black bears and analysis of home range overlap.Journal of Mammalogy.71(3): 402-410.
    Hubbs AH, Boonstra R.1998.Effects of food and predators on the home range size of arctic ground squirrels (Spermophilus parryii).Canada Journal of Zoology, 76,592-596.
    Hunter ML.1996.Fundamentals of conservation biology.Blackwell Science, Cambridge, Massachusetts, USA.
    Hurlbert, S.H.1978.The measurement of niche overlap and some relatives.Ecology, 59, 67-77.
    Hurlbert SH.1984.Pseudoreplication and the design of ecological field experiments.Ecological Monographs.54: 187-211.
    Hutchinson GE (1957) Concluding remarks.Cold Spring Harbor Symposium on Quantitative Biology, 22,415-427.
    Jackson, VL, Choate JR.2000.Dens and den sites of the swift fox, Vulpes velox.-Southwestern Naturalist 45: 212-220.
    Jansen R, Little RM, Crowe TM. 2000. Habitat utilization and home range of the redwing francolin, Francolinus levaillantii, in highland grasslads, Mpumalanga province, South Africa. African Journal of Ecology, 38, 329-338.
    Jennes J. 2003. Random point generator 1.27. http://jennessent.com/arcview/random points.htm.
    Jenness J. 2002. Surface areas and ratios from elevation grid (surfgrids.avx) extension for Arcview 3.x, v.1.2. Jenness enterprises. Available at: http://www.jennessent.com/arcview/surfaces areas.htm.
    Jenness J. 2006. Topographic position index (tpi_jen.avx) extension for Arcview 3.x, v.1.3a. Jenness enterprises. Available at: http://www.jennessent.com
    Jiang GS, Ma JZ, Zhang M H, Philip S. 2008. Multiple spatial-scale resource selection function models in relation to human disturbance for moose in northeastern China. Ecological Research.(in press).
    Jiang GS, Ma JZ, Zhang MH. 2006. Spatial distribution of ungulate responses to habitat factors in Wangdashan forest region, Northeastern China. Journal of Wildlife Management, 70(5): 1740-1476.
    Johnson CJ, Nielsen SE, Merrill EH, McDonald TL, Boyce MS. 2006. Resource selection functions based on use-availability data: theoretical motivation and evaluation methods. Journal of Wildlife Management, 70,347-357.
    Kamler JE, Ballard WB, Fish EB, Lemons PR, Mote L, Perchellet CC. 2003. Habitat use, home ranges, and survival of swift foxes in a fragmented landscape: conservation implications, Journal of Mammalogy, 84 (3): 989 - 995.
    Kauhala K, Tiilikainen T. 2002. Radio location error and the estimates of home range size, movemets, and habitat use: a simple field test. Annales zoologici Fennici, 39: 317-324.
    Keating KA, Cherry S. 2004. Use and interpretation of logistic regression in habitat-selection studies. Journal of Wildlife Management, 68(4), 774-789.
    Kenward R. 1987. Wildlife radio tagging: equipment, field techniques and data analysis. Academic Press, London.
    Kemohan BJ, Gitzen RA, Millspaugh JJ.2001.Analysis of animal space use and movements.Pages 126-166 in Millspaugh JJ, Marzluff JM.Radio tracking and animal populations.Academic Press, San Diego, California, USA.
    Kideghesh JR.2006.Wildlife conservation and local land use conflicts in western Serengeti Tanzania.PhD Dissertation, Trondheim: Norwegian University of Science and Technology.
    Kie JG, Baldwin JA, Evans CJ.1994.CALHOME: home range analysis program.Electronic User's Manual.U.S.For.Serv., Fresno and Albany, Calif.
    Kie JG, Baldwin JA, Evans CJ.1996.CALHOME: a program for estimating animal home ranges.Wildl.Soc.Bull.24: 342-344.
    Kilgore, D.L.1969: An ecological study of swift fox (Vulpes velox) in the Oklahoma Panhandle.-American Midland Naturalist 81:512-534.
    Kirk M, Esler D, Iverson SA, Boyd WS.2008.Movements of wintering surf scoters: predator responses to different prey landscapes.Oecologia.155: 859-867.
    Klar N, Fernandez N, Kramer-Schadt S, Herrmann M, Trinzen M, Buttner I, Niemitz C.2008.Habitat selection models for European wildcat conservation.Biological conservation, 141, 308-319.
    Kruuk H.1966.Clan-system and feeding habits of spotted hyenas (Crocuta crocuta).Nature (London).209: 1257-1259.
    Kusak J, Skrbinsek AM, Huber D.2005.Home ranges, movements, and activity of wolves (Canis lupus) in the Dalmatian part of Dinarids, Croatia.European Journalof Wildlife Research, 51: 254-262
    Lack D.1993.Habitat selection in birds.The Journal of Animal Ecology, 2 (2): 239 -262.
    Lai CH, Smith AT.2003.Keystone status of plateau pikas (Ochotona curzoniae): effect of control on biodiversity of native birds.Biodiversity and Conservation, 12:1901-1912.
    Leban FA, Wisdom MJ, Garton EO, Johnson BK, Kie JG 2001.Effect of sample size on the performance of resource selection analyses.Pages 293-307 in Millspaugh JJ & Marzluff JM. Radio tracking and animal populations. Academic Press. San Diego, California, USA.
    Levins R. 1968. Evolution in changing environments. Princeton University Press, Princeton, New Jersey, USA.
    Li ZQ, Jiang ZG, Li CW. 2008. Dietary overlap of Przewalski's Gazelle Tibetan Gazelle and Tibetan sheep on the Qinghai-Tibet Plateau. Journal of Wildlife Management, 72(4): 944-948.
    Li ZQ, Jiang ZG. 2007. Diet analysis of Tibetan gazelle (Procapra picticaudata) in Tianjun area, Qinghai Province, China. Acta Theriologica Sinica, 27(1): 64-67.
    Lima S L, Dill L M. Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology, 1990, 68: 619-640.
    Lindstedt SL, Miller BJ, Buskirk SW. 1986. Home range, time, and body size in mammals. Ecology, 67 (2): 413-418.
    Liu QX, Harris RB, Wang XM. 2009. Food habits of Tibetan fox (Vulpes ferrilata) in the Kunlun Mountains, Qinghai Province, China. Mammalian Biology. (in press).
    Livingston SA, Todd CS, Krohn WB, Owen RB. 1990. Habitat model for nesting Bald Eagles in Maine, USA. Journal of Wildlife Management, 54,644-653.
    Lucherini M, Lovari S. 1996. Habitat richness affects home range size in the red fox (Vulpes vulpes). Behavioral Processes, 36(1): 103-105.
    Marzluff JM, Millspaugh JJ, Hurvitz P, Handcock MS. 2004. Relating resources to a probabilistic measure of space use: forest fragments and Steller's Jays. Ecology, 85(5): 1411-1427.
    Marzluff JM, Knick ST, Vekasy MS, Schueck LS, Zarriello TJ. 1997. Spatial use and patterns and habitat selection of Golden Eagles in southwestern Idaho. Auk. 114: 673-687.
    MacArthur RH, Planka ER. 1966. On the optimal use of a patchy environment. American Naturalist. 100: 603-609.
    Manly BFJ, McDonald LL, Thomas DL. 2002. Resource selection by animals: statistical design and analysis for field studies. Revised edition. Kluwer Academic. Boston, Massachusetts, USA.
    McCullagh P, Nelder JA (1989) Generalized linear models.Second edition.Monographs on statistics and applied Probability Number 37.Chapman and Hall.London, UK.
    Mech LD.1983.A handbook of animal radio-tracking.University of Minnesota Press, Minneapolis.108.
    Meffe GK, Carroll R.1994.Principle of conservation biology.Sinauer Associates, Sunderland.
    Messier F.1985.Social organization, spatial distribution, and population density of wolves in relation to moose intensity.Canadian Journal of Zoology, 63, 1068-1077.
    Metzgar L H.1973.Home range shape and activity in Perom.vscus leucopus.Journal of Mammalogy, 54, 383-390.
    Millspaugh JJ, Nielson RM, Mcdonald L, Marzluff JM, Gitzen RA, Rittenhouse CD, Hubbard MW, Sheriff SL.2006.Analysis of resource selection using utilization distributions.Journal of Wildlife Management, 70(2): 384-395.
    Mishra C, Wieren SV, Ketner P, Heitkonig IMA, Prins HHT.2004.Competition between domestic livestock and wild bharal Pseudois nayaur in the Indian Trans-Himalaya.Journal of Applied Ecology, 41:344-354.
    Molles MC.2001.Ecology: Concepts and Application.Beijing: Scientific Press.181-182.
    Morris DW.1987.Ecological scale and habitat use.Ecology, 68(2): 362-369.
    Murie J O, Harris M A, 1978.Territoriality and dominance in male Columbian groundquirrels (Spermophilus columbianus).Canadian Journal of Zoology, 56, 2402-2412.
    Mysterud A, Larsen PK, Ims RA, 0stbye E.1999.Habitat selection by roe deer and sheep: does habitat ranking reflect resource availability? Canada Journal of Zoology, 77:776-783.
    Nakazono, T.& Ono, Y.1987: Den distribution and den use by the red fox Vulpes.vulpes japonica in Kyushu.-Ecological Restoration 2: 265-277.
    Namgail T, 2006, Winter habitat partitioning between Asiatic Ibex and Blue sheep in Ladakh, Northern India, J.Mt.Ecol., 8: 7-13.
    Namgail T, Fox JL, Bhatnagar YV. 2004. Habitat segregation between sympatric Tibetan argali Ovis ammon hodgsoni and blue sheep Pseudois nayaur in the Indian Trans-Himalaya. Journal of Zoology, 262 (1): 57-63.
    Neu CW, Byers CR, Peek JM. 1974. A technique for analysis of utilization and availability data. Journal of Wildlife Management, 38(3): 541-545.
    Nilsen EB, Pedersen S, Linnell JDC. 2007. Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions? Ecological Research. 23(3): 635-639.
    Nielsen ET. 1983. Relation of behavioral activity rhythms to the changes of day and night: a revision of views. Behaviour. 89: 147-173.
    Nowak RM. 1999. Walker's mammals of the world, 6th edition. The Johns Hopkins University Press, Baltimore, USA.
    Nystrand M. 2006. Effects of habitat quality on behavioral decisions and population dynamics in the Siberian Jay. Acta Universitatis Upsaliensis Upplasa.
    Olson T L, Lindzey F G. 2002. Swift fox (Vulpes velox) home-range dispersion patterns in southeastern Wyoming. Canada Journal of Zoology, 80(11): 2024-2029.
    Otis DL, White GC. 1999. Autocorrelation of location estimates and the analysis of radiotracking data. Journal of Wildlife Management. 63: 1039-1044.
    Patrick E. McGrath. 2005. Site fidelity, home range, and daily movements of white perch, Morone Americana, and striped bass, Morone Saxatilis, in two small tributaries of the York river, Virginia, PH.D dissertation: The college of William and Mary, 16-20.
    Peters R. 1978. Communication, cognitive mapping, and strategy in wolves and hominids. In Hall RL, Sharp HS eds.,Wolf and man: Evolution in parallel, 95-108. New York: Academic Press.
    Powell RA. 1987. Black bear home range overlap in North Carolina and the concept of home range applied to black bears. International conference on bear research and management. 7:235-242.
    Powell R A. 2000. Animal home ranges and territories and home range estimators. In: Boitani L, Fuller T K eds. Research Techniques in Animal Ecology, Controversies and Consequences.Columbia State University, New York.
    Powell R A, Zimmerman JW, Seaman D E.1997.Ecology and behavior of North American Black Bears: Home Ranges, Habitat and Social Organization, London,England: Chapman and Hall, 205.
    Powell R A, Mitchell M S.1998.Topographical constraints on home range quality.Ecography.21:337-341.
    Priotto JW, Steinmann AR.1999.Factors affecting home range size and overlap in Akodon azarae (Muridae: Sigmodontinae) in natural pasture of Argentina.Acta Theriologica, 44, 37-44.
    Pruss SD.1999.Selection of natal dens by swift fox on the Canadian prairie.Canadian Journal of Zoology, 77:646-652.
    Pyke GH.1983.Animal movements: an optimal foraging approach.In: Swingland IR,Greenwood PJ (eds).The ecology of animal movement.Clarendon Press, Oxford,7-31.
    Ray N, Burgman MA (2006) Subjective uncertainties in habitat suitability maps.Ecological Modelling, 195, 172-186.
    Reynolds, J.C., Aebischer, N.J.1991.Comparison and quantification of carnivore diet by faecal analysis: a critique, with recommendations, based on a study of the red fox Vulpes vulpes.Mammal Review, 21(3), 97-122.
    Rowan E L, Ford W M, Castleberry S B.Rowan E L, Ford W M, Castleberry S B,Rodrigue J L, Schuler T M.2005.Response of eastern chipmunks to single application spring prescribed fires on the fernow experimental forest, Northeastern Research Station: Research paper NE-27:1-2.
    Russell TA.2006.Habitat selection by Swift foxes in badlands national park and the surrounding area in South Dakota.MS thesis, South Dakota State University.
    Samuel MD, Pierce DJ, Garton EO.1985.Identifying areas of concentrated use within the home range.Journal of Animal Ecology.54(3): 711-719.
    Sandell M.1989.The mating tactics and spacing patterns of solitary carnivores.In:Gittleman, J.L., ed.Carnivore behavior, ecology, and evolution.Ithaca, New York: Cornell University Press. 164-182.
    Sappington JM, Longshore KM, Thompson DB. 2005. Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. Journal of Wildlife Management, 71(5): 1420-1426.
    Scharf I, Nulman E, Ovadia O, Bouskila A. 2006. Efficiency evaluation of two competing foraging modes under different conditions. American Naturalist. 168: 350-357.
    Seaman DE, Millspaugh J J, Kernohan B J, Brundige G C, Raedeke K J, Gitzen R A. 1999. Effects of sample size on kernel home range estimates. Journal of Wildlife Management, 63:739-747.
    Seaman D E, Powell R A. 1996. An evaluation of the accuracy of kernel density estimators for the home range analysis. Ecology, 77(7):2075-2085.
    Seaman D E, Millspaugh J J, Kernohan B J, Brundige G C, Raedeke K J, Gitzen R A. 1999. Effects of sample size on kernel home range estimates. Journal of Wildlife Management 63:739-747.
    Serge, L., Messier, F., 1998: Denning ecology of the striped skunk in the Canadian prairies: implications for waterfowl nest predation. -Journal of Applied Ecology 35(2): 207-213.
    Schaller GB. 1998. Wildlife of the Tibetan steppe. University of Chicago Press, Chicago.
    Schaller, G. B. & Ginsberg, J. R. 2004: Tibetan fox Vulpes ferrilata. Pages: 148-152 in: Sillero-Zubiri, C. Hoffmann, M. & Macdonald, D. W. eds., Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. International Union for Conservation of Nature and Natural Resources/Species Survival Commission Canid Specialist Group, The World Conservation Union.
    Shaver GR, Nadelhoffer KJ, Giblin AE. 1990. Biogeochemical diversity and element transport in a heterogenous landscape, the North Slope of Alaska. Ecological Studies, 82:105 -125.
    Sillero-Zubiri C, Hoffmann M, Macdonald DW. 2004. Canids: Foxes, Wolves, Jackals and Dogs,
    Smith AT, Wang XG. 1991. Social relationships of adult black-lipped pikas (Ochotona curzoniae).Journal of Mammalogy 72: 231-247.
    Smith, A.T., Foggin, J.M.1999.The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau.Animal Conservation, 2: 235-240.
    Smith, A.T., Zahler P., Hinds, L.A.2006.Poisoning of native small mammals in central Asia is an undesirable and unsustainable activity.In: McNeely, J., McCarthy, T.M.,Smith, A.T.Status Survey and Conservation Action Plan, Cambridge, UK:IUCN/SSC Canid Specialist Group: 1-430.
    Smith AC, Schaefer JA.2002.Home range size and habitat selection by American marten (Martes americana) in Labrador.Canada Journal of Zoology, 80: 1062-1609.
    SPSS Inc.2001: SPSS for Windows, version 11.0.1.-Chicago, Illinois, USA.
    Swihart RK, Slade NA.1985.Influence of sampling interval on estimates of home range size.Journal of Wildlife Management.49: 1019-1025.
    Theuerkauf, J., Rouys, S.& Jedrzejewski, W.2003: Selection of den, rendezvous, and resting sites by wolves in the Bialowieza Forest, Poland.-Canadian Journal of Zoology 81: 163-167.
    Thomas DL, Taylor EJ.1990.Study designs and tests for comparing resource use and availability.Journal of Wildlife Management, 54:322-330.
    Thomas DL, Taylor EJ.2006.Study designs and tests for comparing resource use and availability Ⅱ.Journal of Wildlife Management, 70: 324-336.
    Urban DL, O'Nell RV, Shugarg HH.1987.Landscape ecology: A hierarchical perspective can help scientists understand spatial patterns.BioScience, 37: 119-127.
    Van Winkle, W.1975.Comparison of several probabilistic home range models.Journal of Wildlife Management.39: 118-123.
    Wang ZH, Wang XM, Lu QB.2007.Selection of land cover by die Tibetan fox Vulpes ferrilata on the eastern Tibetan Plateau, western Sichuan Province, China.Acta Theriologica, 52(2): 215-223.
    Wang ZH, Wang XM, Chmura AA.2008.Den habitat characteristics of Tibetan foxes (Vulpes ferrilata) in Shiqu County, Sichuan Province, China.Zoological Studies, 47(4): 445-454.
    Wangdwei M, Fox JL. 2008. Habitat selection by sympatric chiru and Tibetan gazelle in the Aru Basin, Chang Tang Nature Reserve, Tibet Autonomous Region, China. Acta Theriologica Sinica. 28(3): 225-231.
    Werner EE, Anholt BR. 1993. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. American Naturalist. 142: 242-272.
    White GC & Garrott RA. 1990. Analysis of Wildlife Radio-Tracking Data. Academic Press, San Diego on in home-ranges studies. Ecology, 70:164-168
    Wiens JA. 1977. On competition and variable environments. American Scientist. 65: 590-597.
    Willson MF. 1974. Avain community organization and habitat structure. Ecology, 55, 1017-1029.
    Winker K, Rappole JH, Ramos MA. 1995. The use of movement data as an assay of habitat quality. Oecologia. 101: 211-206.
    White P C L, Saunders G, Harris S. 1996. Spatio-Temporal patterns of home range use by foxes (Vulpes vulpes) in urban environments. The Journal of Animal Ecology, 65(1): 121-125.
    Wollf JO. 1985. The effects of density, food, and interspecific interference on home range size in Peromyscus leucopus and Peromyscus maniculatus. Canadian Journal of Zoology, 63,2657-2662.
    Worton BJ. 1989. Kernel methods for estimating the utilizatiThomas DL, Taylor EJ, 2006, Study design and tests for comparing resource use and availability II. Journal of Wildlife Management, 70(2): 324-336.
    Wronski T. 2006. Home-range overlap, social vicinity and agonistic interactions denoting matrilineal organization in bushbuck, Tragelaphus scriptus. Behavial Ecology of Sociobiology, 59:819-828.
    Zar JH. 1999: Biostatistical analysis (4th ed.), Prentice-Hall, Upper Saddle River, New Jersey 07458.616-622.
    Zhang Z, Zhong W, Fan N. 2003. Rodent problems and management in the grasslands of China. Pages 316-319 in Singleton GR, Hinds LA, Krebs CJ, Spratt DM, eds. Rats, Mice and People: Rodent Biology and Management. Canberra: ACIAR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700