用户名: 密码: 验证码:
西藏灌木林评价与遥感分类技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灌木林是西藏森林资源的重要组成部分,在维护区域生态安全和促进区域经济社会发展中起着重要的和不可替代的作用。长期以来,由于认识不足,重乔木、轻灌木,灌木林在林业生产和科学研究上均是个薄弱环节。本文在综合论述灌木林的种群与群落特征、空间结构与空间分布以及遥感分类技术等研究现状的基础上,以西藏地区国家特别规定的灌木林为研究对象,从种群、群落和景观尺度上开展了对西藏灌木林评价的研究,并探讨了西藏主要类型灌木林的遥感分类技术。(1)分析了西藏灌木林的群落特征;(2)测度了西藏灌木林种群的生态位,研究了各种群在不同环境中的适应能力和种间竞争关系;(3)分析了西藏灌木林在景观中的格局特征、空间自相关性及其尺度效应,研究了西藏主要类型灌木林的空间结构;(4)分析了灌木林空间分布与环境因子的相互关系,研究了西藏主要类型灌木林的空间分布。(5)通过基于空间分布特征的辅助分类和基于光谱特征的再分类过程,研究和探讨了西藏主要类型灌木林的遥感分类技术。
     (1)对西藏灌木林群落进行了调查,并分析了其群落特征。研究结果表明,西藏灌木林的科属组成以蔷薇科、蝶形花科和杜鹃花科为主;灌木林群落物种组成较为单一,物种丰富度和多样性均较低,优势树种在群落中所占的比例较大,多形成稳定的原生或次生单优群落;群落的盖度多在0.4以上,不同地区、不同类型灌木林的群落盖度差异较大;受高原环境和西藏灌木树种自身生长缓慢的影响,西藏灌木林的树高多分布于0.1m ~ 6.0m范围,地径多分布于1 cm ~ 5 cm范围,部分类型灌木林的树高与地径之间呈现显著的幂函数曲线回归关系。
     (2)分别测度了海拔、坡向、坡位和坡度四维环境空间中西藏灌木林种群的生态位宽度和生态位重叠指数,研究结果表明,西藏典型灌木林种群在不同生境条件下,其利用环境资源的能力不同,在海拔、坡向、坡位和坡度的不同状态中,灌木林种群各自表现出其适应的梯度和范围,各种群从环境的不同侧面利用生境资源,每个种群在不同的环境因子上均有一定的适应宽度,通过对其定量测度,有利于进行种群间适应能力的对比;经过长期的自然选择,在各环境空间上,灌木种群间的生态位重叠指数均较大,群落内存在较小的种间竞争,已形成稳定的共生关系,通过对其定量测度,有利于进行种群间竞争与共生关系的研究。
     (3)在景观尺度上,应用景观生态学原理与方法,定量研究了西藏主要类型灌木林的空间结构。研究结果表明,西藏各类型灌木林斑块大小均服从反J型分布,斑块面积越大,斑块数量越少,所占的面积比例越高。总体上,灌木林面积占景观总面积的4.6%,灌木林斑块数占总斑块数的54.8%。各个具体类型的灌木林在斑块大小、斑块形状和景观镶嵌度等方面均具有不同的格局特征,其空间自相关性均表现为正相关。尺度效应在灌木空间结构特征中表现明显,其中斑块面积、景观镶嵌度、斑块形状和景观多样性等景观指数对空间尺度的变化均表现出较强的尺度敏感性。
     (4)应用多重对应分析方法,研究了包括经度、纬度、海拔、坡向、坡位和坡度六个环境因子对各主要类型灌木林空间分布的影响程度,并进行了影响因子排序等。研究结果表明,由于西藏地形呈现由东南向西北逐渐抬升的隆起,形成特殊的陆地分布格局和大气环流特点,导致从东向西水分梯度和热量梯度产生经向分异,与灌木林类型的耐寒、耐旱特性相对应,产生了不同类型灌木林空间分布的地域差异。总体上看,西藏主要类型灌木林的空间分布均在不同程度上受大尺度(地域)环境因子的影响,主要表现在经纬度和海拔上,其中,受经度影响较大,表现出明显的经度地带性。此外,一些类型(如狼牙刺和沙棘)的空间分布上表现出明显的垂直地带性。在小尺度(小生境)上,去除经度地带性和垂直地带性的影响,各环境因子通常表现为共同(或组合)影响灌木林的分布,如坡位和坡度共同影响锦鸡儿灌木林的空间分布,坡向和坡位共同影响红柳灌木林的分布等情况。
     (5)西藏灌木林斑块面积较大,且多为纯林,有利于利用遥感手段进行分类识别。采用逐级分层、分类提取的策略,结合基于空间分布特征的辅助分类和基于光谱特征的再分类过程,对试验区内的各类型灌木林进行了分类识别和提取。研究结果表明,基于空间分布特征的辅助分类精度为86.24%,基本上能够满足林业生产的需要,但其分类结果为灌木林类型的组合,未能识别到具体灌木林类型;通过基于光谱特征的过程,得到的最终分类精度为70.64%,对沙棘、红柳能较准确地识别,而对个别类型(如杜鹃和小檗)的识别精度不高。利用该技术流程和影像数据,可将沙棘、红柳等类型较为准确地识别和提取,其它类型可依据具体的精度要求选择识别到类型或类型组合。
As an important part of forest in Tibet, shrub plays an irreplaceable role in regional ecological security maintenance and regional economic and social development. However, shrub has been limited both in forestry production and scientific research because of the incorrect understanding and less attention for a long time. In this paper, based on the review of shrub population and community characteristics, spatial structure and distribution of shrub, as well as remote sensing classification techniques, the research was carried out as following by taking the shrub in Tibet which accorded with the special regulation of national as the research object: (ⅰ) the community characteristics of shrub in Tibet were analyzed; (ⅱ) the populations niche of shrub in Tibet were measured, and the adaptability and interspecific competitions of shrub populations were studied; (ⅲ) the spatial structure of shrub types was studied through the landscape pattern analysis, spatial autocorrelation analysis, and spatial scaling effects analysis; (ⅳ) interactional relationship between environmental factors and distribution of shrub was analyzed, and the spatial distribution of shrub types was studied; (ⅴ) the remote sensing classification technique of shrub in Tibet was discussed, including the process of assistant classification based on spatial distribution characteristics and re-classification based on spectral characteristics.
     The inventory was carried out and the community characteristics were analyzed. The results show that, the main family compositions of shrub in Tibet are Rosaceae, Papilionaceae and Ericaceae. Species composition in shrub communities is single, and species richness and diversity are at low level. Dominant species in the communities occupy a main proportion, and as a result, stable original or secondary communities with single dominant specie are dominated. Mostly, the coverage of the shrub communities is larger than 0.4, and it is remarkable different in districts and shrub types. Being affected by the plateau environment and shrub species ecology characteristic, the tree height distributes between 0.1 m and 6.0 m, and the ground diameter distributes between 1 cm and 5 cm. The power function curves of H-D of some shrub types show prominent relativity.
     Niche breadth and overlap indexes were measured at the environmental space including altitude, aspect, position and slope. The result shows that the environmental adaptability is different among environmental factors through the measurement of the population niche characteristics from the four-dimensional environment space. The populations show flexible width to different environmental factors, and it makes the habitat resources useable for each species from different aspects. The comparison of environmental adaptability could be carried out by the quantitative measurement of niche breadth. After a long period of natural selection, the stable symbiosis relationships have been set up with less interspecific competition in shrub communities. The comparison of symbiotic relationship could be studied by the quantitative measurement of niche overlap.
     The spatial structure of shrub in Tibet was quantitative studied based on the principles and methods of landscape ecology. The patch-size distributions of the shrub types are subject to anti-J shape. Generally, the area of shrub occupies 4.6% of the whole landscape, and the patch number accounts for 54.8%. And, the pattern characteristics of typical shrub types are different in patch shape and size, and positive correlation was showed to the spatial autocorrelation. Scale effect is evident between different spatial extent, and it showed strong sensitivity to scale in patch-size, landscape mosaic, patch shape and landscape diversity index.
     The interactional relationship between environmental factors and distribution of shrub was analyzed by multiple correspondence analyses. The spatial distribution of shrub is mainly affected by the regional factors, including the terrain, precipitation, light condition, etc. The results show that the most important factor that effects the distribution is the longitude, latitude and altitude, which are from the large-scale region which due to the terrain of Tibet that gradually upheaval from southeast to northwest. At the niche level, the distribution of shrub is usually affected by factors’combination, such as slope aspect, position, slope, etc.
     Because of the large size of shrub patch and pure stand mostly, it is helpful to the remote sensing classification of shrub types. With assistant classification based on the spatial distribution characteristics and re-classification based on the spectral characteristics, the classification results of shrub types were drawn. The accuracy of assistant classification based on the spatial distribution characteristics is 86.24%, which could meet the requirements of forestry production, and the accuracy is 70.64% based on the spectral characteristics classification. Hippophae L. and Tamarix L. can be identify accurately by using of technical processes image data, other shrub types could be classified to types or type groups depend on the precision request.
引文
Abdullah S A, Nakagoshi N. Changes in agricultural landscape pattern and its spatial relationship with forestland in the State of Selangor, peninsular Malaysia. Landscape and Urban Planning, 2008, 87 (2): 147-155
    Alldredge M W, Peeka J M, Wall W A. Shrub community development and annual productivity trends over a 100-year period on an industrial forest of Northern Idaho. Forest Ecology and Management, 2001, 152: 259-273
    Anselin L. Under the hood: Issues in the specification and interpretation of spatial regression models. Agricultural Economics, 2002, 27: 247-267
    Anuradha K T, Gopalan T K. Trend and patterns in explicit organizational knowledge: A correspondence analysis and cluster analysis. The International Information & Library Review, 2007, 39 (3): 247-259
    Aosier B, Tsuchiya K, Kaneko M. Land cover of oases and forest in Xinjiang, China retrieved from ASTER data. Advances in Space Research, 2007, 39 (1): 39-45
    Arora V K. The use of the aridity index to assess climate change effect on annual runoff. Journal of Hydrology, 2002, 265: 164-177
    Arthur G. Reflections on spatial autocorrelation. Regional Science and Urban Economics, 2007, 37 (4): 491-496
    Bruggeman J, Carnabuci G, Vermeulen I. A note on structural holes theory and niche overlap. Social Networks, 2003, 25 (1): 97-101
    Campagne P, Roche P, Tatoni T. Factors explaining shrub species distribution in hedgerows of a mountain landscape. Agriculture, Ecosystems & Environment, 2006, 116 (3): 244-250
    Carl G, Kuhn I. Analyzing spatial autocorrelation in species distributions using Gaussian and legit models. Ecological Modeling, 2007, 207 (2): 159-170
    Carpenter G A. A Neural Network Method for Mixture Estimation for Vegetation Mapping. Remote Sensing of Environment, 1999, 70: 138-152
    Carvalho L M T. Selection of imagery data and classifiers for mapping Brazilian semi deciduous Atlantic forests. International Journal of Applied Earth Observation and Geoinformation, 2004, 5: 173-186
    Chris W, Alisa G. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sensing of Environment, 2007, 107 (4): 582-605
    Corbane C, Raclot D, Jacob F, et al. Remote sensing of soil surface characteristics from a multi-scale classification approach. CATENA, 2008, 75 (3): 308-318
    Cuadras C M, Daniel C. A parametric approach to correspondence analysis. Linear Algebra and its Applications, 2006, 417 (1): 64-74
    David J B, Weaver K, Schnekenburger F, et al.Sensitivity of landscape pattern indices to input data characteristics on real landscapes: implications for their use in natural disturbance emulation. Landscape Ecology, 2004, 19 (1): 255-271
    David M. An assessment of surface and zonal models of population. International Journal of Geographic Information Systems, 1996, 10 (8): 973-98
    Davidson A, Wang S, Wilmshurst J. Remote sensing of grassland–shrubland vegetation water content in the shortwave domain. International Journal of Applied Earth Observation and Geoinformation, 2006, 8 (4): 225-236
    Davison D, Achal S, Mah S, et al. Determination of Tree Species and Tree Stem Densities in Northern Ontario Forest using Airborne. Remote Sensing Conference and Exhibition, Canada, 1999, 2: 187-196
    Dieter M D. Forest vegetation across the tropical Pacific: A biogeograptrically complex region with many analogous environments. Plant Ecology, 2002, 163: 155-176
    Domingo F, Villagarcia L, Brenner A J. Measuring and modeling the radiation balance of a heterogeneous shrubland. Plant, Cell and Environment, 2000, (23): 27-38
    Doren L K A. Improved Landsat-Based Forest Mapping in Steep Mountainous Terrain Using Object-Based Classification. Forest Ecology and Management, 2003, 183: 31-46
    Dury, Wallis S J, Foley I R, et al. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sensing of Environment, 2004, 93 (1): 18-29
    Epperson B K, Chung M G. Spatial genetic structure of allozyme polyrmorphisms within populations of Pinus strobus (Pinaceae). American Journal Botany, 2001, 88: l006-l010
    Eric J B. Correspondence analysis of aggregate data: The 2×2 table. Journal of Statistical Planning and Inference, 2008, 138(10): 2941-2952
    Escudero A, Iriondo J M, Torres M E. Spatial analysis of genetic diversity as a tool for plant conservation. Biological Conservation, 2003, 113: 351-365
    Fahey R T, Puettmann K J. Patterns in spatial extent of gap influence on understory plant communities. Forest Ecology and Management, 2008, 255 (7): 2801-2810
    FAO. Global Forest Resources Assessment FRA 2000 - Main Report. Rome, 2001
    FAO. Global Forest Resources Assessment Update 2005 - Terms and Definitions. Rome, 2005
    Faria D, Mariano-Neto E, Martini A M. Forest structure in a mosaic of rainforest sites: The effect of fragmentation and recovery after clear cut. Forest Ecology and Management, 2009, 257 (11): 2226-2234
    Federico A, Elia B, Patrizia B. Multiple correspondence analysis in S-PLUS. Computer Methods and Programs in Biomedicine, 2005, 79 (2): 161-167
    Fei Y, Kali E S, Brian C L, et al. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 2005, 98 (2): 317-328
    Foody G M, Lucas R M, Curran P J, et al. Mapping Tropical Forest Fractional Cover from Coarse Spatial Resolution Remote Sensing Imagery. Plant Ecology, 1997, 131: 143-154
    Foroughbakhch R, Reyes G, Alvarado M A, et al. Use of quantitative methods to determine leaf biomass on 15 woody shrub species in northeastern Mexico. Forest Ecology and Management, 2005, 216 (1): 359-366
    French A N, Schmugge T J, Ritchie J C, et al. Detecting land cover change at the Jornada Experimental Range, New Mexico with ASTER emissivities. Remote Sensing of Environment, 2008, 112 (4): 1730-1748
    Fuller R M. The Land Cover Map of Great Britain: An Automated Classification of Landsat Thematic Mapper Data. Photogrametric Engineering and Remote Sensing, 1994, 60 (5): 553-562
    Gal Y, Yaron Z, Michael L R. Effects of interactive scale-dependent variables on beetle diversity patterns in a semi-arid agricultural landscape. Landscape Ecology, 2007, (22): 687-703
    Gartner S, Reynolds K M, Hessburg P F, et al. Decision support for evaluating landscape departure and prioritizing forest management activities in a changing environment. Forest Ecology and Management, 2008, 256 (10): 1666-1676
    Gaucherel C. Neutral models for polygonal landscapes with linear networks. Ecological Modelling, 2008, 219 (1): 39-48 Gillet F. Modelling vegetation dynamics in heterogeneous pasture - woodland landscapes. Ecological Modelling, 2008, 217 (1): 1-18
    Goslee S C, Havstad K M, Peters D P C, et al. High-resolution images reveal rate and pattern of shrub encroachment over six decades in New Mexico, U.S.A.. Journal of Arid Environments, 2003, 54 (4): 755-767
    Gracia M, Montane F, Pique J, et al. Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees. Forest Ecology and Management, 2007, 242 (2): 391-397
    Haapanen R. Delineation of forest/nonforest land use classes using nearest neighbor methods. Remote Sensing of Environment, 2004, 89: 265-271
    Halil I C, Siamak K, Stacy A C. Correspondence analysis for detecting land cover change. Remote Sensing of Environment, 2006, 102 (3): 306-317
    Hirzel, Lay A H. Habitat suitability modelling and niche theory. Journal of Applied Ecology, 2008, 45 (5): 1372-1381 Holmes P M. Shrubland Restoration Following Woody Alien Invasion and Mining: Effects of Topsoil Depth, SeedSource, and Fertilizer Addition. Restoration Ecology, 2001, 9 (1): 71-84
    Jimenez J C, Sobrino J A, Gillespie A, et al. Improved land surface emissivities over agricultural areas using ASTER NDVI. Remote Sensing of Environment, 2006, 103 (4): 474-487
    Jun C J, Sucharita G, Eric D K. On the choice of spatial and categorical scale in remote sensing land cover classification. Remote Sensing of Environment, 2005, 96 (1): 62-77
    Katra I, Blumberg D G, Lavee H, et al. Spatial distribution dynamics of topsoil moisture in shrub microenvironment after rain events in arid and semi-arid areas by means of high-resolution maps. Geomorphology, 2007, 86 (3): 455-464
    Katra I, Lavee H, Sarah P. Rainfall distribution around shrubs: Eco-geomorphic implications for arid hillslopes. Geomorphology, 2008, 95 (3): 544-548
    Kerns B K, Ohmann J L. Evaluation and prediction of shrub cover in coastal Oregon forests. Ecological Indicators, 2004, (4): 83-98
    Krishna A, Junior G, Jordano, et al. A neutral-niche theory of nestedness in mutualistic networks. Oikos, 2008, 117 (11): 1609-1618
    Latham R E. Shrubland longevity and rare plant species in the northeastern United States. Forest Ecology and Management, 2003, 185: 21-39
    Lufafa A, Diedhiou I, Samba S A N, et al. Carbon stocks and patterns in native shrub communities of Senegal's Peanut Basin. Geoderma, 2008, 146 (1): 75-82
    Ma J, Hasi B. Land-use classification using ASTER data and self-organized neutral networks. International Journal of Applied Earth Observation and Geoinformation, 2005, 7 (3): 183-188
    Makela H, Pekkarinen A. Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management, 2004, 196: 245-255
    Marquardt P E, Epperson R K. Spatial and population genetic structure of microsatellites in white pine. Molecular Ecology, 2004, 13 (11): 3305-3310
    McGlynn I O, Okin G S. Characterization of shrub distribution using high spatial resolution remote sensing: Ecosystem implications for former Chihuahuan Desert grassland. Remote Sensing of Environment, 2006, 101 (4): 554-566
    McKenzie D, Halpern C B. Modelling the distributions of shrub species in Pacific Northwest forests. Forest Ecology and Management, 1999, 114: 293-307
    Milne B T. Measuring the fractal geometry of landscapes. Appl. Math. Compute, 1988, (27): 67-79
    Min X, Pakorn W, Pramod K V, et al. Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 2005, 97 (3): 322-336
    Monica G, Cecilio O, Luis V, et al. Monitoring land degradation risk using ASTER data: The non-evaporative fraction as an indicator of ecosystem function. Remote Sensing of Environment, 2008, 112 (9): 3720-3736
    Murali K S, Kavitha A, Harish R P. Spatial patterns of tree and shrub species diversity in Savanadurga State Forest, Karnataka. Current Science, 2003, 84: 808-813
    Muukkonen P, Heiskanen J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sensing of Environment, 2007, 107 (4): 617-624
    Noble J C, Walker P. Integrated shrub management in semi-arid woodlands of eastern Australia: A systems-based decision support model. Agricultural Systems, 2006, 88: 332-359
    Nowak D J, Crane D E, Stevens J C. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 2006, 4 (3): 115-123
    Okin G S, Murray B, Schlesinger W H. Degradation of sandy arid shrubland environments: observations, process modeling, and management implications. Journal of Arid Environments, 2001, (47): 123-144
    Overmars K P, Koning G H, Veldkamp A. Spatial autocorrelation in multi-scale land use models. Ecological Modeling, 2003, 164 (2): 257-270
    Pandit R, David N L. General and specific spatial autocorrelation: Insights from country-level analysis of species imperilment. Ecological Economics, 2007, 61 (1): 75-80
    Passera C B, Borsetto O, Allegretti L I. Short-term effects of shrub control on two different plant communities in Argentina. Journal of Arid Environments, 1996, 34: 415-420
    Pekkarinen A. Image segment-based spectral features in the estimation of timber volume. Remote Sensing of Environment, 2002, 82: 349-359
    Ritters K H, O' Neill R V, Hunsaker C T, et al. A factor analysis of landscape pattern and structure metrics. Landscape Ecology, 1995, 10 (1): 23-39
    Robinson D T, Brown D G, Currie W S. Modelling carbon storage in highly fragmented and human-dominated landscapes: Linking land-cover patterns and ecosystem models. Ecological Modelling, 2009, 220 (9): 1325-1338
    Shaw W B, Burns B R. The ecology and conservation of the endangered endemic shrub in New Zealand. Biological Conservation, 1997, 81: 233-245
    Shrivastava R J, Gebelein J L. Land cover classification and economic assessment of citrus groves using remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 61 (5): 341-353
    Stefanoni H, Dupuy J L, Manuel J. Mapping species density of trees, shrubs and vines in a tropical forest, usingfield measurements, satellite multispectral imagery and spatial interpolation. Biodiversity and conservation, 2007, 16 (13): 3817-3833
    Stefanoni H, Dupuy J L. Effects of landscape patterns on species density and abundance of trees in a tropical subdeciduous forest of the Yucatan Peninsula. Forest Ecology and Management, 2008, 255 (11): 3797-3805
    Stefanov W L, Netzband M. Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an arid urban center. Remote Sensing of Environment, 2005, 99 (1): 31-43
    Stow D, Hamada Y, Coulter L. Monitoring shrubland habitat changes through object-based change identification with airborne multispectral imagery. Remote Sensing of Environment, 2008, 112 (3): 1051-1061
    Sylvain D, Daniel C, Clementine G C. Niche separation in community analysis: A new method. Ecology, 2000, 81 (10): 2914-2927
    Theodorou Y, Drossos C, Alevizos P. Correspondence analysis with fuzzy data: The fuzzy Eigen value problem. Fuzzy Sets and Systems, 2007, 158 (7): 704-721
    Thomas K. A Comparison of Multispectral and Multitemporal Information in High Spatial Resolution Imagery for Classification of Individual Tree Species in a Temperate Hardwood Forest. Remote Sensing of Environment, 2001, 75: 100-112
    Viedma O, Melia J. Monitoring temporal changes in the spatial patterns of a Mediterranean shrubland using Landsat images. Diversity and Distributions, 1999, (5): 275-293
    Warren P S, Lerman S B, Charney N D. Plants of a feather: Spatial autocorrelation of gardening practices in suburban neighborhoods. Biological Conservation, 2008, 141 (1): 3-4
    Waser L T, Baltsavias E, Ecker K, et al. Assessing changes of forest area and shrub encroachment in a mire ecosystem using digital surface models and CIR aerial images. Remote Sensing of Environment, 2008, 112 (5): 1956-1968
    Wilcox B P, Dowhower S L, Teague W R, et al. Long-Term Water Balance in a Semiarid Shrubland. Rangeland Ecology and Management, 2006, 59 (6): 600-607
    Wu D, Linders J. Comparison of threemethods to select feature for discriminating forest cover types using SAR imagery. International Journal of Remote Sensing, 2000, 21 (10): 2089-2099
    Wulder M A, White J C, Coops N C, et al. Using local spatial autocorrelation to compare outputs from a forest growth model. Ecological Modeling, 2007, 209 (2): 264-276
    Zomeni M, Tzanopoulos J, Pantis J D. Historical analysis of landscape change using remote sensing techniques: An explanatory tool for agricultural transformation in Greek rural areas. Landscape andUrban Planning, 2008, 86 (1): 38-46
    布仁仓,胡远满,常禹.景观指数之间的相关分析.生态学报,2005,25(10):2764-2775
    蔡彦生,董云峰,高扬.辽西生态建设应大力发展灌木林.防护林科技,2006,(增刊):100-102
    常学礼,张安定,杨华等.科尔沁沙地景观研究中的尺度效应.生态学报,2003,23(4):635-641
    陈朝晖,朱江,徐兴奎.利用归一化植被指数研究植被分类、面积估算和不确定性分析的进展.气候与环境研究,2004,9(4):687-696
    陈存及,陈新芳,刘金福等.人工—天然杉阔混交林种群生态位及竞争研究.林业科学,2004,40(1):78-83
    陈小勇,林鹏.我国红树植物分布的空间自相关分析.华东师范大学学报(自然科学版),2000,(3):104-109
    陈永富,王振琴,张玉贵等.专家系统在TM遥感图像分类中的应用研究.林业科学研究,1995,9(4):344-347
    陈玉福,于飞海,董鸣.毛乌素沙地沙生半灌木群落的空间异质性.生态学报,2000,20(4):568-572
    程彬,姜琦刚,周云轩等.基于ASTER数据遥感影像的决策树分类.吉林大学学报(地球科学版),2007,37(1):179-184
    邓向瑞.北京山区森林景观格局及其尺度效应研究.北京林业大学博士学位论文,2007
    董林水,张旭东,周金星等.晋西黄土区与土石山区交错地带灌木种生态位及排序分析.南京林业大学学报(自然科学版),2007,31(5):15-22
    范泽孟,岳天祥.中国Holdridge生命地带及其多样性的时空变化分析.地理研究,2005,(1):121-129
    封磊,洪伟,吴承祯等.武夷山黄山松林主要种群生态位特征.山地学报,2008,26(3):308-316
    冯仲科,孟宪宇,韩熙春.建立我国多级分辨率的森林调查技术体系.北京林业大学学报,2002,24(5):156-159
    傅伯杰,陈利顶,马克明等.景观生态学原理及应用.北京:科学出版社,2001
    宫彩霞.内蒙古生态灌木生物质能源开发方略.内蒙古林业科技,2006,32(4):42-45
    龚建周,夏北成.景观格局指数间相关关系对植被覆盖度等级分类数的响应.生态学报,2007,27(10):4075-4085
    谷向生,牛广忠,闫永玲.高效灌木林可持续发展对策.防护林科技,2005,(1):67-68
    关文彬,冶民生,马克明等.岷江干旱河谷植被分类及其主要类型.山地学报,2004,22(6):679-686
    郭航,张晓丽.基于遥感技术的植被分类研究现状与发展趋势.世界林业研究,2007,20(3):14-19
    国家林业局. 2005中国森林资源报告.北京:中国林业出版社,2005
    国家林业局.森林资源规划设计调查主要技术规定(2003). http://www.dxalghy.com/more/erleijishu.doc
    国家林业局中南森林资源监测中心,西藏自治区林业局编.西藏自治区2001年森林资源连续清查成
    果.国家林业局中南森林资源监测中心,西藏自治区林业局,2002
    韩丽君,李金莲.黄土丘陵沟壑区不同复垦时间沙棘纯林物种多样性分析.中国水土保持,2007,(4):33-34
    贺山峰,蒋德明,李晓兰等.小叶锦鸡儿固沙群落草本种群重要值与生态位的研究.干旱区资源与环境,2007,21(10):150-155
    黄建文,鞠洪波.利用航天遥感数据进行植被分类的研究.林业科技通讯,1998,(10):9-11
    黄清麟,董乃钧,李元红.福建中亚热带天然阔叶林的主要类型与特征.山地学报,1999,17(4):368-374
    黄清麟,李元红.闽北短伐期阔叶林研究.林业科学,2000,36(1):97-102
    黄清麟.福建万木林木荷林特征研究.福建林学院学报,1997,17(1):42-46
    贾亚敏,刘彤,骆郴等.新疆莫索湾南缘沙漠四种灌木空间异质性的对比.干旱区研究,2008,25(2):225-230
    蒋齐,李生宝,翟明普.我国的固沙型灌木林及其研究进展.干旱区资源与环境,1998,12(2):87-95
    康华靖,陈子林,刘鹏等.大盘山自然保护区香果树种群结构与分布格局.生态学报,2007,27(1):389-396
    康永祥,康博文,岳军伟等.陕北黄土高原辽东栎群落类型划分及其生态位特征.生态学报,2007,27(10):4096-4105
    雷相东,唐守正,李冬兰等.东北过伐林灌木层物种多样性与林分因子的典型相关分析.应用与环境生物学报,2002,8(4):346-350
    李博.生态学.北京:高等教育出版社,2000
    李德志,石强,臧润国等.物种或种群生态位宽度与生态位重叠的计测模型.林业科学,2006,42(7):95-93
    李登科,郭铌.基于植被生长规律的陕西省植被遥感分类.高原气象,2008,27(1):215-221
    李登武,张文辉,任争争.黄土沟壑区狼牙刺群落优势种群生态位研究.应用生态学报,2005,16(12):2231-2235
    李景文主编.森林生态学(第二版).北京:中国林业出版社,1999
    李明诗.基于ASTER遥感数据的建湖县杨树信息提取的研究─分类、建模与反演制图.南京林业大学博士学位论文,2005
    李契,朱金兆,朱清科.生态位理论及其测度研究进展.北京林业大学学报,2003,25(1):100-107
    李强,王正志.基于MRF模型和人工神经网络的遥感图像分类综合方法研究.国防科技大学学报,1999,21(1):62-66
    李清河,江泽平,张景波等.灌木的生态特性与生态效能的研究与进展.干旱区资源与环境,2006,20(2):159-164
    林思祖,黄世国,洪伟等.杉阔混交林主要种群多维生态位特征.生态学报,2002,22(6):962-968
    刘创民,李昌哲,苏云良等.北京九龙山天然次生灌木林与生态环境因子的多元分析.辽宁林业科技,1994,(1):20-25
    刘军,陈益泰,孙宗修等.基于空间自相关分析研究毛红椿天然居群的空间遗传结构.林业科学,2008,44(6):45-52
    刘文娟,常庆瑞,贾科利等.荒漠化地区土地覆被光谱特征与遥感信息提取方法研究.西北农林科技大学学报,2007,35(9):205-209
    刘旭拢,何春阳,潘耀忠等.遥感图像分类精度的点、群样本检验与评估.遥感学报,2006,10(3):366-372
    卢纹岱. SPSS for Windows统计分析.北京:电子工业出版社,2000
    陆大道.区位论及区域研究方法.北京:科学出版社,1988
    孟猛,倪健,张治国.地理生态学的干燥度指数及其应用评述.植物生态学报,2004,28(6):853-861
    彭建,王仰麟,张源.土地利用分类对景观格局指数的影响.地理学报,2006,61(2):157-168
    彭少麟,王伯荪.鼎湖山森林群落分析──物种多样性.生态科学,1983,(11):11-17
    邱炳文,王钦敏,陈崇成等.福建省土地利用多尺度空间自相关分析.自然资源学报,2007,22(2):311-320
    任若思,王惠文.多元统计数据分析—理论、方法、实例.北京:国防工业出版社,1997
    师庆东,吕光辉,潘晓玲等.遥感影像中分区分类法及在新疆北部植被分类中的应用.干旱区地理,2003,26(3):264-268
    史小华,许晓波,张文辉.秦岭冷杉群落主要种群生态位研究.植物研究,2007,27(3):345-349
    宋英春,李凤日.乌兰布和沙漠灌木种群空间格局研究.植物研究,2007,27(3):331-337
    苏红军,杜培军,盛业华.高光谱遥感数据光谱特征提取算法与分类研究.计算机应用研究,2008,25(2):390-394
    粟显才等主编.西藏森林资源连清体系建立的研究.拉萨:西藏自治区林业局,1994
    孙儒泳,李博,诸葛阳等.普通生态学.北京:高等教育出版社,1993
    谈文琦,徐建华,岳文泽等.城市景观空间自相关与自相似的尺度特征研究.生态学杂志,2005,24(6):627-630
    谭炳香,李增元,陈尔学等. Hyperion高光谱数据森林郁闭度定量估测研究.北京林业大学学报,2006,28(3):95-102
    谭炳香.高光谱遥感森林类型识别及其郁闭度定量估测研究.中国林业科学研究院博士学位论文,2006
    唐守正.多元统计分析方法.北京:中国林业出版社,1986
    田大伦.高级生态学.北京:科学出版社,2008
    仝慧杰,冯仲科,张彦林.树种在遥感信息上的差异分析.北京林业大学学报,2007,29(增刊2):160-163
    仝慧杰.森林生物量遥感反演建模基础与方法研究.北京林业大学博士学位论文,2007
    童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用.北京:电子工业出版社,2006
    汪宝存,苗放,陈建华等.基于ASTER数据的归一化差异水体指数的建立及其应用.测绘科学,2008,33(2):177-179
    
    王伯荪,余世孝,彭少麟等.植物群落学实验手册.广州:广东高等教育出版社,1996
    王惠,邵国凡,代力民等.采伐干扰下长白山阔叶红松林主要灌木种群生态位动态特征.东北林业大学学报,2007,35(11):27-31
    王鸣远,杨素堂.沙地灌木林群落土壤水分平衡关系的研究.水土保持学报,2004,18(6):171-174
    王祥福,郭泉水,巴哈尔古丽等.崖柏群落优势乔木种群生态位.林业科学,2008,44(4):6-13
    王新明,王长耀,占玉林.大尺度景观结构指数的因子分析.地理与地理信息科学,2006,22(1):17-21
    温兴平,胡光道,杨晓峰.基于光谱特征拟合的高光谱遥感影像植被覆盖度提取.地理与地理信息科学,2008,24(1):27-31
    邬建国.景观生态学—格局、过程、尺度与等级.北京:高等教育出版社,2004
    吴波,慈龙骏.毛乌素沙地景观格局变化研究.生态学报,2001,21(2):191-196
    肖笃宁.景观生态学:理论、方法及应用.北京:中国林业出版社,1991
    谢花林,刘黎明,李波等.土地利用变化的多尺度空间自相关分析.地理学报,2006,61(4):389-400
    徐兵,姜辉,张羽飞.保护和发展灌木林是生态建设的需要.防护林科技,2007,(增刊):94-95
    杨国靖,肖笃宁.森林景观格局及破碎化评价—以祁连山西水自然保护区为例.生态学杂志,2003,22(5):56-61
    杨可明,郭达志,陈云浩.高光谱植被遥感数据光谱特征分析.计算机工程与应用,2006,42(31):213-215
    杨晓晖,张克斌,慈龙骏.北京林业大学学报,2005,27(5):81-86
    杨永恬,田听,冯仲科等.遥感混和分类算法及其在森林分类中的应用.测绘科学,2004,29(4):55-56
    杨泽龙,巴彦,陈杰等.五种荒漠灌木密度与水热气候因子的关联分析.中国农业气象,2008,29(2):177-180
    冶民生,关文彬,吴斌等.岷江干旱河谷主要灌木种群生态位研究.北京林业大学学报,2006,28(1):7-13
    尹伟伦,翟明普.生物质能源与能源林业若干问题研究.生物质化学工程,2006,40(B12):7-8
    俞海生,李宝军,张宝文等.灌木林主要生态作用的探讨.内蒙古林业科技,2003,(4):15-19
    岳永杰.北京山区防护林优势树种群落结构研究.北京林业大学博士学位论文,2008
    臧润国,成克武,李俊清等.天然林生物多样性保育与恢复.北京:中国科学技术出版社,2005
    臧润国,蒋有绪,杨彦承.海南岛霸王岭热带山地雨林林隙更新生态位的研究.林业科学研究,2001,14(1):17-22
    张德罡,胡自治.东祁连山杜鹃灌丛草地灌木种群分布格局研究.草地学报,2003,11(3):234-239
    张峰,张新时.基于TM影像的景观空间自相关分析—以北京昌平区为例.生态学报,2004,24(12):2853-2858
    张金屯,邱扬,郑风英.景观格局的数量研究方法.山地学报,2000,18(4):346-352
    张娜.生态学中的尺度问题:内涵与分析方法.生态学报,2006,26(7):2340-2355
    张松林,张昆.全局空间自相关Moran指数和G系数对比研究.中山大学学报(自然科学版),2007,46(4):93-97
    张云霞,张云飞,李晓兵.地面测量与ASTER影像综合计算植被盖度.生态学报,2007,27(3):964-976
    赵丽芳,谭炳香,杨华等.高光谱遥感森林叶面积指数估测研究现状.世界林业研究,2007,20(2):50-55
    赵艳云,程积民,王延平等.半干旱区环境因子对柠条灌木林结构的影响.水土保持通报,2005,25(3):10-14
    郑明国,蔡强国,秦明周等.一种遥感影像分类精度检验的新方法.遥感学报,2006,10(1):39-48
    郑维列,薛会英,罗大庆等.巨柏种群的生态地理分布与群落学特征.林业科学,2007,43(12):8-15
    中国科学院青藏高原综合科学考察队.西藏森林.北京:科学出版社,1985
    中国科学院青藏高原综合科学考察队.西藏植被.北京:科学出版社,1988
    中国科学院青藏高原综合科学考察队.西藏自然地理.北京:科学出版社,1982
    《中国森林》编辑委员会.中国森林.北京:中国林业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700