用户名: 密码: 验证码:
复杂通道中油滴的运动规律与颗粒周围剪切力场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重力式分离器结构简单、操作方便、运行稳定以及维护费用低,是分离器应用比较广泛原因。一股重力式分离器的体积庞大,且效率不高。从其发展趋势来看,通过引入各种聚结填料和合理设计,使分离器向高效性方向发展。本文采用理论分析和数值模拟计算相结合方式,进行了油滴在复杂通道内运动规律和颗粒周围剪切力场研究。
     首先,针对复杂通道中低雷诺数油滴运动时扰动衰减慢特点,应用低雷诺数流理论,对油滴运动因受边界、环境流动影响以及油滴为流体球,进行了油滴运动阻力修正;并建立适用于重力式分离器内复杂通道中油滴的运动方程和颗粒周围剪切力场边界积分方程和油滴剪切控制方程。
     其次,应用Fluent软件结合自编程序UDF,对水相采用层流模型,油相采用离散相模型,在对低雷诺数油滴所受到的阻力进行了修正基础上,进行了平板、斜板和波纹折板间油滴运动规律数值模拟计算。结果表明:
     传统的无界Stokes拟球形油滴其运动规律不同于油滴在另一种与其互不相容的有限空间液体中的运动行为,对于液-液体系,油滴作为流体球,存在减阻正面影响的作用较弱;边界影响、Poiseuille环境流作用下的油滴运动轨迹与无界Stokes油滴相比存在着明显差别,对油滴上浮时间存在延缓效应,其边界的影响作用较大,Poiseuille环境流作用次之;在协同作用下,与传统的Stokes油滴相比较,油滴上浮时间在平板内延缓了17.211%,斜板逆流形式下延缓了18.753%,波纹折板内延缓了20.304%。所以,低雷诺数扰动衰减慢作用随着流道复杂程度增加其影响更加显著。
     再次,Stokes油滴在平板、斜板、波纹折板间随着流场流速的增加和油滴粒径的减小都会使上浮效率显著地下降。①平板时,垂直方向油滴终端上浮速度与流场的速度大小无关,而与油滴粒径有关;水平方向上油滴迁移速度与油滴粒径无关,迁移速度同步于板间的Poiseuille流场速度,符合零阻力条件;平板间Stokes油滴独立浮升、迁移运动能力强,油滴碰撞对油滴几何参数、初始位置、油滴物性、流场的速度梯度有很大的依赖性,对此建立了油滴碰撞的数学模型,为油滴间的碰撞提供判断依据,来弥补迄今为止几乎没有可用数据来比较油滴碰撞条件的关系式,其计算结果与Matlab数值计算及Fluent软件模拟计算结果相吻合。②斜板时,在错流、并流和逆流的三种流动形式中,Stokes油滴垂直于板方向的上浮速度相同,与流动形式无关;如受低雷诺数协同作用,油滴的上浮速度则不同,与流动形式有关;油滴在板长方向上迁移速度的影响关系不同于水平平板,与粒径大小有关,不再耦合于板间的Poiseuille流场速度,存在运动阻力;斜板逆流形式下,油滴粒径越大,其迁移速度则小,而并流形式下,油滴粒径越大,其迁移速度则大;油滴运动位移、浮升时间随斜板倾角α增大而增长,在层膜能上浮条件,应尽可能减小斜板倾角α;逆流时油滴上浮到上板所需要板长比并流、错流时较短,所以采用逆流形式比错流、并流有优势。③与平板相比波纹折板间油滴浮升时间、水平位移更短些,作为聚结填料比平板存在着很大优势;但波纹折板折角、流场速度较大时,流场易湍急、不稳定,对油滴运动的影响关系变得复杂,对油滴存在旋卷现象,其轨迹线随旋涡上下波动、转圈,不能“自拔”,甚至产生倒流,所以,在应用波纹折板时一定兼顾流场速度、折板折角方能发挥其良好作用。采用多相相混合模型,对引入平板、波纹折板二种聚结填料的油水分离器内部的流场进行了数值模拟计算,通过对速度场、聚结填料对称面及前后浓度的等高线分析,验证了波纹折板聚结填料比平板具有较好的油水分离特性。
     最后,通过量纲分析指出,影响油滴变形的无量纲数很多,理论和实验对油滴变形破碎很难进行定量描述,采用VOF进行了油滴在剪切场中变形的二维数值模拟分析:油滴的粘度、表面张力对变形起到抑制作用,油滴粒径越大,越易变形、破碎。流场速度梯度越大,油滴就易变形破碎;所以,通过引入聚结填料,在提高工作效率同时,实际上增加了分散相油滴在剪力作用下会发生变形、破碎的风险。而油滴与流场间相对速度较大时,会加剧油水乳化。所以,对于旋流器,必然存在油水进一步乳化现象。
     本文研究工作已取得阶段性进展,但由于研究过程中对实际问题进行了简化,所得到结果的应用范围有限,在定量方面尚存在有不足,还需大量的实验研究进一步验证。
As the motion phenomenon of oil droplets is very complicated in complicated channels, experimental methods are limited and measurement is very difficult, in order to find the law of oil droplets motion in complicated channels, the way of combining theoretical analysis and simulated computation is used in this study. The law of oil droplets motion and the shearing field around the droplets in complicated channels is presented in this paper.
     First, aiming at slow weakening disturbance of oil droplets in complicated channels under the condition of low Reynolds number, the theory of low Reynolds number is adopted. As the motion of oil droplet is affected by boundary, environment and viewing oil droplet as fluid sphere, the motion resistance is corrected. Moreover, the boundary integral equation is set up which can be used in shearing field of complicated channels in gravity separator.
     Second, simulated computation of law of oil droplets motion in flat board, inclined board and corrugated board. is done by way of Fluent software and UDF, based on corrected motion resistance. In this simulated computation, water phase is looked on as laminar flow model, while oil phase is looked on as discrete phase modal. The result shows that:
     The law of traditional Stokes oil droplet motion is different from that while the oil droplet is in another immiscible liquid in limited space. For liquid-liquid system, oil drop is fluid sphere, which has little positive influences; compared with traditional limitless Stokes, oil droplet trajectory is greatly different by the action of boundary and Poiseuille environmental flows. It has a postponed effect on oil droplets up-floating time, and the impact of its border is major, while Poiseuille flow environment takes the second place; compared to the traditional Stokes oil droplet, the time of oil droplet up-floating in the flat board delay 17.211% because of the synergy, inclined board in counter flow delay 18.753% , corrugated board delay 20.304%. Therefore, synergy impact is more significant when the flow channel is more complex.
     Third,The up-floating efficiency will drop sharply while the velocity is increased or the size is decreased in flat board, inclined board and corrugated board.①For flat board , vertical velocity of the oil droplet terminal has nothing with the velocity of the flow field ; but relates to the size of oil droplet. The migration velocity of oil droplet in horizontal direction has nothing to do with the size of oil droplet, while the migration velocity is synchronous with the change of Poiseuille flow between the boards, and in line with the conditions of zero resistance; Stokes oil droplets between the boards have a strong independent up-floating and migration movement. As oil droplets collision depend much on geometric parameters, the initial location, physical properties of oil droplets and the velocity gradient of the flow field , a mathematical model of the oil droplets collision is set up according to this. This modal provides a judgement for the oil droplets collision. And the calculated results are in line with the simulation results by Fluent software.②For inclined board , the vertical velocity of the oil droplets is the same whether in flat board, inclined board or corrugated board, and it has nothing to do with flow pattern; However, if the oil droplets are affected by synergy under the condition of low Reynolds number, the velocity of the oil droplets is different and there is something to do with flow patterns; The effects on migration velocity of oil droplets along the direction of the board are different from flat board. The migration velocity of oil droplets has somthing to do with the size of oil droplets, however does not couple with the velocity of Poiseuille flow between the boards, and there is a motion resistance; The migration velocity of oil droplets is lower if the oil droplets are larger in counter flow in inclined board. While in parallel flow, the situation is on the contrary; Both the motion displacement and up-floating time of oil droplets increase while the angle of the inclined board increases, The up-floating time of oil-droplets in counter flow is shorter than in cross flow and in parallel flow, so adopting counter flow pattern has more advantages than cross flow pattern or parallel flow pattern;③As one kind of coalescing internals, the flat board has shorter up-floating time and horizontal displacement , so it has more advantages; However, flow field is often torrential and unstable when the angle of inclined board and velocity of the flow field are great. And then the effects on oil droplets become more complicated which can result in volution, fluctuated trajectory, can not free self or even result in back flow, the angle of inclined board and velocity of the flow field should be considered delicately in order to have a good use of corrugated board. Through the simulation of the separator which are inserted with the flat board and corrugated board and the simulation of velocity field, the contour line of symmetric plane concentration in coalescing internal and the contour line of the board concentration both of the head and the tail, by way of multiphase mix modal, the conclusion that separate efficiency of corrugated board is much better than the flat board has a further verification.
     Finally, as the dimensional analysis has pointed out that the deformation and crush of oil droplets are difficult to give an quantitative description, however, by way of VOF the two-dimension simulation of oil droplets deformation in shear field is feasible. The results are as follows:The viscosity of oil and surface tension inhibit the deformation of oil droplets, however, oil droplets are easier to deform and crush if the diameter is bigger. Oil droplets are easier to deform and crush if the velocity gradient is greater. So, by way of bringing in many kinds of coalescent pack, the efficiency is increased while at the same time the risk of deformation and crush of oil droplets in shear field is increased too. The emulsification of oil and water is increased when there is a larger relative velocity, so there must be emulsification of oil and water in hydrocyclone.
     We have achieved some progress in this study. However, because of the simplification of practical problems during the process of setting up modal and simulation, the application category of the results is limited. Deficiency still exists at the aspect of quantification, and so, a lot of further experimental research need to be developed.
引文
[1]Drown D C. The fluid mechanics basis for the design criteria of gravity liquid-liquid settler. Idaho University. 1975
    [2]Wilkinson D. Waldie B. CFD and experimental studies of fluid and particle flow in horizontal primary separators. Trans I Chem E, 1994,72(PartA): 189-196
    [3]Zemel B, Bowman R W. Residence Time Distribution in Gravity Oil-Water Separations. Journal of Petroleum Technology, 1978(February): 275-282
    [4]Oil-water separators Process Designs. API Manual on Disposal of Refinery Wastes. API, New York, 1969
    [5]Nowakowski A F, Cullivan J C, Williams R A,et al. Application of CFD to modeling of the flow in hydrocyclones: Is this a realizable option or a research challenge? [J]. Minerals Engineering,2004,29(17):661-669
    [6]Patankar N A,Joseph D D. Modeling and numerical simulation of particulate flows by the Eulerian- Lagrangian approach[J]. International Journal of Multiphase Flow, 2001,27(10): 1659-1684
    [7]Cokljat D, Slack M, Vasquez S. Reynolds-stress model for eulerian multiphase [A] .Proceeding of 4~(th)International Symposium on Turbulence Heat and Mass Transfer [C].Antalya,Turkey:Begell House Inc,2003,1047-1054
    [8]Caiden R, Fedkiw R P, Anderson C. A numerical method for two-phase flow consisting of separate compressible and incompressible regions [ J ]. Journal of Computational Physics, 2001,166(1): 1-27
    [9]Hsien K T, Rajamani K. Mathematical model of the hydrocyclone based on physics of fluid flow[J]. AIChEJournal,1991,37:21-23
    [10]Hsien K T, Rajamani K. Phenomenological model of the hydrocyclone: Model development and verification for single phase flow [J]. Int J Min Proc, 1988,22:14-16
    [1 l]Leon Katapodisetal. Oil and Gas Geparation Theory, Application and Design. SPE 6470
    [12]Cjin.R.W etal. Increasing Separation Capacity with New and Proven Technologies. SPE77495
    [13]Kenneth E.Arnold. Designing Tomorrow, s Compact Separation Train. SPE56644
    [14]Rehm.S.J etal.Enhanced Oil-Water Separation-The Performax .Coalescer SPE 11562
    [15]David,Oarles . The Fliud Mechanic Basis for the Design Criteria of Gravity Liqud-Llqud Sellters. Ph.D thesis ofUniversity Of Idaho, 1975
    [16]Shaoping Quan,David P.Schmidt.Direct numerical study of a liquid droplet impulsively accelerated by gaseous flow[J].Physics of fluids,2006,18:102-103
    [17]Gh.Juncu,A numerical study of steady viscous flow past a fluid sphere[J].International Journal of He at and Fluid Flow,1999,20:414-421
    [18]D.Y.Liu,K.Anders,A.Frohn.Drag coefficients of single droplets moving in an infinite droplet chain on the axis of a tube[J].Int.J.Multiphase Flow,1988,14(2):217-232
    [19]陈硕,尚智,王丹等.简单剪切流条件下液滴破碎和碰撞模拟.工程热物理学报.2007,28(增刊1):189一192
    [20]张李.重力式油水分离器中的流体力学研究[D],天津:天津大学,2005
    [21]舒朝晖,刘根凡,陈文梅等.用于油水分离的水力旋流器中液滴破碎研究进展.流体机械.2002,30(7):29-32
    [22]王树众,昝元峰.油气输送管线中液滴的湍流扩散特性研究.化学工程.2005,33(1):24-27
    [23]邓志安,袁敏.油水分离器中承受特殊力液滴运动分析.石油化工设备.1997,26(2):16-18
    [24]马艺,金有海,王振.FLUENT软件在液-液旋流器中的应用过滤与分离.2008,18(2):42
    [25]邓志安,袁敏,徐建宁.重力式油气水分离场中液滴沉降速度模型分析.石油学报.1999,20(1):82-87
    [26]陆耀军,周力行,沈熊.油滴在液-液旋流分离中的随机轨道数值模拟.力学学报.1999,31(5):513-518
    [27]白志山,汪华林.油滴在旋流分离中的相间滑移数值模拟.华东理工大学学报(自然科学版).2006,32(11):1355-1359
    [28]蒋建忠,袁惠新,张敏.旋流场中分散相液滴所受的一些特殊力分析.流体机械.2004,32(4):26-28
    [29]周帼彦,凌祥,涂善东.螺旋片导流式分离器分离性能的数值模拟与试验研究[J].化工学报,2004,55(11):1821-1826
    [30]陆耀军等.重力式油水分离设备的分离特性研究.石油学报.1997,3(13):83-94
    [31]林文漪,何晖,周力行.工业油水分离器湍流两相流场的数值模拟[J].燃烧科学与技术,1995,1(4):287-291
    [32]陆耀军,周力行,沈熊.液-液旋流分离管中强旋湍流的RNG κ-ε数值模拟[J].水动力学研究与进展,1999,14(3):325-333
    [33]陆耀军,周力行,沈熊.不同湍流模型在液-液旋流分离管场计算中的应用及比较[J].清华大学学报(自然科学版2001年,41(2):105-109
    [52]林长志,郭烈锦.剪切流动条件下液滴变形和断裂的数值模拟.工程热物理学报.2006,27(1):79-81
    [53]林长志,郭烈锦,赵冬建.Stokes流动中液滴变形的数值模拟.工程热物理学报.2004,25(6):980-982
    [54]蔡斌,李磊,王照林.液滴在气流中破碎的数值分析.工程热物理学报.2003,24(4):613-616
    [55]陆华剑,张慧生.固壁近旁Stokes流中粘性液滴的运动和变形.应用数学和力学.2005,26(12):1479-1485
    [56]李强,蔡体敏,何国强等.液滴碰撞和聚合模型研究.应用数学和力学.2006,27(1):60-66
    [57]唐洪涛,吴剑华.斜板沉降器的理论板长的研究.流体机械.2005,33(10):20-23
    [58]郭同翠,曾平,刘明新等.用边界元方法模拟液滴动态.油气田地面工程.2005,24(3):13-14
    [59]万德成.粘性流场中固体颗粒启动和沉降过程的直接数值模拟.人民珠江.2006,(6):29-34
    [60]孙秀君,孙海鸥,姜任秋.油气分离器内油滴轨迹的数值模拟.应用科技.2006,33(10):69-72
    [61]李坤,李正兴,袁惠新.单入口水力旋流器内速度分布特的数值模拟[J].矿山机械,2006,34(4):87-89
    [62]黄思.水力旋流器内油水分离过程的三维数值模拟[J].华理工大学学报(自然科学版).2006,34(11):25-28.
    [63]刘海生,艾志久.单锥式油水分离旋流器内流场的数值模[J].西安石油大学学报,2006,21(6):83-86.
    [64]赵立新,崔福义,蒋明虎等.基于雷诺应力模型的脱旋流器流场特性研究[J].化学工程,2007,35(5):32-35
    [65]欧益宏,杜扬,周明来等.柱型水力旋流器多相流场分离过程的数值模拟[J].流体机械.2005,33(1):28-31.
    [66]梅丹,幸福堂.颗粒在离心风机内运动轨迹可视化预测的实现.武汉科技大学学报(自然科学版).2007,30(5):518-521
    [67]胡盟明,李安.剪切振动对油水分离影响的实验研究.油气田地面工程.2000,19(5):20-21
    [68]雷哲敏,鲍德松,周英等.边界形状对二维斜面颗粒流的影响.浙江大学学报(理学版).2006,33(3):282-285
    [69]唐海,余徽,夏素兰等.液滴降落过程表面曳力及其形状改变规律.化工设计.2007,17(3):6-9
    [70]由长福,祁海鹰,徐旭常等.气固两相流中非球形颗粒所受曳力的数值研究[J].化工学报.2003,54(2):188-191
    [71]曹仲文,袁惠新.旋流器中分散相颗粒动力学分析.食品与机械.2006,22(5):74
    [72]王志斌,陈文梅,褚良银等.水力旋流器固体颗粒运动行为的分析.流体机械.2005,33(11):56-70
    [73]李雪斌,袁惠新.旋流器内液滴聚结机理的研究,矿山机械.2006,34(7):67
    [74]姜雪梅,董守平,张红光.液-液旋流器中分散相液滴破碎机理研究.石油天然气学报(江汉石油学院学报).2005,27(1):305-307
    [75]赵庆国.水力旋流器的迁移率及其计算.北京联合大学学报.2000,14(增1):39
    [76]邓志安,陈听宽,罗毓珊.油水分离器中水洗流场液滴运动特性分析.石油机械.2006,34(5):18-21
    [77]邓志安,张峰,肖荣鸽,油水分离器中水洗流场液滴破裂特性初探.石油机械.2006,34(6):28-31
    [78]张红光,董守平,姜雪梅.剪切流场中液滴形变模型的理论研究.科学技术与工程.2006,6(19):3028-3031
    [79]张红光,董守平,姜雪梅.剪切或拉伸流场中液滴的变形和破裂准则.科学技术与工程.2006,6(24):3896-3898
    [80]张建,董守平,甘琴容.高频脉冲电场作用下乳状液液滴动力学模型.化工学报.2007,58(4):875-880
    [81]TASI J C,LOSERT W,VOTH G A,et al.Two-di-mensional granular poiseuille flow on an incline:Multi-pie dynamical regimes[J].Phys Rev E,2001,65:011306-011319
    [82]PENG Gong-wen,OHTA T.Velocity and densityprofiles of granular flow in channels using a lattice gas automation[J].Phys Rev E,1997,55(6):6811-6820
    [83]WANG Chi-hua,JACKSON R,SUNDARESAN S.Instabilities of fully developed rapid flow of a granular material in a channel[J].J Fluid Mech,1997,1342:179-197
    [84]GOODMAN MA,COW1N S C.Two problems in the gravity,flow of granular materials[J].J Fluid Mech,1971,45:321-326
    [85]SAVAGE S B,Analyses of slow high-concentration flows of granular materials[J].J Fluid Mech,1998,377:1-26
    [86]JENKINS J T,RICHMAN M W.Kinetic theory for plane shear flows of a dense gas of identical,rough,inelastic,circular disks[J].Phys of Fluids,1985,28:3485-3489
    [87]VOLFSON D,TSIMRING L S,ARANSON L S.Partially fluidized shear granular flows: Continuumtheory and molecular dynamics simulations[J].PhysRev E,2003,68:021301-0213016.
    [88]ISOBE M.Velocity statistics in two-dimensional granular turbulence[J].Phys Rev E,2003,68:04301-04308
    [89]POULIQUEN O.Scaling laws in granular flow downrough inclined planes[J].Phys of Fluids,1999,11(3):542-548
    [90]ANDERSON K G,JACKSON R.A comparison ofthe solutions of some.proposed equations of motionof granular materials for fully developed.flow downinclined planes[J].J Fluid Mech,1992,241:145-149
    [91]KIM S R.Asimulational study of granular boundary flows in two dimension[J].eomputational Material Science,1995,4:125-132
    [92]SAVAGE S B.The mechanics of rapid granular flows[J].AdvAppl Mech,1994,24:289-365
    [93]DENNISTON C,LI Hao.Dynamics and stress in gravity-driven granular flow[J].Phys Rev E,1999,59(3):3289-3292
    [94]ZHANG Xun-sheng,BAO De-song,XU Guang-lei,etal.Factors of the transition from dilute to dense flow in two-dimensional channel[J].International Journal of Moden Physics B,2003,17:4382-4386
    [95]BAO D S,ZHANG X S,XU G L,et al.Criticalphenomenon of granular flow on a conveyor belt[J].Phys Rev E,2003,67:062301-062305
    [96]P.E.Gramme etal.MTU-The Muti Test Unit for Investigate offshore Separation Problems and Optimizing the Gas/Oil/Water Separation Process.SPE56847
    [97]Choi M.S.Prediction of Separator Performance Under Changing Field Condition.SPE2073
    [98]Evert O.Grodal etal.Optimal Design of Two- and Three-Phase Separators:A Mathematical Programming Formulation.SPE 56645
    [99]Hafskjold etal.Drop-Drop coalescence in Oil/Water Separation.SPE28536
    [100]Kenneth E.Arnoild etc.Droplet-settling vs.Retention-Time Theories for Sizing Oil/Water Separator.SPE 16640
    [101]章梓雄、董曾南编.粘性流体力学[M].北京:清华大学出版社,1998
    [102]严宗毅编著.低雷诺数流理论[M].北京:北京大学出版社,2002
    [103]何利民.除油水力旋流器的分离性能评价.中国上海油气工程.2000,12(3):60-63
    [104]赵宗昌,尹曹勇.湍流分散体系中液滴破碎频率模型的黏性修正.化工学报.2006,57(12):2834-2839
    [105]王晓墨,黄素逸.波形板分离器中液滴轨迹的数值模拟.核动力工程.2003,24(6):582-585
    [106]Kelsall D.F.A study of the motion of solid Particles in a hydrocyclone,Trans.Inst.chem.Eng.1952,30:87-104
    [107]Bradley D.& Palling D.J.Flow pattens in the hydraulic cyclone and their interPretation in terms of Performance,Trans.Inst.Chem.Eng.1959,37:34-45.
    [108]Ohasi H.& maeda S.The velocity distribution within a hydrocyclone operting without an air core,Can.J.Chem.Eng.1958,22:200
    [109]Dabir B & petty C.A Laser doppler anemometry measurements of tangential and axial velocities in a hydrocyclone oprating without an air core.In:2nd international conference on hydrocyclones,England,BHRA,1984,15-26.
    [110]Hsiesh & Rajamani R.K.mathematical model of the hydrocyclones based on Physis of fluid flow.AIChE Jouma11991,37(5):735-746.
    [111]Narsimhan,G.J.P.GuPta & D.Ramkrishna,A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersion,Chem.Eng.Sci 34,257,1979.
    [112]Walter,j.& H.W.Blanch,Bubble break-up in turbulent flows,Chem.Eng.J.,32,B7,1986.
    [113]Nambiar,D.K.R.,R.Kumar,T.R.Das & K.S.Gandhi,A new model for the breakage frequency of drops in turbulent stirred dispersions Chem.Eng.Sci.,47,2989,1992.
    [114]Adrian,R.j.,Multi-Point Optical Measurement of Simultaneous Vectors in Unsteady Flow-a Review,Int.J.Hc.J.FluidFlow,1986,7(2):127-145
    [115]Gray,C.and C.A.Greated,:The Application of Particle Image Velocimetry to Study of Water Waves,Opt.And Lasers in Eng,9,1988,265
    [116]Arroyo,M.P.,et al.,:Velocity Measurementin Convective Flows by Partical Image Velocimetry Using a low Power Laser,:Opt.Eng.,1988,27(8):641-649
    [117]Szekely,J.,Fluid Flow Phenomena in Metals Procesing,Academic-Press,1979
    [118]Ishii M.,and N.Zuber,Drag Coefficient and relation Velocity in Bubble,DroPlet or Particalate Flows,AICHEJ.,1979,25(5):843-855
    [119]Kumar,A.,and S.Hartland,Gravlty Settling Liquid-Liquid Dispersions,The Can.J.of Chem,Eng.,1985,63(3):368-376
    [120]Zuber,N.,and J.A.Findley,Average Volumetric Concentration in tow-phase Flow Systems,J.Heat Trans.,7,1965,453
    [121]Joseph M.Crowley(1971).Viscosity-Induced Instability of a One-Dimensional Lattice of Falling Spheres,J.FluidMech.,Vol.45:151-159
    [122]Johnson A.A.and Tezduyar T.E.,simulation of Multiple Spheres Falling in a Liquid-Filled Tube.Comput.MethodsAppl.Mech.Engrg,1996,V(134):351-373
    [123]Johnson A.A.and Tezduyar T.E.,3D simulation of Fluid-Particle Interactions with the Number of Particles Reaching 100,ComPut.MethodsAPPL.Mech.EngRG.,1997,V(145):301-321
    [124]Glowinski R.et al.A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows,Intemational Journal of Multiphase Flow,1999,V(25):755-794
    [125]Xu Z.and Michaelides E.E.The Effect of Particle Interactions on the Sedimentation Process of Non- Cohesive Particles,Intemational Joumal of Multiphase Flow,2003,V(29):959-982
    [126]Di Felice R.The Sedimentation Velocity of Dilute Suspensions of Nearly Monosized SPhere,Intermational Journal of Multiphase Flow.1999,V(25):559-574
    [127]Feng J.,H.H.Hu and D.D.Joseph.Direct Simulation of Initial Value problems for the Motion of Solid Bodies in a Newtonian Fluid,Part 1.Sedimentation,J.Fluid.Mech.1994,V(261):95-134
    [128]Feng J.,H.H.Hu and D.D.Joseph.Direct Simulation of Initial Value problems for the Motion of Solid Bodies in a Newtonian Fluid,Part 1.Couette and Poiseuille Flow,J.Fluid.Mech.1994,V(277):271-301
    [129]Nicolai H.and Guazzelli E.Effect of the Vessel Size on the Hydrodynamic Diffusion of Sedimenting Spheres,Physics of Fluids,1995,Vol7(1):3-5
    [130]庄亚平.波形板汽水分离器板壁水膜流动数值模拟[D],哈尔滨:哈尔滨工程大学2005
    [131]邢富冲.一元三次方程求解新探.中央民族大学学报(自然科学版).2003,12(3):207-218
    [132]戚俊清,刘亚莉,许培援等.斜板沉降器及油水体系的分离研究.化工装备技术.2000,1(1):29-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700