用户名: 密码: 验证码:
冻融过程对镉在土壤中赋存形态及迁移转化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冻融交替是作用于土壤的非生物应力,前人关于冻融作用对土壤理化性质影响的研究已经取得许多成果,但关于冻融过程对土壤污染物行为的影响及其生态效应方面的研究相对较少,尤其是冻融条件下重金属镉在土壤中迁移转化微观机制的研究目前还鲜有报道。本文选择东北地区代表性土壤之一-棕壤作为试验材料,采用土壤添加外源重金属镉后在不同含水量、不同温度条件下室内冻融培养、测定冻融后土壤中各形态镉含量、土壤对镉的吸附量、解吸量及淋洗液中镉含量的方法,研究了冻融过程对镉在土壤中迁移转化的影响,探讨了冻融过程对土壤重金属镉行为作用的机理。冻融处理及其冻融条件为,冻结温度-30℃,融化温度30℃,冻结和融化各3天即6天为1个冻融周期(次),冻融次数分别为0、1、3、6、9、12次。这一研究结果,有助于认识季节性冻融地区土壤重金属污染的特点,可为这一地区确定土壤重金属镉的环境容量、评价镉污染土壤的生态环境风险、预测土壤对外源镉污染的缓冲性能和进行镉污染土壤诊断治理提供理论依据。所得主要研究结果如下:
     1.冻融过程对土壤中重金属镉形态的影响。当添加外源重金属镉含量为10mg kg~(-1),对不同含水量(0.21kg kg~(-1)~0.45kg kg~(-1))土壤中交换态、铁锰氧化物结合态、有机结合态、残渣态镉含量的测定结果表明,冻融后土壤中各形态镉含量差异很大,但均以交换态为主,其次为残渣态,有机结合态、铁锰氧化物结合态含量相对较低。
     土壤含水量和冻融次数对交换态、铁锰氧化物结合态、有机结合态、残渣态镉含量的影响均达到了极显著水平。利用逐步回归分析方法建立的土壤含水量(X_1,kg kg~(-1))和冻融次数(X_2,次)与交换态镉含量(Y_(交换),mg kg~(-1))的关系方程为Y_(交换)=18.04-62.86X_1-0.48X_2+75.19X_1~2+1.49X_1X_2;与铁锰氧化物结合态镉含量(Y_(铁锰-结合),mg kg~(-1))的关系方程为Y_(铁锰-结合)=0.46+0.13X_1X_2;与有机结合态镉含量(Y_(有机-结合),mg kg~(-1))的关系方程为Y_(有机-结合)=0.74+8.31×10~(-2)X_2~2;与残渣态镉含量(Y_(残渣),mg kg~(-1))的关系方程为Y_(残渣)=2.91-0.45X_1X_2。说明土壤含水量和冻融次数对不同形态镉含量的影响并不相同,对交换态镉含量作用最显著的冻融条件是土壤含水量,对有机结合态镉含量作用最显著的冻融条件是冻融次数,对铁锰氧化物结合态和残渣态镉含量作用最显著的冻融条件是土壤含水量和冻融次数的共同作用。
     2.冻融过程对土壤重金属镉释放的影响。在田间持水量条件下,污染土壤中镉含量为10mg kg~(-1)~50mg kg~(-1)时,用NH_4AC和EDTA作提取剂,冻融处理增加了土壤中镉的释放量。与未冻融处理(冻融次数为0次)相比,冻融交替使添加外源镉的土壤中离子态镉的释放率(释放量/添加量)增加,未知态镉的释放率减少,而络合态镉的释放率无显著变化。说明冻融过程具有促进土壤中结合牢固的未知态镉向不稳定的离子态镉转化的作用,即冻融过程有利于镉的释放。
     3.冻融过程对土壤重金属镉吸附—解吸的影响。当土壤含水量为田间持水量时,在相同的初始Cd~(2+)添加浓度下,经过冻融处理的土壤对Cd~(2+)的吸附量小于未冻融土壤,解吸率大于未冻融土壤,并且冻融次数越大,土壤对Cd~(2+)的吸附量越小,解吸率越大。说明冻融作用降低了土壤对镉的固持能力。Langmuir方程可以很好地拟合冻融土壤与未冻融土壤对镉的吸附,Freundlich方程既可以很好地拟合该土壤对Cd~(2+)的等温吸附,也能很好地拟合解吸过程。
     4.冻融过程对土壤中重金属镉移动性的影响。将镉污染土壤制成土柱,经过冻融作用后用相同数量的去离子水进行淋洗试验,结果表明,水分在经过冻融处理后的土柱中运移的速度明显快于未冻融土柱;Cd~(2+)在冻融处理后的土柱中穿透时间较短,而在未冻融土柱中穿透时间较长;冻融处理后的土柱淋出液中Cd~(2+)累积淋出量高于未冻融土柱,并且随着冻融次数的增加Cd~(2+)累积淋出量也随之增加。用环刀采集原状土样,在不同冻融次数下对土壤孔隙度的测定结果表明,冻融作用使土壤孔隙度增加。说明土壤冻融过程可以通过增加土壤孔隙度提高镉在土壤中的移动性,加大镉对土-水系统的环境风险。
Freeze-thawing cycles is a kind of non-biological impact on soil.Its effects on soil physical-chemical properties have been studied comprehensively but its effects on soil pollution and its ecological significance was not concerned enough,particularly the mechanism of Cd element transfer and transformation in soil under freezing-thawing cycles was still remained elusive.This paper used burozem which is a typical soil in the northeast region of China to determine the effects of freezing-thawing cycles on Cd transfer and transformation in soil with indoor culture under different soil water content and different frequency of freeze-thawing cycles.These results provide a scientific basis for establishing of Cd environmental capacity in soil,assessing of Cd eco-environmental risk,evaluating of soil ability to buffer exogenous Cd and diagnosing of soil pollution in the northeast region.The condition of the freezing-thawing cycles was adopted as the temperature of freezing and thawing being-30℃and 30℃,respectively,both freezing and thawing were lasted for 3 days (as 6 days for one freeze-thawing frequency),the frequency of freeze-thawing was 0,1,3,6, 9,12,respectively.The main results of this study are presented:
     1.Effect of freeze-thawing cycles on the form of Cd.The difference of concentration among exchangeable Cd,Fe/Mn-Oxide binding Cd,bound-organic Cd,and residual Cd was big under freeze-thawing cycles after added Cd 10mg kg~(-1)to soil with water content 0.21kg kg~(-1)~0.45kg kg~(-1),and exchangeable Cd was the main form,second was residural Cd,the amount of bound-organic Cd and Fe/Mn-Oxide binding Cd were relatively low.
     The content of soil water and the frequency of freezing-thawing cycles significantly influenced the content of each Cd form(p<0.01).The optimum regression equations for the relationship among the content of soil water(X_1),the frequency of freezing-thawing cycles (X_2),and the content of each Cd form(Y)were as followed: For exchangeable Cd,Y=18.04-62.86X_1-0.48X_2+75.19X_1~2+1.49X_1X_1;for Fe/Mn-Oxide binding Cd,Y=0.46+0.13X_1X_2;for bound-organic Cd,Y=0.74+8.3l×10~(-2)X_2~2;and for residural Cd,Y=2.91-0.45X_1X_2.This means that the effects of soil water content and freeze-thawing frequency on Cd concentration of four forms were not the same.The results showed that soil water content has significant effect on exchangeable Cd,frequency of freeze-thawing has significant effect on bound-organic Cd,the interaction effect of soil water content and frequency of freeze-thawing has significant effect on Fe/Mn-Oxide binding Cd and residural Cd.
     2.Effect of Freeze-thawing cycles on Cd release from soil.Freezing-thawing cycles increased Cd release from soil under these conditions of soil water content equal to field moisture capacity and soil Cd content between 10mg kg~(-1)~50mg kg~(-1).The release rate of ion-state Cd from soil under freeze-thawing conditions was larger than that observed under no freeze-thawing conditions but the release rate of unknown-state Cd was smaller than that observed under no freezing-thawing conditions.However,the release rate of complex-state Cd was not significant different with or without freezing-thawing cycles.Those results demonstrated that some unknown-state Cd originally bound firmly to soil colloids could be transformed into ion-state Cd under freeze-thawing cycles so that it was easily to release from soil.
     3.Effect of Freeze-thawing cycles on the ability of Cd absorbed to soil and desorbed from soil.The ability of soils treated with freeze-thawing cycles to absorb Cd was smaller and their ability to desorb Cd became larger as compared to the untreated soil at the same content of added Cd under field capacity water of soil.The treated soils with freeze-thawing cycles exhibited less ability to absorb Cd and more ability to desorb Cd with the increase of freeze-thawing frequency.These results suggest that freeze-thawing cycles can reduce the ability of soil to keep Cd.Langmuir and Freundlich equations could fit well to the ability of soils to absorb Cd with or without freeze-thawing cycles(p<0.01).The desorption capacity of Cd in soil with or without freeze-thawing cycles could be well described by the Freundlich equation(p<0.01).
     4.Effect of Freeze-thawing cycles on Cd transferability.Soil porosity was determined after original soil sampled by cutting ring and treated by Freeze-thawing cycles.Results showed that freeze-thawing cycles increased the soil porosity.Experiments showed that deionized water transferred faster in the earth column filled with Cd polluted soil under freezing-thawing conditions than that of no freezing-thawing cycles when use the same amount deionized water to leach the earth column.Similarly,Cd ion transferred faster in the earth column with freeze-thawing cycles treatment as compared to that of no freeze-thawing cycles treatment.The concentration of Cd ion in leacheate from the column with freeze-thawing cycles treatment was higher than that observed in the untreated soil.The total amount of Cd ion leaching from the column increased with the increase of freeze-thawing frequency.Those data suggest that freeze-thawing cycles increase the ability of Cd to transfer in soil so that enhance the harm of Cd to soil-underground water system.
引文
[1]鲍士旦.2000.土壤农化分析.北京:中国农业出版社
    [2]蔡金娟,史衍玺.2006.不同腐殖酸组分对湖泊沉积物中重金属释放的影响.水土保持学报,20(1):108-110,185
    [3]曹利军,王华东.1996.土壤作物系统镉污染及其防治研究.环境污染与防治,18(5):8-13
    [4]曹秋华,等.2006.根际重金属形态与生物有效性研究进展.广州环境科学,21(3):1-4
    [5]陈怀满.1996.土壤-植物系统中的重金属污染.北京:科学出版社
    [6]陈静生,王飞越.1996.中国东部河流沉积物中重金属含量与沉积物主要性质的关系.环境化学,15(1):8-14
    [7]陈同斌,陈志军.2002.水溶性有机质对土壤中镉吸附行为的影响.应用生态学报,13(2):183-186
    [8]戴树桂.1990.环境化学.北京:北京高等教育出版社
    [9]单奇华,等.2007.土壤Cu~(2+)和Cd~(2+)的吸附解吸特征及差异分析.安徽农业科学,35(19):5808-5810
    [10]党秀丽,等.2007.温度对外源性重金属镉在土-水界面间形态转化的影响.生态环境,3:794-798
    [11]邓波儿,刘同仇.1993.不同改良剂降低稻米镉含量的效果.华中农业大学学报,12(2):117-121
    [12]邓西民,等.1998.冻融作用对犁底层土壤物理性状的影响.科学通报,43(23):2538-2540
    [13]邓友生,徐学祖.1991.非饱和土与饱和冻融土导湿系数的变化特征.冰川冻土,13(1):51-59
    [14]丁疆华,温琰茂,舒强.2001.土壤环境中镉、锌形态转化的探讨.城市环境与城市生态,14(2):47-49
    [15]董长勋,等.2007.黄泥土对铜的吸附解吸及其pH变化.农业环境科学学报,26(2):521-525
    [16]段永惠.2004.污水灌区汞、镉在土壤中的纵向迁移及影响因素研究.环境保护,12:35-37
    [17]符娟林,章明奎,黄昌勇.2006.长三角和珠三角农业土壤对Pb、Cu、Cd的吸附解吸特性,生态与农村环境学报,22(2):59-64
    [18]顾继光,周启星,王新.2003.土壤重金属污染的治理途径及其研究进展.应用基础工程学报,11(2):143-151
    [19]关松荫.1986.土壤酶及其研究法.北京:北京农业出版社
    [20]郭观林,周启星.2004.中国东北北部黑土重金属污染趋势分析.中国科学院研究生院学报,21(3):386-392
    [21]郭观林,周启星.2005.镉在黑土和棕壤中吸附行为比较研究.应用生态学报,16(12):2403-2408
    [22]郭卫东,等.2000.河口污染沉积物中重金属释放与迁移的围隔生态系研究.台湾海峡,19(3):276-283
    [23]华络,白铃玉,韦东普.2002.有机肥镉-锌交互作用对土壤镉锌形态和小麦生长的影响.中国环境科学,22(4):346-350
    [24]黄廷林,沈晋.1993.环境化学条件对水体沉积物中重金属释放影响的研究述评.陕西机械学院学报,9(4):285-292
    [25]姜利兵,张建强.2007.土壤重金属污染的形态分析及生物有效性探讨.工业安全与环保,33(2):4-6
    [26]蒋先军,等.2003.镉污染土壤植物修复的EDTA调控机理.土壤学报,40(2):205-209
    [27]焦文涛,等.2005.土壤有机质对镉在土壤中吸附-解吸行为的影响.环境化学,24(5):545-549
    [28]金彩霞,周启星.2006.pH对水-土界面镉迁移特征的影响.沈阳建筑大学学报:自然科学版,22(4):626-628,652
    [29]劳家柽.1988.土壤农化分析手册.北京:农业出版社
    [30]李成保,季国亮.2000.恒电荷土壤和可变电荷土壤动电性质的研究Ⅱ.阴离子吸附和pH的影响.土壤学报,37(1):62-65
    [31]李非里,刘丛强,宋照亮.2005.土壤中重金属形态的化学分析综述.中国环境监测,21(4):21-27
    [32]李莉,蔡定建.2001.重金属形态分析.南方冶金学院学报,22(3):174-177
    [33]李亚峰,傅金祥,石金辉.2002.沈阳市城市供水排水及垃圾处理现状及分析.沈阳建筑工程学院学报:自然科学版,18(4):289-291
    [34]李瑛,等.2004.根际土壤中Cd、Pb形态转化及其植物效应.生态环境,13(3):316-319
    [35]李宇庆,陈玲,仇雁翎.2004.上海化学工业区土壤重金属元素形态分析.生态环境,13(2):154-155
    [36]廖敏,黄昌勇,谢正苗.1999.pH对镉在土水系统中的迁移和形态的影响.环境科学学报,19(1):81-86
    [37]林玉锁,薛家骅.1991.由Freundlich方程探讨锌在石灰性土壤中的吸附机制和迁移规律土壤学报,28(4):390-395
    [38]刘发欣,高怀友,伍钧.2006.镉的食物链迁移及其污染防治对策研究.农业环境科学学报,25(增刊):805-809
    [39]刘立群.1990.赣南土壤镉污染的防治途径.资源开发与保护,6(2):100-102
    [40]刘忠珍,等.2005.土壤环境中重金属形态区分方法的新进展及其应用.中国农学通报,21(4):206-211
    [41]马毅杰,袁朝良.1988.我国五种主要土壤胶体的表面化学性质研究.土壤通报,19(1):25-27
    [42]倪吾钟,龙新宪,杨肖娥.2000.菜园土壤镉吸附-解吸特性的研究.2000.广东微量元素科学,7(10):11-15
    [43]朴河春,刘广深,洪业汤.1995.全球冻融地区土壤是重要的N_2O释放源的综合分析.地球科学进展,10(3):283-288
    [44]朴河春,等.1998.非生物应力对土壤性质的影响.土壤肥料,3:17-21
    [45]裘祖楠,方宇翘.1989.城市河流底泥中镉的形态分布及其向水相释放的关系.中国环境科学,9(6):401-407
    [46]茹淑华,苏德纯,王激清.2006.土壤镉污染特征及污染土壤的植物修复技术机理.中国生态农业学报,14(4):29-33
    [47]邵孝侯,侯文华,邢光熹.1994.土壤固相不同组分对镉、锌吸持的研究.环境化学,13(4):340-345
    [48]邵孝侯,邢光熹,侯文华.1994.连续提取法区分土壤重金属元素形态的研究及应用.土壤学进展,22(3):40-46
    [49]宋菲,等.1996.土壤中重金属镉锌铅复合污染的研究.环境科学学报,16(4):431-436
    [50]宋玉芳,等.2004.污染土壤生物修复中存在问题的探讨[J].环境科学,25(2):129-133.
    [51]孙铁珩,周启星,李培军.2001.污染生态学.北京:科学出版社
    [52]唐启义,冯明光.2002.《实用统计分析及其DPS数据处理系统》.北京:科学出版社
    [53]腾凯,柳宝田,李益新.1996.季节性冻土区地下水的变化规律及开发利用.地下水,18(1):35-37
    [54]王芳,李恋卿,潘根兴.2000.黄泥土不同粒径微团聚体对Cd~(2+)的吸附与解吸研究.环境科学,27(3):590-593
    [55]王海燕,吴晓芙,胡日利.2000.土壤镉活度模型与控制相研究.中南林学院学报,20(2):1-6
    [56]王晶,等.2002.土壤有机态Cd转(活)化的影响因子及其综合作用.土壤通报,33(1):57-60
    [57]王凯荣.1997.我国农田镉污染现状及其治理利用对策.农业环境保护,16(6):274-278
    [58]王世斌,姜勇,梁文举.2006.沈阳西郊污灌区农田土壤镉污染特征研究.沈阳建筑大学学报(自然科学版),22(3):450-453
    [59]王维君,邵宗臣,何群.1995.红壤钻粒对Co,Cu,Pb和Zn吸附亲和力的研究.土壤学报,32(2):167-178
    [60]王洋,等.2007.冻融频次与含水量对黑土中镉赋存形态的影响.中国环境科学,27(5):693-697
    [61]王洋,等.2007.冻融作用与土壤理化效应的关系研究.地理与地理信息科学,23(2):91-96
    [62]魏丽红.2004.冻融交替对黑土土壤有机质及氮钾养分的影响.吉林农业大学硕士学位论文
    [63]魏世强,木志坚,青长乐.2003.几种有机物对紫色土镉的溶出效应与吸附-解吸行为影响的研究.土壤学报,40(1):110-117
    [64]邬杨善.1992.城市污水处理—投资与决策.北京:中国环境科学出版社
    [65]吴平霄.2004.粘土矿物材料与环境修复.北京:化学工业出版社
    [66]吴燕玉,陈涛,孔庆新.1984.张士灌区镉污染及其改良途径.环境科学学报,4(3):275-282
    [67]吴燕玉,陈涛,张学询.1989.沈阳张士灌区镉污染生态的研究.生态学报,9(1):21-26
    [68]吴燕玉,王新,梁仁禄.1998.Cd、Pb、Cu、Zn、As复合污染在农田生态系统的迁移动态研究.环境科学学报,18(4):407-414
    [69]吴燕玉,周启星,田均良.1991.制定我国土壤环境标准(汞、镉、铅和砷)的探讨.应用生态学报.2(4):334-349
    [70]夏汉平.1997.土壤—植物系统中的镉研究进展.应用与环境生物学报.3(3):289-298
    [71]夏立江,华珞,李向东.1998.重金属污染生物修复机制及研究进展.核农学报,12(1):69-64
    [72]熊毅.1985.土壤胶体(第二册)—土壤胶体研究法.北京:科学出版社
    [73]熊毅,陈家坊.1990.土壤胶体(第三册)—土壤胶体的性质.北京:科学出版社
    [74]徐明岗,张青,李菊梅.2004.不同pH下黄棕壤镉的吸附-解吸特征.土壤肥料,5:3-5
    [75]徐学祖,王家澄,张立新.2001.冻土物理学.北京:科学出版社
    [76]杨景辉.1995.土壤污染与防治.北京:科学出版社
    [77]杨平.2001.原状土与冻融土物理力学性能差异性研究.南京林业五学学报,25(2):68-70
    [78]杨平,张婷.2002.人工冻融土物理力学性能研究.冰川冻土,24(5):665-668
    [79]杨苏才,南忠仁,曾静静.2006.土壤重金属污染现状与治理途径研究进展.安徽农业科学,34(3):549-552
    [80]衣海青,刘训理.1996.重金属污染与土壤微生物.世界农业,12:36-37
    [81]于天仁,季国亮,丁昌璞.1996.可变电荷土壤的电化学.北京:科学出版社
    [82]余贵芬,等.2002.有机物质对土壤镉有效性的影响研究综述.生态学报,22(5):770-776
    [83]余自力,程光磊.2004.金属离子分析技术.北京:化学工业出版社
    [84]袁一傲,等.1992.张士灌区镉污染的人群健康效应研究.中国环境科学,12(3):173-177
    [85]张磊,宋凤斌.2005.土壤吸附重金属的影响因素研究现状及展望.土壤通报,36(4):628-631
    [86]张增强,等.2000.镉在土壤中吸持等温线及模拟研究.西北农业大学学报,28(5):88-94
    [87]张增强,等.2001.镉在土壤中释放的动力学特征研究.西北农林科技大学学报(自然科学版),29(1):63-67
    [88]张增强,张一平,朱兆华.2000.镉在土壤中吸持的动力学特征研究.环境科学学报,20(3):370-375
    [89]章明奎,符娟林,黄昌勇.2005.杭州市居民区土壤重金属的化学特性及其与酸缓冲性的关系.土壤学报,42(1):44-51
    [90]章明奎,王美青.2003.杭州市城市土壤重金属的潜在可淋洗性研究.土壤学报,40(6):915-920
    [91]赵其国,王浩清,顾国安.1993.中国的冻土.土壤学报,30(4):341-354
    [92]郑绍建,胡霭堂.1995.淹水对污染土壤镉形态转化的影响.环境科学学报,15(2):142-147
    [93]郑喜坤,鲁安怀,高翔.2002.土壤重金属污染现状与防治方法.土壤与环境,11(1):79-84
    [94]周启星,黄国宏.2001.环境地球化学与全球环境变化[M].北京:科学出版社,144-152.
    [95]朱江,等.2004.粘土矿物对金属镉的吸附与解吸研究.安徽地质,14(4):282-284
    [96]朱亮,邵孝侯.1997.耕作层中重金属Cd形态分布规律及植物有效性研究.河海大学学报,25(3):50-56
    [97]朱嬿婉,沈壬水,钱钦文.1993.某些土壤中金属元素与5个组分的研究.土壤,25(2):87-92
    [98]宗良刚,徐晓炎.2003.土壤中镉的吸附解吸研究进展.生态环境,12(3):331-335
    [99]邹献中,等.2004.可变电荷土壤和恒电荷土壤中吸附性铜离子的解吸.土壤学报.41(1):68-73
    [100]Abollino O,Aceto M,Malan drino M.2003.Adsorption of heavy metals on Na-montmorillonite,effect of pH and organic substances.Water Research,37:1619-1627
    [101]Alloway B J.1990.Heavy Metals in soils.Blackie Glasgow and London,176-183
    [102]Altin O,Ozbelge O H,Dogu T.1999.Effect ofpH,flow rate and concentration on the sorption of Pb and Cd on montmorillonite I.Experimental.Journal of Chemical Technology and Biotechnology,74:1131-1138
    [103]Arias M,Barral M T,Mejuto J C.2002.Enhancement of copper and cadmium adsorption on kaolin by the presence of humie acids.Chemosphere,48:1081-1088
    [104]Beven K,Germann P.1982.Macropores and water flows in soils.Water Resources Research,18(5):1311-1325
    [105]Bittell J E,Miller R F.1974.Lead,cadmium and calcium selectivity coefficients on montmorillonite,illite,and kaolinite.Journal of Environmental Quality,3:250-253
    [106]Bullock M S,Kemper W D,Nelson S D.1988.Soil cohesion as affected by freezing,water content,time and tillage.Soil Science Society of America Journal,52:770-776
    [107]Cheng B T,Bourget S J,Ouellert G J.1971.Influence of alternate freezing and thawing on the availability of some soil minerals.Canadian Journal of Soil Science,51:323-328
    [108]Clein J S, Schimel J P.1995.Microbial activity of tundra and taiga soils at sub-zero temperatures.Soil Biology and Biochemistry, 27:1231-1234
    [109]Constantine D, Stalikas, George A.1999.Use of a sequential extraction scheme with data normalisation to assess the metal distribution in agricultural soils irrigated by lake water.The Science of the Total Environment, 236(1-3): 7-18
    [110]Deluca T H, Keeney D R, Mccarty G M.1992.Effect of freeze-thaw events on mineralization of soil nitrogen.Biology and Fertility of Soils, 14: 116-120
    [111]Eckert W, Nishri A, Parparova R.1997.Factors Regulating the Flux of Phosphate at the Sediment-Water Interface of a Subtropical Calcareous Lake: A Simulation Study with Intact Sediment Cores.Water Air Soil Pollut, 99: 401-409
    [112]Edwards L M.1991.The effect of alternate freezing and thawing on aggregate stability and aggregate size distribution of some Prince Edward Island soil.Journal of Soil Science, 42: 193-204
    [113]Elzahabi M, Yong R N.2001.pH influence on sorption characteristics of heavy metal in the vadose zone.Engineering Geology, 60: 61-68.
    [114]Federico S, Maria C B.1997.Water-sediment exchange of nutrients during early diagenesis and resuspension of anoxic sediments from the Northeast Adriatic Sea shelf.Water Air Soil Pollut, 99:541-556
    [115]Fitzhugh R D, Driscoll C T, Groffman P M.2001.Effets of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem.Biogeochemistry, 56:215-238
    [116]Grogan P, Michelsen A, Ambus P.2004.Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms.Soil Biology and Biochemistry, 36(4): 641-654
    [117]Hardiman R T.1984.Factors afecting the distribution of cadmium, copper and lead and their effect up on yield and in bush beans.Plant and Soil.81: 17-27
    [118]Hassink J.1992.Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils.Biology and Fertility of Soils, 14:126-134
    [119]J Y Yang, X E Yang.2006.Effects of pH, organic acids, and inorganic ions on lead desorption from soils.Environmental Pollution, 143(1): 9-15
    [120]Kitagishi, Yamane.1981.Heavy metal pollution in soils of Japan.Tokyo: Japan Scientific Societies Press, 3-15
    [121]Lehrsch G A.1998.Freeze-thaw cycles increase near-surface aggregate stability.Soil Science, 163:63-70
    [122]Lehrsch G A, R E Sojka, D L Carter, and P M Jolley.1991.Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter.Soil Science Society of America Journal.55:1401-1406
    [123]Lim T-T, Tay J-H, Teh C-I.2002.Contamination time effect on lead and cadmium fractionation in a tropical coastal clay.J Environ Qual, 31: 806-812
    [124]Mclaughin M J, Lambrechts R M, Smolders E.1998.Effects of sulfate on cadmium uptake by swiss chard: Ⅱ.Effects due to sulfate addition to soil.Plant and Soil, 202: 217-222
    [125]Neilsen C B, Groffman PM, Hamburg SP.2001.Freezing effects on carbon and nitrogen cycling in northern hardwod forest soils.Soil Science Society of America Journal, 65(6): 1723-1730
    [126]Ou Z Q, Jia LQ, Jin HY.1999.Formation of soil macropores and preferential migration of linear alkylbenzene sulfonate (LAS) in soils.Chemosphere, 38(9): 1985-1996
    [127]Panagiotis D, Scarlatos.1997.Experiments on water-sediment nutrient partitioning under turbulent,shear and diffusive conditions.Water Air Soil Pollut, 99:411-425
    [128]Paola Adamo, Laurence Denaixb, Fabio Terribile.2003.Characterization of heavy metals in contaminated volcanic soils of the Solofrana fiver valley (Southern Italy).Geodernla, 117(3-4):347-366
    [129]Piccolo A.1992.Distribution of heavy metas in profiles of a hydromorphicil system resenius.Environmental Bulletin.(1): 16-21
    [130]Quevauviller P.2002.Operationally defined extraction procedures for soils and sediment analysis.Part3: new CRMs for trace-element extractable contents.Trends in Analytical Chemistry, 21(11): 774-786
    [131]Reddy C N, Patrick W H J.1977.Effect of redox potential and pH on the uptake of cadmium and lead by rice plants.Environ.Qual.6, 259-262
    [132]Rolf-Alexander During, Thorsten Hob, Stefan Gath.2002.Depth distribution and bioavailability of pollutants in long-term differently tilled soils.Soil and Tillage Research, (66): 183-195
    [133]Rothbaum, H P.1986.Cadmium accumulation in soil from long continued application of super phosphate.Jour.Soil Sci.37: 99-107
    [134]S Yu, Z L He, C Y Huang.2002.Adsorption-desorption behavior of copper at contaminated levels in red soils from China.Environ Qual, 31:1129-1136.
    [135]Sariz R S.1973.Effects of forest cover removal on depth of soil freezing and overland flow.Soil Science Society of America Proceedings, 37: 774-777
    [136]Schimel J P, Clein J S.1996.Microbial response to freeze-thaw cycles in tundra and taiga soils.Soil Biology and Biochemistry, 28(8): 1061-1066
    [137]Shanley J B, Chaimers A.1999.The effect of frozen soil on snowmelt runoff at Sleepers River.VermontHydrology Proceedings, 13:1843-1858
    [138]Sharma S, Szele Z, Schilling R.2006.Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil.Applied and Environmental Microbiology, 72(3): 2148-2154
    [139]Skogland T, Lomeland S, Goksoyr J.1988.Respiratory burst afterfreezing andthawing of soil: Experiments with soil bacteria.Soil Biology and Biochemistry, 20: 851-856
    [140]Souhdes D A.1961.Effect of drying and freezing soils on Carbon dioxide production, available mineral nutrients, aggregation, and bacterial population.Soil Sci, 19: 291-298
    [141]Soulides D A, Allison F E.1961.Effect of drying and freezing soil on carbon dioxide production,available mineral nutrients aggregation and bacterial population.Soil Science, 91: 291-298
    [142]Taskin O, Ferhan F.2003.Effect of freezing and thawing processes on soil aggregate stability .CATENA, 52:1-8
    [143]Teepe R, Brumme R, Beese F.2000.Nitrous oxide emissions from frozen soils under agricultural,fallow and forest land.Soil Biology and Biochenistry, 32 (11-12): 1807-1810
    [144]Tessier A, Campbell P G, Bisson M.1979.Sequential extraction procedure for the speciation of particulate trace metals.Anal Chem, 51(7): 844-850
    [145]Xan X.1989.Effect of chemical forma of cadmium, zinc, lead in polluted soils on their uptake by cabbage plants.Plant and soil.113(2): 257-260
    [146]Yinming L and Corey R B.1993.Redistribution of sludge-borne cadmium, copper, and zinc in a cultivatd plot.Jour.Enviorn.Qual, 22: 1-8
    [147]Yong R N.1993.pH influence on selectivity and retention of heavy-metals in some clay soils.Canadian Geotechnical Journal, 30: 821-833
    [148]Zachara.1992.Cadmium sorption to soil separates containing layer silicates and iron and aluminium oxides.Soil Science Society of America Journal, 56: 1074-1084

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700