用户名: 密码: 验证码:
表面改性TiO_2光催化作用及对PVC塑料性能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锐钛矿型TiO_2在可见光下一般没有催化活性,只有对其进行改性,降低其禁带宽度或用光敏剂进行光敏化,才能使TiO_2具有可见光催化效果。
     本文首次以聚乙烯醇(PVA)和Ti(OH)_4为原料,采用水热法制备工艺,得到了对甲基橙(MO)具有优良可见光催化降解活性、对聚氯乙烯(PVC)塑料具有明显抗菌效果的降解聚乙烯醇(D-PVA)负载TiO_2可见光催化剂(TiO_2/D-PVA)。借助XRD、BET、SEM、TGA、XPS、EPR、UV-vis等分析表征手段,对TiO_2/D-PVA的晶体结构、表面组成、亲油性能和其对甲基橙的可见光催化降解性能进行了系统研究;进一步采用熔融共混法制备得到了TiO_2/D-PVA改性的抗菌PVC塑料,考察了TiO_2/D-PVA对PVC塑料的力学性能、加工流变性能和抗菌性能的影响规律。
     研究表明,水热法生成的TiO_2作为路易斯酸催化剂,使PVA失水降解,生成具有共轭C=C结构的D-PVA,并负载在TiO_2粒子表面;由于D-PVA和TiO_2的相互作用,使TiO_2/D-PVA具有较好的可见光催化活性,并能有效地降解甲基橙。研究还表明,TiO_2/D-PVA中TiO_2的晶型均为锐钛矿型,D-PVA负载在TiO_2的表面,没有进入TiO_2的晶格,对TiO_2的晶型无影响;此外,D-PVA能有效抑制TiO_2晶体成长和颗粒团聚,TiO_2/D-PVA比纯TiO_2具有更小的晶体尺寸和更大的BET比表面积。PVA的掺杂量、水热反应温度和水热反应时间都明显地影响TiO_2/D-PVA的晶粒大小、比表面积和光催化活性。随着PVA的掺杂量增加、水热反应温度升高和水热反应时间延长,TiO_2/D-PVA的可见光催化活性呈现先升高而后降低的变化规律;当水热反应温度为180℃、水热反应时间为6h、PVA对TiO_2的质量比为1:10时,制备得到的TiO_2/D-PVA可见光催化活性最高,在可见光连续照射40h后,其对甲基橙降解率达到84%,降解效果为P25的9.2倍。TiO_2/D-PVA对甲基橙的可见光催化降解反应符合一级反应动力学规律,动力学方程为:ln(C_0/C_t)=0.0461t。
     在上述研究基础上,还进一步考察了TiO_2/D-PVA对PVC塑料的加工流变性能影响,发现其使PVC塑料非牛顿指数降低;由于TiO_2/D-PVA颗粒较大,使PVC塑料的拉伸强度和断裂伸长率也下降。研究还表明,TiO_2/D-PVA改性PVC塑料具有一定的可见光催化抗菌作用,当TiO_2/D-PVA加入量为8phr时,TiO_2/D-PVA-PVC塑料对大肠杆菌和金黄色葡萄球菌的抗菌率分别达到76.3%和71.4%。
     论文还进一步采用硅烷偶联剂KH-560对载银纳米二氧化钛(TiO_2/Ag~+)粒子进行表面改性,并制备得到了TiO_2/Ag~+-PVC抗菌塑料;考察了改性TiO_2/Ag~+粒子对PVC塑料力学性能、加工流变性能、抗紫外光老化性能和抗菌性能的影响规律。研究发现,KH-560可在TiO_2/Ag~+粒子表面接枝,从而有效降低TiO_2/Ag~+粒子的表面张力,提高其与PVC树脂的相容性,并抑制TiO_2/Ag~+粒子的团聚,有利于其在PVC塑料中分散。TiO_2/Ag~+粒子亲油化度和分散稳定性分析研究表明,KH-560加入量、反应时间和反应温度均明显影响KH-560在TiO_2/Ag~+粒子表面接枝改性效果,当KH-560添加量为TiO_2/Ag~+粒子质量的8%、反应时间为5h、反应温度为78.5℃时,改性效果最好。改性TiO_2/Ag~+粒子能够同时提高PVC塑料的拉伸强度和断裂伸长率,而且随着TiO_2/Ag~+粒子添加量增加,拉伸强度和断裂伸长率呈现先提高后降低的变化趋势。由于改性TiO_2/Ag~+粒子的加入,削弱了PVC分子间的作用力,对PVC塑料起了内润滑作用,使其加工流动性变好。同时发现,表面改性TiO_2/Ag~+能够吸收紫外光,使之转变为热量而散失,从而提高了PVC塑料的抗紫外光老化性能。当改性TiO_2/Ag~+添加量为1phr时,对应的PVC塑料对大肠杆菌和金黄色葡萄球菌抗菌率都能达到90%;当添加量为4phr时,对大肠杆菌和金黄色葡萄球菌抗菌率则都能达到99%。这些研究表明,可见光催化剂TiO_2/D-PVA和纳米TiO_2/Ag~+具有较好的应用前景。
The anatase TiO_2 does not show photocatalytic activity under visible light irradiation.In order that TiO_2 can show the visible light photocatalytic activity,TiO_2 must be modified through decreasing its E_(bg) or doping photosensitizer.
     A novel visible light active photocatalyst(TiO_2/D-PVA) was prepared in one portion of PVA(polyvinyl alcohol) and Ti(OH)_4 by means of hydrothermal method.The structure,surface composition,lipophilic nature and photocatalytic activity of TiO_2/D-PVA were investigated by XRD,BET,SEM,TGA,XPS,EPR,UV-vis and the degradation of methyl orange(MO).TiO_2/D-PVA-PVC plastics was prepared by mixing and melting of TiO_2/D-PVA,PVC and other necessary additives,and its mechanical properties,rheological behavior and antibacterial properties were studied in detail.
     PVA was degraded to produce the D-PVA of conjugated C=C accelerated by the synthesized TiO_2 as a Lewis acid under hydrothermal process,and the D-PVA was doped onto the surface of TiO_2.Due to the interaction between D-PVA and TiO_2, TiO_2/D-PVA showed significant visible light photocatalytic activity and could effectively degrade methyl orange under visible light.All the synthesized TiO_2/D-PVA samples consisted of anatase structure with high crystallinity and D-PVA was doped on the surface of TiO_2 particles,which indicated that D-PVA did not exist in the crystal lattice and hardly influenced the crystalline phase of TiO_2.The feed ratio of PVA to TiO_2,hydrothermal reaction temperature and reaction time obviously influenced the crystal size,BET surface area and photocatalytic activity.TiO_2/D-PVA showed less crystal size and bigger BET surface area than pure TiO_2,because D-PVA prohibited TiO_2 from crystallizing and agglomerating.TiO_2 showed the tendency of visible light photocatalytic activity from increasing to decreasing with the increased feed ratio of PVA to TiO_2.The visible light photocatalytic activity also showed the tendency from increasing to decreasing with the increased hydrothermal reaction temperature and reaction time.TiO_2/D-PVA,synthesized at 180℃with the reaction time for 6h and the 1: 10 feed ratio of PVA to TiO_2,exhibited a higher visible light photocatalytic activity. When the suspension system of TiO_2/D-PVA and methyl orange was irradiated under visible light for 40 h,the degradation percentage of methyl orange reached 84.0%, which was 9.2 times than P25.The rate of methyl orange degradation fit the first-order reaction kinetics equition in the form of([MO]_0 /[MO]_t) =0.0461t).
     The influence of TiO_2/D-PVA on the rheological behavior of PVC plastics was also investigated.The results showed that TiO_2/D-PVA could obviously improve the rheological behavior and decrease the Non-Newtonian parameters.Due to the big particle size,the tensile strength and elongation at break of PVC plastics were all obviously decreased,compared to the PVC plastics without TiO_2/D-PVA particles.The antibacterial rates to Colibacillus and Staphylococcus were 76.3%and 71.4%with the addition of 8 phr TiO_2/D-PVA,respectively.
     The surface modification of TiO_2/Ag~+ nanoparticles by grafting the coupling agent of KH-560 and preparation of modified nano-TiO_2/Ag~+-PVC plastics were performed, and the effect of the modified nano-TiO_2/Ag~+ content on the mechanical properties, rheological behavior,ageing resistance and antibacterial properties of PVC plastics were investigated.The KH-560 grafted onto the surface of nano-TiO_2/Ag~+ particles decreased the surface tension of TiO_2/Ag~+ nanoparticles and prohibited the TiO_2/Ag~+ nanoparticles from agglomeration,which improved the compatibility of TiO_2/Ag~+,nanoparticles with PVC plastics and had the TiO_2/Ag~+ particles be dispersed in plastics with nanometer scale.The content of TiO_2/Ag~+ nanoparticles,reaction time and reaction temperature all influenced the modified effect of KH-560.The results showed that the optimal modified conditions were 8%contents of KH-560,78.5℃reaction temperature and 5h reaction time.The tensile strength and elongation at break of PVC plastics could all been improved and showed the tendency from increasing to decreasing with the increased content of TiO_2/Ag~+ nanoparticles.The rheological behavior was also improved because the TiO_2/Ag~+ nanoparticles reduced the interaction force of PVC molecules,which acted as an internal lubricant.TiO_2/Ag~+ nanoparticles could absorb the ultraviolet radiation and improve the uvioresistant ageing resistance.The antibacterial rates to Colibacillus and Staphylococcus were exceeded 90%and 99%with the additions of 1 phr(0.63%) and 4 phr(2.5%) modified TiO_2/Ag~+ nanoparticles,respectively.All the results show that the good application perspective of these new kinds of TiO_2/D-PVA and TiO_2/Ag~+ additives.
引文
[1]董晓旭.抗菌性能检测方法[J].塑料科技,2002,2:44-45.
    [2]李梅,王庆瑞.抗菌材料的发展及其应用[J].化工新型材料,1998,5:8-11.
    [3]马慕英.大蒜抗真菌作用的研究[J].食品科学,1993,157(1):7-11.
    [4]马凤英,王文英.大蒜素的药理学研究进展[J].中草药,1997,28(11):697-702.
    [5]童忠良.无机抗菌新初料与技术[M].北京:化学工业出版社,2006,63-86.
    [6]鞠剑锋,李澄俊,徐铭等.纳米二氧化钛复合材料抗菌性能研究[J].精细化工,2003,20(11):641-644.
    [7]徐宪锋.纳米复合抗菌聚氯乙烯功能材料的研制与开发[D],2003.
    [8]李炜罡,吕维平,王海滨等.抗菌材料进展[J].纪工新型材料,2003,3(3):7-10.
    [9]伍敏杨,魏运方.日本塑料与纤维用抗菌防霉剂的现状及发展趋势[J].精细石油化工,1998.6:14-19.
    [10]肖新颜,陈焕钦,万彩霞.TiO_2光催化空气净化及抗菌材料的研究与应用[J].化学研究与应用,2002,14(5):507-510.
    [11]唐启祥.纳米抗菌材料[J].文山师范高等专科学校学报,2004,17(3):262-265.
    [12]廖莉玲,刘吉平.新型无机抗菌剂[J].现化纪工,2001,21(7):62-64.
    [13]贾冬舒,杨飞华,童忠良.纳米抗菌材料-制备方法与应用研究进展[J].建筑装饰材料世界,2003,Z1:56-61.
    [14]丁浩,王福利,杨肖旭等.天然纳米孔载体无机抗菌剂的制备及性能研究[J].建筑装饰材料世界,2001,6:41-44.
    [15]庞斌.含银TiO_2纳米抗菌粉的制备、表面处理及其应用研究[D],2005.
    [16]Jain P,Pradeep T.Potential of Silver Nanoparticle-Coated Polyurethane Foam As an Antibacterial Water Filter[J].Biotechnology and Bioengineereing,2005,90(1):59-64.
    [17]Osamu Yamamoto.Influence of particle size on the antibacterial activity of zinc oxide[J].International Journal of Inorganic Materials,2001,3:643-646.
    [18]吴长江.不同纳米二氧化钛粒径的应用研究[J].广州化工,2006,34(1):26-27.
    [19]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37-38.
    [20]Chatterjee D,Mahata A.Photoassisted detoxi-fication of organic pollutants on the surface modified TiO_2 semiconductor particulate system[J].Catalysis Communications,2001,2:1-3.
    [21]刘秀珍,施利毅,.二氧化钛形态结构及其光催化活性的研究进展[J].上海环境科学,2002,19(9):414-417.
    [22]Anpo M,Takeuchi M.The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J].Journal of Catalysis,2003,216:505-516.
    [23]施利毅,李春忠,房鼎业等.TiCl_4-O_2体系高温反应制备超细TiO_2光催化材料的研究[J],无机材料学报,1999,14(5):717-725.
    [24]Yoshitake H,Sugihara T,Tatsumi T.Preparation of Wormhole-like Mesoporous TiO_2 with an Extremely Large Surface Area and Stabilization of Its Surface by Chemical Vapor Deposition[J],Chemistry of Materials,2002,14:1023-1029.
    [25]胡林华,戴松元,王孔嘉.溶胶-凝胶法制备的纳米TiO_2结构相变及晶体生长动力学[J],物理学报,2003,52(9):2135-2139.
    [26]Sakai H,Kawahara H,Shimazake M,et al.Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles:Effect of Alcohol Addition[J].Langmuir,1998,14:2208-2212.
    [27]苗鸿雁,胡秀兰,丁常胜等.光催化TiO_2纳米粉体的水热合成[J].西北轻工业学院学报,2002.4:38-40.
    [28]唐培松,洪樟连,周时凤等.可见光激发高光催化活性的纳米TiO_2光催化剂-丙酮溶剂水热合成、特性表征与光催化活性起因[J].太阳能学报,2006,27(3):289-294.
    [29]樊玉川,李芬芳,龙海云等.纳米二氧化钛的水热法制备及其应用研究进展[J].湖南有色金属,2006,22(5):42-45.
    [30]Karakitsou K E,Verykios X E.Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage[J].Journal of Physical Chemistry,1993,97(6):1184-1189.
    [31]Litter M I,Navio J A.Photocatalystic properties of iron-doped titania semiconductors[J].Journal of Photochemistry and Photobiology A:Chemistry,1996,98(3):171-181.
    [32]Zhu J F,Chen F,Zhang J L,et al.Fe~(3+)-TiO_2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization[J].Journal of Photochemistry and Photobiology A:Chemistry,2006,180:196-204.
    [33]Baciocchi E,Rosato G C,Rol C,et al.TiO_2-catalyzed photooxygenation of methylaromatic compounds in the presence of Ag_2SO_4 in CH_3CN[J].Tetrahedron Letters,1992,33:5437-5440.
    [34]Iwasaki M,Hara M,Kawada H,et al.Cobalt Ion-Doped TiO_2 Photocatalyst Response to Visible Light[J].Journal of Colloid and Interface Science,2000,224(1):202-204.
    [35]Sakata Y,Yamamoto T,Gunji H.et al.Effect of lead oxide addition to the photocatalytic behavior of TiO_2[J].Chemistry Letters,1998,2:131-132.
    [36]Karvinen S,Lamminm(a|¨)ki R J.Preparation and characterization of mesoporous visible-light-active anatase[J].Solid State Sciences,2003,5(8):1159-1166.
    [37]Miyauchi M,Ikezawa A,Tobimatsu H,et al.Zeta potential and photocatalytic activity of nitrogen doped TiO_2 thin films[J].Physical Chemistry Chemical Physics,2004,6(4):865-870.
    [38]Yin S,Aita Y,Komatsu M,et al.Visible-light-induced photocatalytic activity of TiO_(2-x)N_y prepared by solvothermal process in urea-alcohol system[J].Journal of the European Ceramic Society,2006,26(13):2735-2742.
    [39]Mozia S,Tomaszewska M,Kosowska B,et al.Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation[J].Applied Catalysis B:Environmental,2005,55(3):195-200.
    [40]Yin S,Yamaki H.Komatsu M,et al.Synthesis of visible-light reactive TiO_(2-x)N_y photocatalyst by mechanochemical doping[J].Solid State Sciences,2005,7(12):1479-1485.
    [41]Kuo C,Tseng Y H,Huang C H,et al.Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity[J].Journal of Molecular Catalysis A:Chemical,2007,270(1-2):93-100.
    [42]Khan S U M,Al-Shahry M,Inger-Jr W B.Efficient Photochemical Water Splitting by a Chemically Modified n-TiO_2[J].Science,2000,297:2243-2245.
    [43]Xu C K,Killmeyer R,Gray M L,et al.Photocatalytic effect of carbon-modified n-TiO_2nanoparticles under visible light illumination[J].Applied Catalysis B:Environmental,2006,64(3-4):312-317.
    [44]Janus M,Tryba B,Inagaki M,et al.New preparation of a carbon-TiO_2 photocatalyst by carbonization of n-hexane deposited on TiO_2[J].Applied Catalysis B: Environmental, 2004, 52(1): 61-67.
    [45]Inagaki M, Kojin F, Tryba B.et al.Carbon-coated anatase: the role of the carbon layer for photocatalytic performance[J].Carbon, 2005, 43(8): 1652-1659.
    [46]Liu S X, Chen X Y, Chen X.A TiO_2/AC plastics photocatalyst with haigh activity and easy separation prepared by a hydrothermal method[J].Journal of Hazardous Materials, 2006,143(1-2): 257-263.
    [47]Ho W K, Yu J C, Lee S C.Low-temperature hydrothermal synthesis of S-doped TiO_2 with visible light photocatalytic activity[J].Journal of Solid State Chemistry, 2006, 179(4):1171-1176.
    [48]Gomez R, Lopez T, Ortiz - Islas E, et al .Effect of sulfation on the photoactivity of TiO_2 sol-gel derived catalysts[J].Journal of Molecular Catalysis A: Chemical, 2003, 193(1-2):217-226.
    [49]Hattori A, Hiroaki T.High Photocatalytic Activity of F-Doped TiCs Film on Glass[J].Journal of Sol-Gel Science and Technology, 2001, 22(1-2): 47-52.
    [50]Sugiyama K, Ogawa T, Saito N, et al.Surface characterization of titanium dioxide powder treated by the CH_4-H_2 plasma CVD method[J].Surface and Coatings Technology, 2003,173-174:882-885.
    [51]Li Y Z, Hwang D S, Lee N H, et al.Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J].Chemical Physics Letters, 2005, 404(1-3):25-29.
    [52]Cronemeyer D C.Infrared Absorption of Reduced Rutile TiCs Single Crystals[J].Physical Review, 1959, 113: 1222-1226.
    [53]Irie H, Y Watanabe, Hashimoto K.Carbon-doped Anatase TiO_2 Powders as a Visible-light Sensitive Photocatalyst [J].Chemistry Letters, 2003, 32(8): 772-773.
    [54]Ishibai Y, Sato J, Akita S, et al.Photocatalytic oxidation of NOx by Pt-modified TiO_2 under visible light irradiation[J].Journal of Photochemistry and Photobiology A: Chemistry, 2007,188(1): 106-111.
    [55]Li H B, Duan X C, Liu G C, et al.Photochemical synthesis and characterization of Ag/TiO_2nanotube plasticss[J].Journal of materials science, 2008, 43(5): 1669-167.
    [56]Zhao X F,Meng X F,Zhong Z H,et al.Preparation and photocatalytic activity of Pb-doped TiO_2 thin films[J].Journal of inorganic materials,2004,19(1):140-146.
    [57]Yang H M,Shi R R,Zhang K,et al.Synthesis of WO_3/TiO_2 nanoplasticss via sol-gel,method[J].Journal of Alloys and Compounds,2005,398(1-2):200-202.
    [58]张琦,李新军,李芳柏等.WO_x/TiO_2光催化剂的可见光催化活性机理探讨[J].物理化学学报,2004,20(5):507-511.
    [59]Moon J,Yun C Y,Chung K W,et al.Photocatalytic activation of TiO_2 under visible light using Acid Red 44[J].Catalysis Today,2003,87(1-4):77-86.
    [60]Chatterjee D,Dasgupta S,Rao N N,et al.Visible light assisted photodegradation of halocarbons on the dye modified TiO_2 surface using visible light[J].Solar Energy Materials & Solar Cells,2006,90(7-8):1013-1020.
    [61]Zhang L,Lang C,Kisch H.et al.Visible-light detoxifycation and charge generation by transition metal chloride modified titania[J].Chemistry A European Journal,2000,6(2):379-384.
    [62]李祥忠,赵进才.可见光诱导的TiO_2界面光化学过程[J].感光科学与光化学,2002,20(4):316-316.
    [63]Chatterjee D,Mahata A.Demineralization of organic pollutants on the dye modified TiO_2semiconductor particulate system using visible light.Applied Catalysis B:Environmental.2001,33(2):119-125.
    [64]Su B T,Liu X H,Peng X X,et al.Preparation and characterization of the TiO_2/polymer complex nanomaterial[J].Materials Science and Engineering A,2003,349(1-2):59-62.
    [65]Song L,Qiu R L,Mo Y Q,et al.Photodegradation of phenol in a polymer-modified TiO_2semiconductor particulate system under the irradiation of visible light[J].Catalysis Communications,2007,8(3):429-433.
    [66]Van Hal P A,Christiaans M P T,Wienk M M,et al.Photoinduced Electron Transfer from Conjugated Polymers to TiO_2[J].Journal of Physical Chemistry B,1999,103:4352-4359.
    [67]Chasteen S V,Sholin V,Carter S A,et al.Towards optimization of device performance in conjugated polymer photovoltaics:Charge generation,transfer and transport in poly(p-phenylene-vinylene) polymer heterojunctions[J].Solar Energy Materials and Solar Cells,2008,92(6):651-659.
    [68]Gou Y Q,Chen D Y,Su Z X.Photocatalyst of nanometer TiO_2/conjugated polymer complex employed for depigmentation of methyl orange[J].Applied Catalysis A:General,2004,261(1):15-18.
    [69]杨红艳,滦道成,王红研.抗菌塑料的发展现状[J].云南大学学报(自然科学学报),2005,27(3A):310-315.
    [70]季君晖.国外塑料用抗菌剂及抗菌塑料[J].国外塑料,2004,22(3):38-42.
    [71]丁筠,丁亭.纳米抗菌塑料[J].国外塑料,2005,23(9):34-36.
    [72]赵亮,冯利平,侯绍刚.抗菌塑料的研究与应用[J].安阳工学院学报,2006,22(4):14-17.
    [73]季君晖,史维明.抗菌材料[M].北京:化学工业出版社,2003,94-98.
    [74]曾戎,章明秋,曾汉民.高分子纳米复合材料研究进展(Ⅰ)-高分子纳米复合材料的制备、表征和应用前景[J].宇航材料工艺,1999,1:1-6.
    [75]魏丽乔,戎文华.纳米抗菌塑料制备工艺的研究[J].工程塑料应用,2003,31(5):18-22.
    [76]徐瑞芬,许秀艳,付国柱.纳米二氧化钛在抗菌塑料中的应用性能研究[J].塑料,2002,3(30):26-29.
    [77]吴廷禄,刘忠仁,漆宗能等.纳米抗菌聚丙烯管材专用料[J].化学建材,2002,(1):12-14.
    [78]迟广俊.姚素薇.张卫国等.沉淀二氧化硅载银抗菌剂的制备及其抗菌性能[J].天津大学学报,2002,35(2):248-250.
    [79]王兴雪,刘俊,吴文华等.无机抗菌剂的表面改性[J].合成纤维工业,2005,28(2):1-3.
    [80]Xu T,Xie C S.Tetrapod-like nano-particle ZnO/acrylic resin plastics and its multifunction property[J].Progress in Organic Coatings,2003,46:297-301.
    [81]He J H,Ma W S,Tan S Z,et al.Study on surface modification of ultrafine inorganic antibacterial particles[J].Applied Surface Science,2005,241(3-4):279-286.
    [82]李继杰,邱树毅.纳米抗菌粉体在PVC树脂中的应用[J].贵州大学学报,2006,23(2):163-167.
    [83]张庆庆.汤斌.胶体氯化银抗菌膜的制备及其光催化抗菌特性[J].南京理工大学学报,2004,28(5):547-551.
    [84]佐林水正雄.食品包装用抗菌PVC材料[P].JP 6-287324,1994.
    [85]渡边忠男.抗菌菜板的制备方法[P].JP 6-237870,1994.
    [86]Cheng Q L,Lia C Z,Pavlinek V,et al.Surface-modified antibacterial TiO_2/Ag~+ nanoparticles:Preparation and properties[J].Applied Surface Science,2006,252:4154-4160.
    [87]Xu R F,Hu W K,Xu X Y.Antibacterial plastics containing titania nanoparticles and their preparation[P].CN 1454922 A,2003.
    [88]徐瑞芬,张鹏,胡伟康等.纳米TiO_2在塑料中的抗菌性能研究[J].上海塑料,2002,2:17-19.
    [89]Goto Hidemi.Antibacterial thermoplastic resin foam sheets containing photocatalytic titanium oxide[P].JP 2000017096 A,2000.
    [90]Yumetaka S,Kiyomitsu A.Development of high efficient photocatalytic TiO_2 thin films responding to visible light[J].Sozai Busseigaku Zasshi,2007,20(1):1-5.
    [91]Sozai Busseigaku Zasshi.Functional polyurethane foams with good antisoiling,deodorant,and antibacterial properties and photocatalyst compositions therefor[P].JP 2005060578 A,2003.
    [92]Yamada Yasushi.Transparent plastic photocatalyst films and production method[P].JP 11348172 A,1999.
    [93]Yamauchi Goro.Highly water-repellent,antisoiling,and antibacterial plastics materials[P].JP 2007051263 A,2007.
    [94]冯长根,杨海燕,曾庆轩.强酸型阳离子交换纤维的直接法制备[J].化工学报,2004,55(11):1884-1888.
    [95]Ren W J,Ai Z H,Jia F L,et al.Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO_2[J].Applied Catalysis B:Environmental,2007,69:138-144.
    [96]Yu J G,Zhao X J,Zhao Q N.Effect of surface structure on photocatalytic activity of TiO_2 thin films prepared by sol-gel method[J].Thin Solid Films,2000,379(1-2):7-14.
    [97]吴孟强,陈艾,周旺等.水热晶化法合成TiO_2晶须[J].磋酸盐学报,2001,29(6):587-590.
    [98]Ren W J,Ai Z H,Jia F L,et al.Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO_2[J].Applied Catalysis B:Enviromental,2007,69:138-144.
    [99]王振华,主沉浮,董厚欢等.Pb_2N共掺杂TiO_2纳米晶的制备、表征及光催化性能的研究[J].山东大学学报(理学版),2007,42(9):25-29.
    [100]叶宪曾,张新祥等.仪器分析教程[M].第二版,北京:北京大学出版社,2007,23.
    [101]韩忠霄,殷蓉,李景印等,聚苯胺改性负载型纳米二氧化钛的研究[J].无机盐工业,2007,39(12):16-18.
    [102]Oil is D F,Pelizzetti E.Photocatalysis fundamentals and applications[M].New York:John Wiley,1994:603.
    [103]Okamoto K,Yamamoto Y.Hetergeneous photocatalytic decomposition of phenol over TiO_2powder[J].Bulletin of the Chemical Societv.of Japan,1985,58:2015-2022.
    [104]周静芳,祝迎春,陈春鹏等.量子尺寸TiO_2纳米粒子的制备和表征[J].河南化工,1994,7:11-14.
    [105]Lu C H,Wu W H.Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO_2powders[J].Journal of Hazardous Materials,2007,154:649-654.
    [106]刘星,刘红研,汪树军.石蜡定型相变材料的包裹及热性能[J].精细化工,2006,23(1):8-11.
    [107]Xie X L,Liu Q X,Li R K Y,et al.Rheological and mechanical properties of PVC/CaCO_3nanoplasticss prepared by in situ polymerization[J].Polymer,2004(45):6665-6673.
    [108]王维宪,王桂.PVC/ABS共混体系流变性能的研究[J].现代塑料加工应用,2003,15(1):7-9.
    [109]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990,263.
    [110]Tang C Y,Yue T M,Chen D Z,et al.Effect of surface coating on the theological properties of a highly opaque nano-TiO_2/HIPS plastics[J].Materials Letters,2007,61(23-24):4618-4621.
    [111]金关泰,金日光,汤宗汤等.热塑性弹性体[M].北京:化学工业出版社,1983:544.
    [112]Helmy R,Fadeev A Y.Self-Assembled Monolayers Supported:Comparison of C_(18)H_(37)SiX_3(X =H,Cl,OCH_3),C_(18)H_(37)Si(CH_3)_2Cl,and C_(18)H_(37)PO(OH)_2[J].Langmuir,2002,18(23):8924-8928.
    [113]Liang J Z.Evaluation of dispersion of nano-CaCO_3 particles in polypropylene matrix based on fractal method[J].Plasticss,2007,Part A,38:1502-1506.
    [114]Yang H Y,Zhu S K,Pan N.Studying the Mechanisms of Titanium Dioxide as Ultraviolet Blocking Additive for Films and Fabrics by an Improved Scheme[J].Journal of Applied Polymer Science,2004,92:3201-3210.
    [115]Geshet R著,陈振兴译.塑料添加剂手册[M].北京:中国石化出版社,1992,105.
    [116]陈建军,王智宇,钱国栋等.均匀分散纳米二氧化钛的制各及其紫外线屏蔽性能[J].材料保护,2003,36(11):7-9.
    [117]郭刚,杨定明,熊玉竹等.纳米TiO_2和纳米ZnO的紫外光学特性及其在聚丙烯抗老化改 性中的应用研究[J].功能材料,2004,35:183-187.
    [118]Guan C,Lu C L,Liu Y F,et al.Preparation and Characterization of High Refractive Index Thin Films of TiO_2/Epoxy Resin nanoplasticss[J].Journal of Applied Polymer Science,2006,102:1631-1636.
    [119]杨爱明,付廷惠,袁波.塑料片材的组成、结构与其裂纹问题分析[J].光谱学与光谱分析,2002,22(6):409-411.
    [120]Cho S M,Choi W Y.Solid Phase Photocatalytic Degradation of PVC TiO_2 Polymer Plasticss[J].Journal of Photochemistry and Photobiology A:Chemistry,2001,143:221-228.
    [121]曹建军,郭刚,黄婉霞等.纳米TiO_2/高抗冲聚苯乙烯耐候型复合材料研究[J].化学工程.2007,25(2):60-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700