用户名: 密码: 验证码:
高空间分辨率遥感影像单株立木识别与树冠分割算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树冠参数对于林木生长模型建立、森林经营管理、生态学和木材学研究有重要作用。高空间分辨率遥感单株立木识别和树冠勾绘技术将给森林资源调查带来技术变革,因为它可以提供一致的、可重复客观有效率的测树结果。论文以此选题,从如下几个方面开展研究工作:
     1.回顾了从高空间分辨率遥感数据中提取单株立木及林分参数的国内外技术研究现状,特别对遥感图像分割算法和单株识别与树冠勾绘算法,从各种方法的理论模型、信息提取的精度、方法的好用性与适用范围、多种林分条件的实验、不同影像质量数据的实验、真实数据的获取和精度验证方法、方法缺陷的分析以及各种方法的比较实验等角度作了详细地分析。
     2.在面向对象影像分析思想和工具的指导下,在树冠模型研究与特征选择的基础上,发展并提出一个基于种子点区域增长的树冠识别和勾绘算法,算法把树冠分割和分类,树梢识别和单株树冠范围的勾绘放在一个统一框架下考虑,能够把相连的树冠分割开来,针对较高郁闭度林分有比较好的效果。算法具体实现步骤如下:首先进行影像的初步分割得到一系列面积较小的影像对象基元,初步分割的目的是在后面的步骤中通过计算影像对象基元的特征选取出杨树树冠的种子点,因此分割尺度值要选得比较小,本文选3。然后缩小树梢检测的范围,选择NDVI特征做掩模运算,把非林分区域屏蔽掉。这样可以开始进行检测树梢,采用非极大值压抑方法,选择近红外像素比率为局部最大值的对象作为杨树树梢种子点。对种子点进行生长,还要去除伪种子点,接着进一步对树冠形状进行优化,使得到的树冠边界比较光滑。最后进行分类合并,树冠属性矢量化及输出。
     通过对山西薛家庄林场30小班杨树人工同龄林影像的分割实验研究,得到树冠分布图。研究了两类精度评估技术,即林分整体或平均的精度评估和识别出的立木与实际单株立木一一匹配下的精度评估。通过对9个样地的验证,平均株数满足auto= 1.0892 manual+0.3558,R 2达到0.4693。通过对3个样地的树冠直径进行验证,发现程序计算得到的树冠直径分布规律和地面调查的频数分布有着大致相同的趋势,只是程序计算得到的树冠直径分布的范围更大,并且树冠直径值偏大。通过对不同郁闭度样地的分组分析,发现该算法对0.6郁闭度的林分效果最好,对郁闭度0.8的林分,漏分误差最严重,达34%;对郁闭度0.7的林分误授误差最严重,达63%。研究表明该算法是有效的,在应用时,特征选择、参数值的选择有着重要作用。
     3.提出一个基于数学形态学增强运算的标记分水岭分割算法,算法的基本实现步骤如下:读入彩色影像并转换成灰度图像,影像的暗区域是要分割的树冠对象,首先计算分割函数,使用梯度作为分割函数,采用拉普拉斯-高斯算子(LOG)进行边界检测;然后计算前景树梢对象标记,之前先要进行数学形态学的重建开运算和重建闭运算,起到滤波增强的作用,这样每个树冠对象内部都有互相连接的斑点像素;标记是图像特征,有着常量反射率的连接像素,有着一样的纹理的区域,前景标记即树梢。接着计算背景标记,背景标记是树冠或植被最终的范围,对树冠对象识别很有用,采用的是数学形态学的距离变换。这时进行树梢指导下的树冠勾绘,修改分割函数,使它的极小值点在前景和背景标记的位置;最后计算修改后分割函数的分水岭变换。
     把该算法用于安徽杨树人工同龄林影像分割实验研究,证明了算法的有效性。该算法对整幅影像分割,不做分类,通过对1个样地影像的验证发现平均株数误差在23%左右。把分水岭影像分割算法用于不同郁闭度的针叶树人工次生林,并以山东徂徕山林场3个样地为例进行验证,验证方法是目视判断,发现在较高郁闭度的林分中该算法的效果要更好些。本算法在实用中后续需要有人为干预。
     4.不同于在中低分辨率遥感影像上郁闭度估测常用的回归模型方法,本文应用面向对象影像处理方法提出一种直接计算郁闭度的方法,并计算了山东徂徕山林场针叶树人工次生林航空影像的郁闭度,精度在多数情况下可以保证。本文的方法简单易用。本文在分析了面向对象多尺度影像分析技术中对于树冠信息提取很重要的最合适影像空间分辨率选择的问题。对于以单株识别为目标的研究,首先要解决的问题是:要提取单株,遥感影像合适的空间分辨率是多少。根据前人的经验研究和模拟研究,选择平均树冠直径与像素大小比率或者树冠直径范围与像素大小比率,可以很好地说明树冠识别和轮廓勾绘算法对一些很高空间分辨率影像进行树冠分割得不到预期结果的原因。
     5.论文在算法研究的基础上,研究了两种软件工具化方法,即基于面向对象的组件化软件化方法和基于Web服务的方法。尽管在实际的多样林分中应用高空间分辨率光学影像进行树冠识别和轮廓勾绘还有许多技术困难,但是本文获得了有意义的成果,对这一问题有了比较多的知识和技术方法准备,对今后进一步研究有了一些思路。本文的研究提示我们应该基于高空间分辨率遥感影像和Lidar、高光谱等新型传感器构建中国新型森林资源调查体系。通过高空间分辨率遥感影像自动解译估计单株水平的测树属性结合自动解译估计林分因子,希望可以为常规的森林二类调查带来新的技术途径。利用高分数据做专题性的实验和比较,以期来评估基于高分数据的调查能否满足森林调查的精度要求。即使在某些因子不能满足的条件下,新方法提供的新信息,或许在快速一致性或某类专题调查方面具有一定的优势。
To date,the increasing volume and readily availability of high spatial resolution imagery provides an effective source to extract the individual tree information for detailed knowledge of forest stand at different spatial scales. Nevertheless,conventional pixel-based classification methods are far from the use of improved spatial resolution satisfactorily. Recent years ,object based image analysis method with various image engineering techniques becomes a strong support for high spatial resolution imagery object recognition. Automated or semi automated tree detection and crown delineation using high spatial resolution(pixel size is higher than 100 cm) remotely sensed imagery provides a potentially efficient means to acquire information needed for forest management decisions ,sustainable forest management ,mapping damage due to insects and disease and ecology research. Tree detection can provide estimates of tree abundance and spatial pattern that are useful for evaluating density and stocking objectives. Delineation of individual tree crowns can get crown diameter of tree to be used to model tree structural variables such as height,volume,or biomass. Conventional field based plot survey methods which using statistically based plot sampling designs use expert knowledge,but its procedure is highly subjective and highly labour intensive and costly. So automated tree detection and crown delineation with high spatial resolution imagery has the potential to provide the required information in a more objective manner,at lower cost,and with greater coverage than is attainable using field sampling.
     Image based automated tree detection and crown delineation algorithm has almost 15 year's research history in north America,north Europe,Germany and Australia. This thesis reviews the main remote sensing segmentation methods and diverse individual tree identification and crown delineation algorithms. We analyze the theoretic model,applicability,precision,experiment condition,verification method,error analyse and limitation of these methods. This thesis focuses on the development of two methods for individual tree identification and crown segmentation in the object based image analysis framework .
     The presented approach develops a tree top seeded based region growth tree detection and crown delineation algorithm for analysing QuickBird satellite images in Populus×xiaohei plantation even stand at Xue JiaZhuang wood farm in Shanxi Province of China. This algorithm use the crown model which is focus on basic radiometric properties of tree crowns. We develop a method in which vegetation classification and crown segmentation are derived under a unified framework. After multiresolution segmentation,we get image object segments for tree top seeds detection with NDVI and ratio NIR feature. Around theses seeds,we let them region growing in a cycle way. Some false seeds must be wiped off with given feature threshold. After quadtree segmentation for crown shape optimization,the same category region must be merged. Now we get a crown map of test area. We use 9 plots with different plantation density(crown closure) to validate the above method. Average tree numbers identification error is 18.9% ,R 2 = 0.4693.From comparing tree numbers of field work and software identification by tree matching ,the confusion matrix,overall accuracy,commission error,omission error is computed. The main result is this algorithm’s accuracy,commission error,omission error far from crown closure. Computed crown diameters after program crown delineation has similar distribution of field measure crown diameters,but they have bigger values and more dispersed range. Through grouped plantation density results analyzing,we find the performance of this algorithm on 0.6 crown closure plots get well,omission error of 0.8 crown closure plots is high to 34%,commission error of 0.7 crown closure plots is high to 63%. Ultimately,our tree top seeded based region growth tree detection and crown delineation algorithm is an effective way to get segmented crown in real stand image. We suggest users choose suited features and parameter values try by try in forehand applying.
     The presented approach develops a new mathematical morphology based marker-controlled watershed crown segmentation algorithm for crown segmentation. This method is be put on the QuickBird satellite images in Populus I-72 plantation even stand at Nan Gen village Hai Kou town in Anhui Province of China. Segmentation using the watershed transform works better if you can identify or mark foreground objects and background locations. Our marker-controlled watershed crown segmentation algorithm follows basic procedure. First,a segmentation function is computed which put image’s dark regions as the objects you are trying to segment and LOG edge detection is applied. Then,computing foreground treetop markers after morphological reconstruction by opening and closing for filtering. The connected blobs of pixels within each of the crown like objects are treated as foreground treetop markers. Third step is computing background markers for identifying crown area. The boundary of isolated crown or grouped crowns can be got after mathematical morphology distance transformation. Forth step is modifying the segmentation function so that it only has minima at the foreground tree top and background crown boundary marker locations. Fifth step is computing the watershed transform of the modified segmentation function. This algorithm does not take into account the classification and only gets the image segment for further analyzing. We overlap the segmentation result with original image by manually crown delineation. By visual appraise,this algorithm works well. Average tree numbers identification error is 32%.We discuss the improvement ways to get better results.
     In the object based image analysis framework,we discuss the best fit spatial resolution choosing for crown segmentation. We use the ratio of average crown diameter to pixel size for experience index weighing the fitting from literature. This ratio can explain some crown segmentation phenomena,such as why in some more fine spatial resolution image,the crown segmentation result is not good as expectation. We extend our mathematical morphology based marker-controlled watershed crown segmentation algorithm to aerial images with 0.25m spatial resolution in secondary planted conifer stand at Cu Lai mountain in Shan Dong Province of China. We overlap the segmentation result with original image by only simple visual appraising. The result is more crowns identified than the field work. The tree top foreground marker technique for this kind of stand must be improved. Using object based image analysis method,after crown area,shadow area and bare soil area classified,we put up a simple formula to computing the crown closure of the sample images. Average computer crown closure calculating precision is high to 80%.
     In the end of this thesis,conclusion and discussion is given. Two kinds of program methods for crown segmentation algorithms are put up. One method is using Component Object Model(COM) and the other one is using web service technology. We draw the outline of estimation tree level attributes in automatic interpretation method researched before and put it to automatic interpretation method of estimation of stand level attributes. For all,many aspects of raised tree detection and crown delineation algorithms must be improved for method’s practicality,our research has contribution to the knowledge of this area. Some suggestions are in the end of this paper for tree detection and crown delineation by experience.The crown closure of forest stand and the choosen of best fit spatial resoulution image are the very important factors affect the result of the algorithms.
引文
Age,P.J. 1985. Forest inventory - Photo interpretation. The National Land Survey of Sweden, G?vle,Sweden,Report 13. (In English.)
    Aldrich,R. C.,R. C. Heller & W. F. Bailey. Observation limits for aerial sketch-mapping southern pine beetle damage in the southern Appalachians. Journal of Forestry,1958,56: 200-202.
    Aplin,P.,P.M. Atkinson,and P.J. Curran. Fine Spatial Resolution Simulated Satellite Sensor Imagery for Land Cover Mapping in the United Kingdom. Remote Sensing of Environment, 1999,68(3):206-216.
    Ardo,J.,P. Pilesjo & A. Skidmore. Nearal networks,multitemporal Landsat Thematic Mapper data and topographic data to classify forest damages in the Czech Republic. Canadian Journal of Remote Sensing,1997,23: 217-229.
    Baatz,M. and A. Schape. Multiresolution Segmentation - An Optimization Approach For High Quality Multi Scale Image Segmentation. Angewandte Geographische Informationsvera-rbeitung XII,Ed. J. Strobl et al. AGIT Symposium,Salzburg,Germany,2000:12-23.
    Baatz,M. und A. Sch?pe. Object-Oriented and Multi-Scale Image Analysis in Semantic Networks. The 2nd International Symposium: Operationalization of Remote Sensing,New Methodologies,16-20 August 1999,ITC,NL.
    Bai,Y.,Walsworth,N.,Roddan,B.,Hill,D. A.,Broersma,K.,& Thompson,D. Quantifying tree cover in the forest–grassland ecotone of British Columbia using crown delineation and pattern detection. Forest Ecology and Management,2005(212):92?100.
    Beare,R. A locally constrained watershed transform,IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(7):1063-1074.
    Befort,W. Controlled-scale aerial sampling photography: development and implications for multiresource inventory. Journal of Forestry,1988(11):21-28.
    Benz,U.,Hofman,P.,Willhauck,G.,Lingenfelder,I.,& Heynen,M. Multi-resolution, object oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing,2004(58);239?258.
    Beucher,S. The watershed transform applied to image segmentation,Proceedings of the Pfefferkorn Conference on Signal and Image Processing in Microscopy and Microanalysis, 1991(9);299-314.
    Beucher,S. Watershed,hierarchical segmentation and waterfall algorithm,Mathematical Morphology and its Applications to Image Processing,J. Serra and P. Soille,Eds. Kluwer Acad. Publ.,Dordrecht,1994:69-76.
    Beucher,S.,and Meyer,F. The morphological approach to segmentation: the watershed transformation,Mathematical Morphology in Image Processing,E. R. Dougherty,Ed. Marcel Dekker,New York,1993,ch12:433-481.
    Bieniek,A.,and Moga,A. A connected component approach to the watershed segmentation, Mathematical Morphology and its Applications to Image and Signal Processing,H. J. A. M. Heijmans and J. B. T. M. Roerdink,Eds. Kluwer Acad. Publ.,Dordrecht,1998:215-222
    Blackburn,G. A. & E. J. Milton. An ecological survey of deciduous woodlands using airborne remote sensing and geographical information systems (GIS). International Journal of Remote Sensing,1997(18): 1919~1935.
    Blaffert,T.,Dippel,S.,Stahl,M.,and Wiemker,R. The Laplace integral for a watershed segmentation,Proceedings of 2000 International Conference on Image Processing,2000(3): 444-447.
    Blaschke T,Hay G.Object-oriented image analysis and scale-space:Theory and methods for modeling and evaluating multi-scale landscape structure[J].International Archives of Photogrammetry and Remote Sensing.2001(34):22-29.
    Blazquez,C.H. Computer-Based Image Analysis and Tree Counting with Aerial Color Infrared Photography. Journal of Imaging Technology. 1989.15(4): 163-168.
    Blazquez,C.H. Large Scale Aerial Photography of Citrus Trees with Color and Color Infrared Film. Journal of Imaging Technology.1990,16(3): 101-104.
    Bouman,C. and M. Shapiro,A multiscale random field model for Bayesian image segmentation, IEEE Trans. Image Processing.1994,38(2);162-177
    Brandtberg,T. ,and Walter,F..Automated Delineation of Individual Tree Crowns in High Resolution Aerial Images by Multiple Scale analysis . Machine Vision and Applications, 1998,11(2): 351-357
    Brandtberg,T.. Remote sensing for forestry applications - a historical retrospect. (http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/BRANDTBERG/UK.html),1999
    Brockhaus,J. A.,S. Khorram,R. I. Bruck,M. V. Campbell & C. Stallings. A comparison of Landsat TM and SPOT HRV data for use in the development of forest defoliation models. International Journal of Remote Sensing. 1992(13): 3235~3240.
    Cameron,A. D.,D. R. Miller,F. Ramsay,I. Nikolaou & G. C. Clarke. Temporal measurement of the loss of native pinewood in Scotland through the analysis of orthorectified aerial photographs. Journal of Environmental Management. 2000,58: 33~43.
    Caselles,V.,R. Kimmel,and G. Sapiro,Geodesic active contour,Internat. J. Comput. Vision, 1997,22:61-69 Cheng,S.-C..Region-growing approach to colour segmentation using 3D clustering and relaxation labelling,Vision,Image and Signal Processing,2003,150:270-276.
    Coops,N. C.,White,J. D.,& Scott,N. A.. Estimating fragmentation effects on simulated forest net primary productivity derived from satellite imagery. International Journal of Remote Sensing,2004a,25:819?838.
    Coops,N. C.,Stone,C.,Culvenor,D. S.,& Chisholm,D. Assessment of crown condition in Eucalypt vegetation by remotely sensed optical indices.Journal of Environmental Quality, 2004b,33:956?964.
    Culvenor,D. S. TIDA: An Algorithm for the Delineation of Tree Crowns in High Spatial Resolution Remotely Sensed Imagery,Computers & Geosciences,2002(28): 33-44.
    Culvenor,D.S.. Development of a tree delineation algorithm for the application to spatial resolution digital imagery Australian native forest. [D]. University of Melbourne,Australia. 2000
    Darwish,A.,Leukert,K.,and Rrinhardt,W..Image Segmentation for the Purpose of Object-Based Classification,Proceedings of IGARSS 2003 IEEE,July 2003,Toulouse.
    De Kok,R.,T. Schneider,and U. Ammer. Object-Based Classification and Applications in the Alpine Forest Environment. International Archives of Photogrammetry and Remote Sensing. Valladolid,Spain,3-4 June 1999,32,Part 7-4-3.
    Definiens Imaging GmbH. eCognition User Guide 4[M].Definiens Imaging, GmbH, Munich, Germany. 2004a.
    Definiens Imaging GmbH. Whitepaper– eCognition Professional 4.0[M]. Definiens Imaging, GmbH,Munich,Germany. 2004b.
    Definiens. eCognition Version 5 Object Oriented Image Analysis User Guide[M]. Munich, Germany: Definiens AG. 2005.
    Dralle,K. Locating Trees by Digital Image Processing of Aerial Photos. Dissertation. Dina Research Rapport No. 58,Royal Veterinary and Agricultural University,Denmark. 1997.
    Dralle,K.,M. Rudemo. Automatic Estimation of Individual Tree Positions from Aerial Photos,Canadian Journal of Forest Research, 1997,27: 1728-1736.
    Dralle,K.,Rudemo,M. Stem number estimation by kernel smoothing of aerial photos. Canadian Journal of Forest Research. 1996,26: 1228-1236.
    Erikson,M. Segmentation of Individual Tree Crowns in Colour Aerial Photographs Using Region Growing Supported by Fuzzy Rules,Canadian Journal of Forest Research, 2003,33(8): 1557-1563.
    Everitt , J . H. , D. E. Escobar , D. N. Appel , W. G. Riggs & M. R. Davis. Using airborne digital imagery for detecting oak wilt disease. Plant Disease , 1999,83 : 502~505.
    Flanders,D.,M.Hall-Beyer,and J. Pereverzoff.Preliminary Evaluation of eCognition Object-Based software for Cut Block Delinieation and Feature Extraction. Canadian Journal of Remote Sensing, 2003,29(4):441-452.
    Gong,P.,G.S.Biging,S.M.Lee,X.Mei,Y.Sheng,R.Pu,B.Xu,K.P.Schwarz,and M.Mostafa. Photo-ecometrics for forest inventory,Geographic Information Sciences, 1999,5(1):9-14.
    Gong,P.,Mei,X.,Biging,G.S. and Zhang,Z. Improvement of an oak canopy model extracted from digital photogrammetry. Photogrammetric Engineering and Remote Sensing, 2002, 63(9): 919-924.
    Gonzalez,C. Rafael and Richard E. Woods,Digital Image Processing[M].Prentice Hall,Upper Saddle River,NJ,2002.
    Gonzalez,R.C.,and Woods,R.E. Digital image processing[M]. Addison-Wesley Publishing Company,Reading,Massachusetts,USA. 1992.
    Gougeon,F. A.,& Leckie,D.G. Forest information extraction from high spatial resolution images using an individual tree crown approach.Information report BC-X-396 Victoria,BC: Natural Resources Canada,Canadian Forest Service. 2003.
    Gougeon,F.A. Comparison of possible classification schemes for tree crowns individually delineated on high spatial resolution MEIS images. Can. J. Rem. Sens. 1995a ,21(1): 1-9.
    Gougeon,F. A.A Crown-Following Approach to the Automatic Delineation of Individual Tree Crowns in High Spatial Resolution Digital Images,Canadian Journal of Remote Sensing, 1995b,21(3): 274-284.
    Gougeon,F.A. Automatic individual tree crown delineation using a valley-following algorithm and a rule-based system. In: Proceedings of Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry,Victoria,British Columbia,Canada,February 10-12,1998. (Hill,D.A.,and Leckie D.G.,eds.) Natural Resources Canada,Canadian Forest Service,Pacific Forestry Centre,Victoria,British Columbia. 1999:11-23.
    Haala,N. and Brenner,C. Extraction of buildings and trees in urban environments,ISPRS Journal of Photogrammetry and Remote Sensing, 1999,54:130-137.
    Haris K,Efstratiadis S et al.Hybrid Image Segmentation Using Watersheds and fast region merging[J].IEEE Transactions on Image Processing,1998,7 (12):1684-1698.
    Hay,G.,T. Blaschke,D. Marceau,and A. Bouchard. A Comparison of Three Image-Object Methods for the Multiscale Analysis of Landscape Structure. ISPRS Journal of Photogrammetry and Remote Sensing, 2003,57(5-6):327-345.
    Hernandez,S.E.,and Barner,K.E. Joint region merging criteria for watershed-based image segmentation,Proceedings of the IEEE International Conference on Image Processing. 2000(2):108–111
    Herwitz , S. R. , B. Sandler & R. E. Slye. Twenty-one years of crown area change in the Jasper Ridge Biological Preserve based on georeferenced multitemporal aerial photographs.International Journal of Remote Sensing , 2000a,21 : 45-60.
    Herwitz , S. R. , R. E. Slye & S. M. Turton. Co-registered aerial stereopairs from low-flying aircraft for the analysis of long-term tropical rainforest canopy dynamics. Photogrammetric Engineering and Remote Sensing , 1998,64 : 397-405.
    Herwitz , S. R. , S. M. Turton & R. E. Slye. Long-term survivorship and crown area dynamics of tropical rain forest canopy trees. Ecology , 2000b ,81 : 585-597.
    Hijjatoleslami,S. A. and J. Kittler,Region growing: A new approach,IEEE Trans. Image Processing, ,1998(7):1079-1084.
    Hill,D.A.,Leckie,D.G. (Eds.). Proceedings: Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry[M]. Canadian Forest Service,Victoria,British Columbia, 1998,402pp.
    Hofmann,P.. Detecting urban features from IKONOS data using an object-oriented approach,Remote Sensing and Photogrammetry Society(Editor): Proceedings of the First Annual Conference of the Remote Sensing and Photogrammetry Society 12-12 September 2001,28-33.
    Hofmann,P.Detecting Urban Features from IKONOS Data using an Object-Oriented Approach. Proceedings of the First Annual Conference of the Remote Sensing &Photogrammetry Society. RSPS,Munich,Germany,12-14 September 2001:79-91.
    Hofmann,P.,and W. Reinhardt. The Extraction of GIS Features from High Resolution Imagery Using Advanced Methods based on Additional Contextual Information– First Experiences. International Archives of Photogrammetry and Remote Sensing. Amsterdam, Netherlands, 2000(33),Supplement B4.
    Hyyppa ,J.,Hyyppa ,H.,Inkinen,M.,Engdahl,M.,Linko,S.,Zhu,Y.Accuracy comparison of various remote sensing data sources in the retrieval off orest stand attributes. Forest Ecology and Management ,2000,128 (1–2),109–120.
    Kaplan,L. M.,Extended fractal analysis for texture classification and segmentation,IEEE Trans. Image Processing,1999,8(11):1572-1585.
    Kass,M.,A. Witikin,and D. Terzopoulos,Snakes: Active contour models,International Journal of Computer Vision, 1978,l(4):321-331.
    Kim,Seongjai and Hyeona Lim,A hibrid level set approach for efficient and reliable image segmentation,IEEE International Conf. on Image Processing,2005.
    Larsen,M.. Jittered match windows voting for tree top positions in aerial photographs. In: Proceedings of the 11th Scandinavian Conference on Image Analysis, Kangerlussuaq, Greenland,1999(2):889-894.
    Larsen,M.. Finding an optimal match window for Spruce top detection based on an optical tree model. In: Hill,D.A.,Leckie,D.G. (Eds.),Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry.Victoria,British Columbia,1998: 55–66.
    Larsen,M.,and M. Rudemo. Optimizing Templates for Finding Trees in Aerial Photographs. Pattern Recognition Letters, 1998,19(12): 1153-1162.
    Larsen,M.,and Rudemo,M. Using ray-traced templates to find individual trees in aerial photos. In: Proceedings of the 10th Scandinavian Conference on Image Analysis, 1997(2): 1007- 1014 .
    Larsen,M.,and Rudemo,M. Optimizing templates for finding trees in aerial photographs. Pattern Recognition Letters, 1998,19: 1153-1162.
    Leckie,D. G.,Gougeon,F. A.,Tinis,S.,Nelson,T.,Burnett,C. N.,& Paradine,D.Automated tree recognition in old growth conifer stands with high resolution digital imagery. Remote Sensing of Environment,2005,94:311?326.
    Leckie,D. G.,Gougeon,F. A.,Walsworth,N.,& Paradine,D. Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sensing of Environment,2003,85:355–369.
    Leckie,D.G. Advances in remote sensing technologies for forest surveys and management. Can. J. For. Res. 1990,20: 464-483.
    Leckie,D.G.,Gillis,M.D.,Gougeon,F.A.,Lodin,M.,Wakelin,J.,Yuan,X.Computer-assisted photo interpretation aids to forest inventory mapping: some possible approaches. In: Hill,D.A.,Leckie,D.G.(Eds.),Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry. Victoria,British Columbia, 1998:335–344.
    Lefsky,M.,Cohen,W. and Spies,T. An evaluation of alternate remote sensing products for forest inventory,monitoring,and mapping of Douglas-fir forests in western Oregon. Canadian Journal of Forest Research, 2001,31: 78–87.
    Lezoray,O.,and Cardot,H. Cooperation of color pixel classification schemes and color watershed: a study for microscopic images,IEEE Trans. on Image Processing, 2002,11(7): 783-789.
    Li,X.,Strahler,A.H. Geometric-optical bidirectional reflectance modelling of the discrete crown vegetation canopy: effect of crown shape on mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing.,1992,30 (2),276–291.
    Meyer,F. Topographic distance and watershed lines. Signal Processing .1994,38:113-125.
    Meyer,F.,and Beucher,S. Morphological Segmentation,Journal of Visual Communication and Image Representation.1990(1):21-46.
    Moghaddamzadeh A,Bourbakis N.A fuzzy region growing approach for segmentation of color images[J].Pattern Recognition,1997,30 (6):867-881.
    Noguet,D.,Merle,A.,and Lattard,D. A data dependent architecture based on seeded region growing strategy for advanced morphological operators,Mathematical Morphology and its Applications to Image and Signal Processing,P. Maragos,R. W. Shafer,and M. A. Butt,Eds. Kluwer Acad. Publ.,Dordrecht, 1996: 235-243.
    Payandeh,B.Spatial pattern of trees in the major forest types of northern Ontario. Canadian Journal of Forest Research ,1974,4 (8),8–14.
    Pesaresi,Martino and Benediktsson.A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE transactions on Geoscience and Remote Sensing, 2001,39(2):309-320.
    Pinz,A.,M. B. Zaremba,H. Bischof,F. A. Gougeon,and M. Locas. Neuromorphic Methods for Recognition of Compact Image Objects,Machine Graphics and Vision, 1993,2(3): 209-229.
    Pollock,R. Individual tree recognition based on a synthetic tree crown model.\newblock In: Proceedings of Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry,Victoria,British Columbia,Canada,February 10-12,1998. (eds. Hill,D.A.,and Leckie,D.G.) Natural Resources Canada,Canadian Forest Service,Pacific Forestry Centre,Victoria,British Columbia, 1999:25-34.
    Pollock,R.,1996. The automatic recognition of individual trees in aerial images off orests based on a synthetic tree crown image model[D]. PhD Dissertation,Department of Computer Science,University of British Columbia,Vancouver,Canada,172pp.
    Popescu,S.C. and Wynne,R.H.. Seeing the trees in the forest: using LIDAR and multispectral data fusion with local filtering and variable window size for estimating tree height,PE&RS, 2004,70(5):589-604.
    Pouliot,D. A.,D. J. King,F. W. Bell,and D. G. Pitt.Automated Tree Crown Detection and Delineation in High-Resolution Digital Camera Imagery of Coniferous Forest Regeneration, Remote Sensing of Environment, 2002,82: 322-334.
    Preston,R.Monitoring off orest species and structure using Digital Multi-Spectral Video (DMSV) and expert spatial models. In: Norman,P.,Witte,C. (Eds.),Sustainable Forest Management Technical Report: Assessing and Monitoring Condition of Native Forests in Queensland.Some Recent Developments in Airborne and Satellite Remote Sensing. Resource Sciences Centre Brisbane, Australia,1997:27–41.
    Preston,R.,Culvenor,D.S.,Coops,N.C.Modelling of tree species and structural attributes from high spatial resolution multi-spectral imagery using decision tree analysis for east coast eucalypt forests of Australia. In: Hill,D.A.,Leckie,D.G. (Eds.),Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry.Victoria,BC, 1998a: 225–242.
    Preston,R.,Culvenor,D.S.,Coops,N.C. A revolution in forest monitoring. GIS User , 1998b: 26:41–44.
    Preto,G.Past and present of inventorying and monitoring systems. In: Preto,G.,Koch,B. (Eds.), Forest Resource Inventory and Monitoring and Remote Sensing Technology,Proceedings of the IUFRO Centennial Meeting,Berlin, 1992:1–10.
    Roberts,D. A.,Nelson,B. W.,Adams,J. B.,& Palmer,F.Spectral changes with leaf aging in Amazon caatinga. Trees, 1998,12:315?325.
    Roerdink,J. B. T. M.,and Meijsterm,A. The Watershed Transform: Denitions,Algorithms and Parallelization Strategies,Fundamenta Informaticae ,2001,41:187-228.
    Schiewe,J.,L. Tufte,and M. Ehlers.Potential and Problems of Multi-Scale Segmentation Methods in Remote Sensing. GeoBIT/GIS, ,2001(6):34-39.
    Shafarenko,L.,Petrou,M.,and Kittler,J.Automatic watershed segmentation of randomly textured color images,IEEE Trans. Image Processing, 1997, 6(11):1530-1543.
    Sheng,Y.,Gong,P. and Biging,G.S.Model-based conifer crown surface reconstruction from high-resolution aerial images. Photogrammetric Engineering and Remote Sensing, 2001, 67(8):957-966.
    Smet,P.D.,Luis,R.,and Pires,V.P.M. Implementation and analysis of an optimized rainfalling watershed algorithm,in: Proceedings of the Science and Technology Conference,Image and Video Communications and Processing,January 2000.
    Soille,Pierre.Morphological Image Analysis:Principles and Applications[M]. Berlin,New York,Springer. 1999.
    Straub,Bernd-M.A multiscale approach for the automatic extraction of tree tops from remote sensing data. Proceedings of the XXth ISPRS Congress Geo-Imagery Bridging Continents,12th to 23th July 2004 in Istanbul.Commission III,WG 4,Vol. XXXV. part B3.
    Tarp-Johansen,M. J.Automatic Stem Mapping in Three Dimensions by Template Matching from Aerial Photographs,Scandinavian Journal of Forest Research,2002,17(4): 359-368.
    Ursula C Benz,Peter Hofman,Gregor Willhauck et al.Multi-resolution,Object-oriented fuzzy analysis of remote sensing data for GISready information[J].ISPRS Journal of Photogrammetry & Remote Sensing,2004,(58):239-258.
    Uuttera,J.,Haara,A.,Tokola,T.,and Maltamo,M.Determination of the spatial distribution of trees from digital aerial photographs. Forest Ecology and Management,1998,110: 275-282.
    Vincent,L.,and Soille,P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations,IEEE Transaction on Pattern Analysis and. Machine Intelligence, 1991,13(6):583–598.
    Walsworth,N. A.,and D. J. King.Image Modeling of Forest Changes Associated with Acid Mine Drainage,Computers & Geosciences, 1999,25(5): 567-580.
    Wang,L. ,and Gong,P. ,and Biging,G. S.Individual Tree-Crown Delineation and Treetop Detection in High-spatial-Resolution Aerial Imagery. Photogrammetric Engineering and Remote Sensing, 2004,70(3): 351-357.
    Warner,T.A.,Yeol Lee,J.,McGraw,J.B..Delineation and identification of individual trees in the eastern deciduous forest. In: Hill,D.A.,Leckie,D.G. (Eds.),Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry[M],Victoria,BC, 1998: 81–92.
    Wulder,M.,K. O. Niemann,and D. G. Goodenough Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery,Remote Sensing of Environment.2000:73: 103-114.
    Zhang,Y.J.. A Survey on Evaluation Methods for Image Segmentation. Pattern Recognition, 1996,29(8):1335-1346.
    Zhao Feng, Huaiqing Zhang, Zengyuan Li, Yong Pang, The Extraction of Individual Tree Crown in Aerial Digital Camera Imagery.Fifth International Conference on Fuzzy Systems and Knowledge Discovery. 2008(3):183-188.
    毕于慧.彩色航空图像森林纹理特征提取方法的研究[D].北京林业大学.2007年.
    成子纯.森林测计学.北京:中国林业出版社,1990,98-99.
    陈启浩.面向对象的多源遥感数据分类技术研究与实现[D].中国地质大学.2007年.
    陈忠.高分辨率遥感图像分类技术研究[D];中国科学院研究生院遥感应用研究所. 2006年
    冯益明,李增元,张旭等.基于高空间分辨率影像的林分冠幅估计.林业科学.2006,42 (5):110-113.
    冯益明,李增元,邓广.不同密度林分冠幅的遥感定量估计.林业科学.2007,43(1):90-94.
    龚剑.一种基于分水岭和模糊聚类的多级图像分割算法[J].第一军医大学学报. 2004, 24(3):329-331.
    宫鹏,梅雪良,G. S. Biging,张祖勋.利用数字摄影测量探测橡树草原变化.遥感学报, 1999,3(4):285-289.
    葛宏立.面向类的图像分割方法研究[D].北京林业大学.2004年.
    郭志华,肖文发,蒋有绪.遥感在林冠动态监测研究中的应用.植物生态学报.2003,27(6): 851-858.
    黄建文,陈永富,鞠洪波. 2006.基于面向对象技术的退耕还林林冠遥感信息提取研究.林业科学,42 (增1):68-71.
    黄慧萍.面向对象影像分析中的尺度问题研究[D].中国科学院遥感应用研究所.2003年.
    江淼,陈秀万,吴才聪,张清,陶迎春.航空与卫星影像数据多尺度分割对比研究.地球信息科学,2007,9(5):115-119.
    郎奎健.航空象片数字图像的计算机处理及其数量化探测资源方法的初步研究.东北林学院学报,1984(2).
    郎奎健.象片样地因子的定量测定及其规律性的初步研究.林业调查勘查设计,1987(3).
    李朝阳,阎广建,肖志强,李小文,郭军,王锦地.航空图像中基于DSM的多尺度树冠分割.北京邮电大学学报,2006,29(6):40-43.
    林辉,吕勇,宁晓波. 2004.基于高分辨率卫星图像的立木材积表的编制.林业科学,40(4): 33-39.
    林辉,李际平,莫登奎. QuickBird卫星图像信息识别.中国图像图形学报,2005 (12) : 1504- 1510.
    林辉,莫登奎,熊育久,孙华.高分辨率遥感图像均值调整法分割技术研究.中南林学院学报,2006,26(4):85-88.
    林剑.基于模糊理论的遥感图像分割方法研究[D].中南大学.2003年.
    林殷,李恒超,洪文.基于数据驱动和统计扩散的树冠提取方法.电子与信息学报,2008,30(9) :2103-2106.
    林文娟,陈云浩,王朝,冯通.基于面向对象分类约束的融合方法研究.光学学报, 2006, 26(3):347-354.
    
    孟宪宇.测树学[M].北京:中国林业出版社,1999:51-86.
    孟宪宇.测树学[M].北京:中国林业出版社,2001.
    明冬萍,骆剑承,周成虎,汪闽,郑江,陈秋晓,沈占锋.高分辨率遥感影像信息提取及块状基元特征提取.数据采集与处理,2005,20(1):34-39.
    牛春盈,江万寿,黄先锋,谢俊峰.面向对象影像信息提取软件Feature Analyst和eCognition的分析与比较.遥感信息,2007(2):66-70.
    庞勇,李增元,Guoqing Sun,Michael Lefsky,陈尔学,车学俭.地形对大光斑激光雷达森林回波影响研究,林业科学研究,2007,20(4):464-468..
    庞勇,赵峰,李增元,周淑芳,邓广,刘清旺,陈尔学.机载激光雷达树高提取研究,遥感学报, 2008,12(1):152-158.
    庞勇,李增元,陈尔学等.激光雷达技术及其在林业上的应用.林业科学, 2005, 41 (3): 129-136.
    覃先林,李增元,易浩若.高空间分辨率卫星遥感影像树冠信息提取方法研究.遥感技术与应用,2005,20(2):228-232.
    谭俊.应用航片估测林分单位面积生物量方法的探讨.中南林业调查规划,1993(4).
    吴泽民,孙启祥,段文秀.安徽长江滩地杨树人工林个体生长与水淹状况的关系.应用生态学报.2000,11(1):25-29.
    熊轶群,吴健平.基于高分辨率遥感图像的树冠面积提取方法.地理与地理信息科学, 2007,23(6):30-33.
    章毓晋.图像分割[M].北京:科学出版社,2001.
    章毓晋.图像工程(中册):图像分析,第2版[M].北京:清华大学出版社,2005年.
    张友静,樊恒通.城市植被尺度鉴别与分类研究.地理与地理信息科学,2007,23(6):54-57.
    赵峰.机载激光雷达数据和数码相机影像林木参数提取研究[D].中国林业科学研究院.2007.
    郑天水.SPOT5卫星遥感信息在森林资源调查中的应用现状与解决思路.林业调查规划,2006,31 ( 5) : 24~28.
    周成虎,骆剑承,杨存建等.遥感影像地学理解与分析[M].北京:科学出版社.2001: 185-197.
    周成虎,骆剑承.高分辨率卫星遥感影像地学计算[M].北京:科学出版社.2009.
    周一凡,周坚华.绿量快速测算模式.生态学报,2006,26(12):4204-4211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700