用户名: 密码: 验证码:
填充床电化学反应器的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
填充床电化学技术是有效治理高盐分、高有机物浓度和高色度化工废水的可行途径;然而,反映床层流固耦合特征和有效预测有机污染物浓度变化规律模型的匮乏成为制约该工艺推广应用的主要瓶颈。本研究即以填充床电化学反应器为研究对象,着重描述动态运转条件下床层各点污染物浓度、电势、电流及反应速率的分布规律,以期为反应器工程设计提供合理的理论依据;同时,基于理论分析、数学建模、实验室实验和工程验证等手段主要获得如下成果:
     (1)提出了“复相控制”的新概念用于描述阳极处于扩散控制而粒子电极处于反应控制状态的过渡反应步骤,完善了填充床电化学反应器氧化有机物的反应历程。
     (2)基于法拉第定律,得出了适合于描述填充床电化学反应器电流效率的表达式;理论数值与实验数据具有较高的相关性。
     (3)基于床层反应控制、复相控制和扩散控制状态的综合表征,提出了电化学反应器氧化有机物的“阶段反应理论”。该理论利用极限电流密度与操作电流密度之间的关系界定有机物氧化反应控制步骤,探究各种控制步骤下的动力学特征,揭示有机物反应进程与操作条件、反应介质物化属性以及反应器构型之间的定量函数关系,为床层各点有机物浓度的分布规律预测提供了完整、充分而精确的理论依据。
     (4)建立了反应器通用能量模型。能够根据与废水性质相联系的特征参数K1、K2的数值得出最佳极板间距;也能够用于描述反应控制、复相控制以及扩散控制状态下的有机物氧化动力学行为。该模型结合“阶段反应理论”能够精确指导实际工程设计。
     (5)引入Poisson方程并结合“阶段反应理论”能够完整的对床层各点电势进行有效预测;实际工业废水的小试实验数据表明,理论数据与实测数值具有较高的相关性,床层电势、超电势、电流和反应速率具有可预知性;该结论可用于床层反应参数的优化与运营管理。
     (6)采用淀粉废水、助剂废水、DSD酸还原和氧化工段废水为实验对象,所得数据能够在床层浓度分布规律、电流效率和能耗方面与“阶段反应理论”预测数据一致;同时,应用“阶段反应理论”和通用能量模型用于甘氨酸生产废水处理设备的工程放大设计取得了与理论预测大致相同的出水效果。这均表明,本研究所建立的模式可作为填充床电化学反应器设计体系建立的基础。
     通过本研究不仅仅验证了填充床电化学反应器处理废水的广谱性,它能够作为常规废水的预处理措施提高可生化性,亦能作为高盐废水的终处理措施;结果表明,本工艺用于高盐废水处理更具竞争性。同时,理论的建立也为该工艺的普及、精确设计、操作管理、优化运行等提供了极大可能性。
Packed bed electrochemical technology is a feasible and effective approach for high concentration organic wastewater treatment with large colority and salinity. However, lack of the kinetics for the coupling of electrodes, fillings and concentration prediction of organics in the bed electrode hinders the transfer of this technique. Therefore, it is necessary for thorough research of the process. At the same time, the achievement obtained through varied means such as theoretical analysis, modelling, laboratory and pilot-scale experiment are as follows:
     (1) the concept of“multiphase control”was proposed for description of the transition of reaction and diffusion controlled processes, which is a complete supplement for the reaction theory based on sufficient analysis of current researches.
     (2) a new equation, which is accordance to the experimental data, was obtained for the calculation of current efficiency in packed bed electrochemical reactor (PBER) on the basis of Faraday’s law.
     (3) a“step-reaction kinetics”, which is related to the charactristics of different reaction stages, was achieved through the determination of reaction, multiphase and diffision controlled processes by the relation between limiting current density and operating current density. The new theory could be employed for the quantized description of the relevance of the organics oxidation and operation conditions, physi-chemical behaviors of solution and configuration of the reactor. Meanwhile, the integrated, sufficient and accurate prediction of the concentration distribution of organic matters in the bed electrode is acquired using this theory.
     (4) a global energy model was established through the application of laws of the conservation of energy, momentum and electron. The values of characteristic parameters, K1 and K2, which are related to the essence of organics in wastewater, could be obtained when linearized the complex expression of energy equation. Simultaneously, the parameters could be employed for the optimization of inter-electrode distance and the overall kinetic behaviors under reaction, multiphase and diffusion controlled phases also could be described by this model. The accurate design and operation are acquired by the introduction of global energy model and“step-reaction kinetics”through the lab-scale experiments.
     (5) an effective and precise prediction of potential distribution in bed electrode could be conducted using“step-reaction kinetics”coupled with Poisson’s equation. The results for starch wastewater, auxiliary wastewater, DSD acid wastewater from reduction and oxidation processes treatment revealed that the experiments was consistent with the theoretical ones and the potential, over-potential, current and reaction velocity of the bed electrode during the oxidation could be estimated by the kinetics proposed in this research. All in all, the optimization of the reaction and design parameters and management of the technology are easily achieved by the integrated theory.
     (6) the experimental results for the four kinds of different industrial wastewater treatment were in good agreement to the step-reaction kinetics on the prediction of concentration distribution, current efficiency and energy consumption of the bed electrode. Moreover, the successful fitting between these theories and experiments in glycine wastewater treatment using the engineering scale-up bed electrode indicates that the kinetics proposed in this study could be used for the accurate design of the PBER.
     The research demostrates that the PBER is wide-adaptable in environmental protection engineerings: it not only can be employed as a kind of pretreatment measure to improve the biodegradability of regular wastewater, but also for the final handle way of high salinated wastewater. However, the competitive advantages are noticeable in the application of solution with high salinity. Concomitantly, the development and improvement of kinetics for the PBER provide some significant possibility on its technical spread, rational design and optimal operation.
引文
[1]赵平,张华民,周汉涛,衣宝廉.我国液流储能电池研究概况[J].电池工业,2005,10(2):96-99.
    [2]钱新明,吕红辉. Graetzel型光电化学太阳能电池(PEC)研究进展[J].化学进展,2000,12(2):141-151.
    [3]杨术明,李富友.染料敏化纳米晶太阳能电池[J].化学通报,2002,65(5)292-296.
    [4]黄昀昉,吴季怀,范乐庆,陈璐璐,许姿蓉.天然色素敏化纳米晶TiO2太阳能电池研究[J].化学工程,2004,32(3):47-49.
    [5]江义.高温固体氧化物燃料电池(SOFC)进展[J].化学进展,1997,9(4):387-396.
    [6]于景荣,衣宝廉,韩明,邵志刚,程晓亮.高功率密度质子交换膜燃料电池研究[J].电源技术,2000,24(3):131-134.
    [7]杨文治.固体电解质的电化学[J].化学通报,1981,37(10):37-43.
    [8]杨晓光.氢化物—镍(Ni/MH)电池[J].能源工程,1996,4:14-16.
    [9]钟文琪,钟史明.燃料电池电厂前景展望[J].电力技术经济,2002,3:29-31.
    [10]黄子卿.电解质溶液理论导论(修订本)[M].北京:科学出版社,1983.
    [11]吴辉煌.电极学原理[M].厦门:厦门大学出版社,1991.
    [12]张祖训,汪尔康.电化学原理和方法[M].北京:科学出版社,2000.
    [13]杨绮琴,方北龙,童叶翔.应用电化学[M].广州:中山大学出版社,2001.
    [14]刘景东,王文继.金属-水固态贮备电池的研究[J].电池,2005,35(3):188-190.
    [15]张俊喜,徐娜,葛红花,吴一平.高铁电池用负极材料的可行性分析[J].化学通报,2006,69(9):644-650.
    [16]唐伦成,杨亭阁.燃料电池技术及应用[J].化工进展,1995,14(1):18-21.
    [17]麦立强,邹正光.锂离子电池正极材料的研究进展[J].材料导报,2000,14(7):32-35.
    [18]阎景旺,董永来.中温固体氧化物燃料电池阳极基底及负载型电解质薄膜的研制[J].无机材料学报,2001,16(5):804-814.
    [19]史成武,戴松元,王孔嘉,潘旭,郭力.染料敏化纳米薄膜太阳电池中电解质的研究进展[J].化学通报,2005,68(w001):1-8.
    [20]夏风,钱晓良.氧化锆电池中金属电极的极化及活化处理[J].硅酸盐学报,2000,28(6):519-522.
    [21]赖为华,余成洲.提高MH-Ni电池放电电压平台的途径[J].电池,1996,26(4):189-191.
    [22]贾俊曦,沈胜强,刘晓华.管式固体氧化物燃料电池单体欧姆极化分析[J].太阳能学报,2004,25(4):457-461.
    [23]王坚,秦大为,季宝华,马以春.慢脉冲快速充电方法的研究[J].电池工业,2002,7(3):160-164.
    [24]张招贤.电解冶金中新型涂层钛阳极的研究和应用[J].广东有色金属学报,1997,7(2):117-124.
    [25]佘旭.高纯镓电解精炼的研究[J].稀有金属,2007,31(6):871-874.
    [26]李卫东,杨江成. Ni-TiO2复合电镀工艺研究[J].表面技术,2002,31(2):32-35.
    [27]刘成伦,徐龙君.非均相化学反应的类分形动力学[J].化学世界,2001,42(5):265-276.
    [28]张明杰,郭清富. 21世纪的能源金属—锂的冶金现状及发展[J].盐湖研究,2001,9(3):52-60.
    [29]梁镇海,孙彦平. Ti/SnO2+Sb2O3+MnO2/PbO2阳极的性能研究[J].无机材料学报,2001,16(1):183-187.
    [30]杜继红,奚正平,李晴宇,李争显,唐勇.掺杂的TiO2阴极对熔盐电解的影响[J].稀有金属,2007,31(3):336-340.
    [31]王绍文,罗志腾,钱雷.高浓度有机废水处理技术工程应用[M].北京:冶金工业出版社,2003.
    [32]周军,金奇庭.电解法处理废水研究进展[J].水处理技术,2000,26(3):130-135.
    [33]郭鹤桐,覃奇贤.电化学教程[M].天津:天津大学出版社,2000.
    [34]宋卫锋,倪亚明,何德文.电解法水处理技术的研究进展[J].化工环保,2001,21(1):11-15.
    [35]冯玉杰,李晓岩,尤宏,丁凡.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002.
    [36]周明华,戴启洲,雷乐成,吴祖成,马淳安,汪大翚.新型二氧化铅阳极电催化降解有机污染物的特性研究[J].物理化学学报,2004,20(8):871-876.
    [37]赵少陵.活性炭纤维电极法处理印染废水的应用研究[J].上海环境科学,1997,16(5):24-27.
    [38] Chiang L.C., Chang J.E., Tseng S.C. Electrochemical oxidation pretreatment of refractory organic pollutants[J]. Water Sci. Technol., 1997, 36 (2-3): 123-130.
    [39] Vlyssides A.G., Israilides C.J. Detoxification of tannery waste liquors with an electrolysis system[J]. Environ. Pollution, 1997, 97 (1-2): 147-152.
    [40] Rondinini S., Mussini P.R., Muttini P., Sello G. Silver as a powerful electrocatalyst for organic halide reduction: the critical role of molecular structure[J]. Electrochim. Acta, 2001, 46 (20-21) 3245-3258.
    [41]周艳伟,范丽,杨卫身,杨凤林.活性炭纤维电极上苋菜红的恒电位电化学脱色[J].化工学报,2006,57(10):2420-2427.
    [42]黄得兵,赵永红,岳铁荣.电化学一接触氧化法处理多层线路板废水工程实例[J].环境工程,2005,23(2):13-15.
    [43]程宇婕,冯启言,李向东,刘波.电絮凝-过滤法去除源水中微量有机物[J].环境科学与技术,2007,30(8):86-88.
    [44]高艳娇,黄继国,沈照理,邵丕红.电絮凝工艺处理垃圾填埋场渗滤液[J].水处理技术,2006,32(1):48-50.
    [45]何志桥,裘建平,宋爽,陈建孟.臭氧强化电絮凝处理直接耐晒大红4BS模拟染料废水[J].化工学报,2007,58(10):2573-2579.
    [46] Babu R.R., Bhadrinarayana N.S., Sheriffa Begum K.M.M., Anantharaman N. Treatment of tannery watwater by electrocoagulation[J]. J. University Chem. Technol. Metallurgy, 2007, 42 (2): 201-206.
    [47]张登庆,任连锁,宫敬.电气浮含油污水处理工艺工业性试验研究[J].环境污染治理技术与设备,2005,6(11):56-59.
    [48] Mansour L.B., Ksentini I., Elleuch B. Treatment of wastewaters of paper industry by coagulation electroflotation [J]. Desalination, 2007, 208 (1-3): 34-41.
    [49] Zuo Q., Chen X., Li W., Chen G. Combined electrocoagulation and electroflotation for removal of fluoride from drinking water[J]. J. Hazard. Mater., 2008, 159 (2-3): 452-457.
    [50] Choi Y.G., Kim H.S., Park Y.H., Jeong S.H., Sond H., Oh Y.K., Yeomi T. Improvement of the thickening and dewatering characteristics of activated sludge by electroflotation (EF)[J]. Water Sci. Technol., 2005, 52 (10-11): 219-226.
    [51]熊蓉春,贾成功,魏刚.二维和三维电极法催化降解染料废水[J].北京化工大学学报,2002,29(5):34-37.
    [52]李勇,朱又春,宋卫锋,林美强,李鸿涛,张征帆.阳极材料对废水电化学处理能耗和净化效果的影响[J].环境污染治理技术与设备,2004,5(8):39-42.
    [53]孙金勇,庄云龙.电絮凝法用于处理废纸脱墨废水[J].上海造纸,2004,35(2):49-51.
    [54]景峰,王耀新,宋文菊.试论电化学-絮凝法处理造纸废水[J].黑龙江环境通报,2000,24(2):23-24.
    [55] Iotov P.I., Kalcheva S.V. Mechanism approach to the oxidation of phenol at a platinum/gold electrode in an acid medium[J]. J. Electroanal. Chem., 1998, 442 (1-2):19-26.
    [56]张招贤.钛电极工学[M].北京:冶金工业出版社,2000.
    [57]孟兆龙,刘玉存,柴涛.超临界水氧化处理DDNP废水的动力学研究[J].火炸药学报,2007,30(5):77-80.
    [58] Arslan-Alaton I., Ferry J.L. Application of polyoxotungstates as environmental catalysts: wet air oxidation of acid dye Orange II[J]. Dyes Pigm., 2002, 54 (1): 25-36.
    [59] Faramarzpour M., Vossoughi M., Borghei M. Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor[J]. Chem. Engin. J., 2009, 146 (1): 79-85.
    [60]赵艳,赵英武,陈晗.头孢抗生素制药废水处理工程设计[J].给水排水,2006,32(1):54-56.
    [61] Wu B., Zhou M. Sorption of styrene from aqueous solutions with oil absorptive resin.[J] J. Environ. Management, 2009, 90 (1): 217-221.
    [62] Sevon D.W., Cooper D.J. Modelling combustion efficiency in a circulating fluid bed liquid incinerator[J]. Chem. Engin. Sci., 1991, 46 (12): 2983-2996.
    [63]宋卫锋,林美强,倪亚明,朱又春,孙水裕. DSA类电极催化降解硝基苯动力学及机理的研究[J].环境科学研究,2002,15(5):10-13,21.
    [64]陈震,郑曦,陈日耀,王菲凤,刘文伟,张义康.电化学方法生成羟基自由基及其在酸性铬蓝降解脱色中的应用[J].环境化学,2001,20(3):275-279.
    [65] Matheswaran M., Balaji S., Sang J.C., Shik Moon I.L. Mediated electrochemical oxidation of phenol in continuous feeding mode using Ag (II) and Ce (IV) mediator ions in nitric acid: A comparative study[J]. Chem. Engin. J., 2008, 144 (1): 28-34.
    [66]董献堆,陈平安,陆君涛.电解用三维电极体系的研究与发展[J].化学通报,1997,60(5):12-18.
    [67]陈延禧.电解工程[M].天津:天津科学技术出版社,1993.
    [68] Goodridge F. Some recent developments of monopolar and bipolar fluidized bed electrodes[J]. Electrochim. Acta, 1977, 22 (9): 929-933.
    [69] Goodridge F., King C.J.H., Wright A.R. Performance studies on a bipolar fluidised bed electrode[J]. Electrochim.Acta, 1977, 22 (10): 1087-1091.
    [70] Goodridge F., King C.J.H., Wright A.R. The behaviour of bipolar packed-bed electrodes[J]. Electrochim. Acta, 1977, 22 (4): 347-352.
    [71] King C.J.H., Wright A.R. Current distribution in a thin film bipolar electrode system[J]. Electrochim. Acta, 1977, 22 (10): 1135-1139.
    [72] Kreysa G.. Kinetic behaviour of packed and fluidised bed electrodes[J]. Electrochim. Acta, 1978, 23 (12): 1351-1359.
    [73] Gaunand A., Coeuret F. Influence of the relative electric conductivity of the two phases on the pontential distribution in flow-though porous electrodes under limiting current conditions[J]. Electrochim. Acta, 1978, 23 (11): 1197-1203.
    [74] Leroux F., Coeuret F. Flow-by electrodes of ordered sheets of expanded metal—II. Potential distribution for the diffusional regime[J]. Electrochim. Acta, 1985, 30 (2): 167-172.
    [75] Storck A., Robertson P.M., Ibl N. Mass transfer study of three-dimensional electrodes composed of stacks of nets[J]. Electrochim. Acta, 1979, 24 (4): 373-380.
    [76] Plimley R.E., Wright A. R. A bipolar mechanism for charge transferin a fluidised bed electrode[J]. Chem. Engin. Sci., 1984, 39 (3): 395-405.
    [77] Jnioui A., Metrot A., Storck A. Electrochemical production of graphite salts using a three-dimensional electrode of graphite particles[J]. Electrochim. Acta, 1982, 27 (9): 1247-1252.
    [78] Roos H., Boehn H., Bittler K., Schlaefer D. 4422921 Bipolar electrodes with graphite as the carrier and their production[P]. US 4422921, 1983.
    [79] Pouzet S., Ricard A., Boudet A. Pulsed bed reactor for the preparation of polypyrrole deposited on graphite particles[J]. Electrochim. Acta, 1991, 36 (13): 1953-1957.
    [80] Ho S.P., Wang Y.Y., Wan C.C. Electrolytic decomposition of cyanide effluent with an electrochemical reactor packed with stainless steel fiber[J]. Water Res., 1990, 24 (11): 1317-1321.
    [81] Mehta M.P., Flora J.R.V. Effects of electrochemical treatment of granular activated carbon on surface acid groups and the adsorptive capacity for phenol[J]. Water Res., 1997, 31 (9): 2171-2176.
    [82] Alverez-Gallegos A., Pletcher D. The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents[J]. Electrochim. Acta, 1999, 44 (14): 2483-2492.
    [83] Güven? A., Karabacakoglu B. Study of the effect of number of layers on the electrosynthesis of cobalt(III) acetate in a bipolar packed-bed flow reactor[J]. Turk. J. Chem., 2001 (25): 461- 468.
    [84] Stock J.T., Orna M.V. Electrochemistry, Past and Present[M]. Washington: ACS Sym. Ser., 1989.
    [85] Tennakoon C.L.K., Bhardwaj R.C., Bockris J.O’M. Electrochemical treatment of human wastes in a packed bed reactor[J]. J Appl Electrochem., 1996, 26 (1): 18-29.
    [86] Bockris J.O’M., Kim J. Effect of contact resistance between particles on the current distribution in a packed bed electrode[J]. J Appl Electrochem., 1997, 27 (8): 890-901.
    [87] Friedrich J.M., Ponce-de-León C., Reade G.W., Walsh F.C. Reticulated vitreous carbon as an electrode material[J]. J Electroanal. Chem., 2004, 561: 203-217.
    [88] Wang L., Zhao Y., Fu J. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor[J]. J Hazad Mater., 2008, 160 (2-3): 608-613.
    [89] Soltan E.A., Nosier S.A., Salem A.Y., Mansour I.A.S., Sedahmed G.H. Mass transfer behaviour of a flow-by fixed bed electrochemical reactor under different hydrodynamic conditions[J]. Chem. Engin. J., 2003, 91 (1): 33-44.
    [90]王丽,周德瑞,张秋华,周育宏.复合型三维电极固定床电化学反应器电势分布[J].哈尔滨理工大学学报,2003,8(5):24-26.
    [91] Boudenne J.L., Cerclier O., Galéa J., Van der Vlist E. Electrochemical oxidation of aqueous phenol at a carbon black slurry electrode[J]. Appl. Catal.A, 1996, 143 (2): 185-202.
    [92]王立章,邱熔处,何义亮.三维电极法在微污染水源水处理中的应用[J].环境污染治理技术与设备,2003,4(3):25-27,79.
    [93]许文林,袁渭康.扩散控制下固定床电化学反应器研究(I)理论研究[J].化学反应工程与工艺,1995,11(4):272-276.
    [94]庞文亮,金奇庭,张希衡.新型电极与处理含氰废水的研究[J].西安冶金建筑学院学报,1989,21(2):69-73.
    [95] Gostick J., Pritzker M., Lohi A., Doanh D. Mass transfer variation within a packed bed and its relation to liquid distribution[J]. Chem. Engin. J., 2004, 100 (1-3): 33-41.
    [96] Nava J.L., Sosa E., Carre?o G., Ponce-de-León C, Oropeza, M.T. Modelling of the concentration–time relationship based on global diffusion-charge transfer parameters in a flow-by reactor with a 3D electrode[J]. Electrochim. Acta, 2006, 51 (20): 4210-4217.
    [97] Zhang X.S., Wu G.B., Ding P., Yuan W.K. Studies on paired packed-bed electrode reactor: Modeling and experiments[J]. Chem. Engin. Sci., 1999, 54 (13-14): 2969-2977.
    [98]熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998,18(1):5-8.
    [99] Xiong Y., Karlsson H.T. An experimental investigation of chemical oxygen demand removal from the wastewater containing oxalic acid using three-phase three-dimensional electrode reactor[J]. Adv. Environ. Res., 2002, 7 (1): 139-145.
    [100]周抗寒,周定.用涂膜活性炭提高复极性电解槽电解效率[J].环境科学,1994,15(2):38-40.
    [101] Li X.Y., Cui Y.H., Feng Y.J, Xie Z.M., Gu J.D. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes[J]. Water Res., 2005, 39 (10): 1972-1981.
    [102]王立章,赵跃民,乔启成.填充床电极反应器深度处理造纸中段废水[J].中国造纸,2008,27(9):27-30.
    [103]王立章,赵跃民,乔启成.基于SnO2/Ti阳极的难生物降解有机物电催化氧化动力学研究[J].石油学报<石油加工>,2008,24(6):721-725.
    [104]王立章,傅剑锋,乔启成.三维电极体系降解有机污染物的数学模型[J].化学工程,2006,34(12):54-57.
    [105] Wang L.Z., Fu J.F. Qiao Q.C., Zhao Y.M. Kinetic modeling of electrochemical degradation of phenol in athree-dimension electrode process[J]. J. Hazad. Mater., 2007, 144 (1-2): 118-125.
    [106] Panizza M., Michaud P.A., Cerisola G., Comninellis C. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes[J]. J. Electroanal. Chem., 2001, 507 (1-2): 206-214.
    [107] Hunsom M., Vergnes H., Duverneuil P., Pruksathorn K., Damronglerd S. Recovering of Copper from Synthetic Solution in 3PE Reactor[J]. Science Asia, 2002, 28 (2): 153-159.
    [108] Ragnini C.A.R., di Iglia R.A., Bizzo W., Bertazzoli R. Recycled niobium felt as an efficient three-dimensional electrode for electrolytic metal ion removal[J]. Water Res., 2000, 34 (13): 3269-3276.
    [109] Pak D., Chung D., Ju J.B. Design parameters for an electrochemical cell with porous electrode to treat metal ion solution[J]. Water Res., 2001, 35 (1): 57-68.
    [110] McKay G., Bino M.J., Altememi A. External mass transfer during the adsorption of various pollutants onto activated carbon[J]. Water Res., 1986, 20 (4): 435-442.
    [111] Dwidevi P.N., Upadhyay S.N. Particle-fluid mass transfer in fixed and fluidized beds[J]. Ind. Eng. Chem. Process Des. Dev., 1977, 16 (2): 157-165.
    [112] Polcaro A.M., Palmas S., Renoldi F., Mascia M. Three-dimensional electrodes for the electrochemical combustion of organic pollutants[J]. Electrochim. Acta, 2000, 46 (2-3): 389-394.
    [113] Chopra K.L., Major S., Pandy D.K.. Transparent conductors-a status review[J]. Thin Solid Film, 1983, 102 (1): 1-46.
    [114] Panizza M, Cerisola G.. Electrochemical oxidation as a final treatment of synthetic tannery wastewater[J]. Environ. Sci. Technol., 2004, 38 (20): 5470 -5475.
    [115]杨建朝,潘会波. Ti/PbO2电极的研制[J].稀有金属材料与工程,1994,23(1):50-56.
    [116]梁镇海,边书田,任所才,陈新国.硫酸中钛基二氧化铅阳极研究[J].稀有金属材料与工程,2001,30(3):232-234.
    [117]冯玉杰,崔玉虹,孙丽欣,刘峻峰,蔡伟民.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):450-455.
    [118]宋卫锋,吴斌,马前,李义久,倪亚明. DSA类阳极催化氧化降解有机污染物的机理初探[J].水处理技术,2001,27(2):90-92.
    [119] Jüttner K., Galla U., Schmieder H. Electrochemical approaches to environmental problems in the process industry[J]. Electrochim. Acta, 2000, 45 (15-16): 2575-2594.
    [120] Storck A., Enriquez-Granados M.A., Roger M., Coeuret F. The behaviour of porous electrodes in a flow-by regime—I. theoretical study[J]. Electrochim. Acta., 1982, 27 (2): 293-301.
    [121] Doherty T., Sunderland J.G., Roberts E.P.L., Pickett D.J. An improved model of potential and current distribution within a flow-through porous electrode[J]. Electrochim. Acta., 1996, 41 (4): 519-526.
    [122] SinéG., Comninellis C. Nafion?-assisted deposition of microemulsion-synthesized platinum nanoparticles on BDD Activation by electrogenerated ?OH radicals[J]. Electrochim. Acta, 2005, 50 (11): 2249-2254.
    [123] Polcaro A.M., Mascia M., Palmas S., Vacca A. Kinetic study on the removal of organic pollutants by anelectrochemical oxidation process[J]. Ind. Eng. Chem. Res., 2002, 41 (12): 2874-2881.
    [124] Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochim. Acta, 1994, 39 (11-12): 1857-1832.
    [125] Polcaro A.M., Palmas S., Renoldi F., Mascia M. On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment[J]. J. Appl. Electrochem., 1999, 29 (2): 147-151.
    [126] Belhadj Tahar N., Savall A. Mechanistic aspects of phenol electrochemical degradation by oxidation on a Ta/PbO2 anode[J]. J. Electrochem. Soc., 1998, 145 (10): 3427-3434.
    [127] Feng J., Houk L.L., Johnson D.C., Lowery S.N., Carey J.J. Electrocatalysis of anodic oxygen-transfer reactions: the electrochemical incineration of benzoquinone[J]. J. Electrochem.Soc., 1995, 142 (11): 3626-3632.
    [128] Bonfatti F., Ferro S., Lavezzo F., Malacarne M., Lodi G., De Battisti A. electrochemical incineration of glucose as a model organic subtrate. I Role of the electrode material[J]. J. Electrochem. Soc., 1999, 146 (6): 2175-2179.
    [129] Comninellis C., De Battisti A. Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution[J]. J. Chim. Phys., 1996, 93 (4): 673-679.
    [130] Sabacky B.J., Evans J.W. Eectrodeposition of metals in fluidized bed electrodes Part I. Mathematical model[J]. J. Electrochem. Soc., 1979 (126): 1176-1180.
    [131] Ogutveren U.B., Plimley R.E. Nieva I. The behaviour of a trickle tower electrolytic cell for the production of cobalt(III) acetate from cobalt(II) acetate[J]. J. Appl. Electrochem., 1992, 22 (4): 351-357.
    [132]王立章.三维电极法在水处理中的应用研究[D].兰州:兰州交通大学环境与市政工程学院,2003.
    [133] Matloz M.J., Newman J. Experimental investigation of a porous carbon electrode for the removal of mercury from contaminated brine[J]. J. Electrochem. Soc., 1986, 133 (9): 1850-1859.
    [134] Podlaha E.J., Fenton J.M. Characterization of a flow-by RVC electrode reactor for the removal of heavy metals from dilute solutions[J]. J. Appl. Electrochem., 1995, 25 (4): 299-306.
    [135]王立章,乔启成,赵跃民.泡沫分离技术和三维电极反应器联用处理淀粉废水[J].化工进展,2007,26(7):1053-1057.
    [136] Sharifian H., Kirk D.W. Electrochemical oxidation of phenol.[J]. J . Electrochem. Soc., 1986, 133 (5): 921-924.
    [137] Yoshizawa S., Takehara Z., Ogumi Z., Tsuji T. Cathodic reduction of nitrobenzene on the packed bed copper electrode[J]. Bull. Chem. Soc. Japan, 1976 , 49 (11): 2889-2891.
    [138] Güvenc A., Karabacakoglu B. The synthesis of manganese(III) acetate in bipolar packed-bed and trickle-bed electrode cells[J]. Turk. J. Chem., 2000 (24): 101-108.
    [139]朱宏丽,王书惠.三元电极电解在水处理中的应用[J].环境科学,1985,6(6):36-40.
    [140] Conway B.E., Erol A., Al-Maznai H. Use of quasi-3-dimensional porous electrodes for adsorption and electrocatalytic removal of impurities from waste-waters[J]. Electrochim. Acta., 2001, 47 (5): 705-718.
    [141] Korbahti B.K., Tanyolac A. Continuous electrochemical treatment of phenolic wastewater in a tubular reactor[J], Water Res., 2003, 37 (7): 1505-1514.
    [142]乔启成.基于SnO2/Ti阳极的难生物降解有机物电催化氧化动力学研究[D].徐州:中国矿业大学环测学院,2007.
    [143]周明华,吴祖成,汪大翚.电化学高级氧化工艺降解有毒难生化有机废水[J].化学反应工程与工艺,2001,17(3):263-271.
    [144] Martínez-Huitle C.A., Quiroz M.A., Comninellis C., Ferro S., Battistia A.D. Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes[J]. Electrochim. Acta, 2004, 50 (4): 949-956.
    [145] Brillas E., Calpe J.C., Casado J. Mineralization of 2,4-D by advanced electrochemical oxidation processes[J]. Water Res., 2000, 34 (8): 2253-2262.
    [146] Guinea E., Arias C., Cabot P.L., Garrido J.A., Rodríguez R.M., Centellas F. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide[J]. Water Res., 2008, 42 (1-2): 499-511.
    [147] Andreescu S., Andreescu D., Sadik O.A. A new electrocatalytic mechanism for the oxidation of phenols at platinum electrodes[J]. Electrochem. Commun., 2003, 5 (8): 681-688.
    [148] Kotz R., Stucki S., Carcer B. Electrochemical waste water treatment using high overvoltage anodes: Part 1: physical and electrochemical properties of SnO2 anodes[J]. J. Appl. Electrochem., 1991, 21 (1): 14-20.
    [149] Torres R.A., Torres W., Peringer P., Pulgarin C. Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes. Attempt of a structure-reactivity relationship assessment[J]. Chemosphere, 2003, 50 (1): 97-104.
    [150] Oturan M.A., Brillas E. Electrochemical advanced oxidation processes (EAOPs) for environmental applications [J]. Portugal. Electrochim. Acta, 2007, 25 (1): 1-18
    [151] Garrido J.A., Brillas E., Cabot P.L., Centellas F., Arias C., Rodríguez R.M. Mineralization of drugs in aqueous medium by advanced oxidation processes[J]. Portugal. Electrochim. Acta, 2007, 25 (1): 19-41
    [152]汪群慧,周定,蔡伟民.双极性颗粒床电极用于活性炭的再生[J].化工环保,1990,10(2):69-72.
    [153] Scott K., Argyropoulos P. A current distribution model of a porous fuel cell electrode[J]. J. Electroanal. Chem., 2004, 567 (1): 103-109.
    [154]王慧,工建龙,占新民,钱易.电化学法处理含盐染料废水[J].中国环境科学,1999,19(5):441-444.
    [155] Comninellis C., Nerini A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment[J]. J. Appl. Electrochem., 1995, 25 (1): 23-28.
    [156] Lipp L., Pletcher D. Extended area electrodes based on stacked expanded titanium meshes[J]. Electrochim. Acta, 1997, 42 (7): 1101-1111.
    [157] Abbar A.H., Sulaymon A.H., Jalhoom M.G.. Scale-up of a fixed bed electrochemical reactor consisting of parallel screen electrode used for p-aminophenol production[J]. Electrochim. Acta, 2007, 53 (4): 1671-1679.
    [158] Panizza M., Kapalka A., Comninellis C. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis[J]. Electrochim. Acta, 2008, 53 (5): 2289-2295.
    [159] Scialdone O., Galia A., Guarisco C., Randazzo S., Filardo G. Electrochemical incineration of oxalic acid at borondoped diamond anodes: Role of operative parameters[J]. Electrochim. Acta, 2008, 53 (5): 2095-2108.
    [160] Comninellis C., Pulgarin C. Anodic oxidation of phenol for wastewater treatment[J]. J Appl Electrochem., 1991, 21 (8): 703-708.
    [161] Alverez-Gallegos A., Pletcher D. The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions[J]. Electrochim. Acta, 1998, 44 (5): 853-861.
    [162] Ponce de Leon C., Pletcher D. The removal of Pb(II) from aqueous solutions using a reticulated vitreous carbon cathode cell—the influence of the electrolyte medium[J]. Electrochim. Acta, 1996, 41 (4): 533-541.
    [163] Panizza M., Michaud P.A., Cerisola G., Comninellis C. Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: Prediction of specific energy consumption and required electrode area[J]. Electrochem. Commun., 2001, 3 (7): 336-339.
    [164] C?nizares P., Paz R., Sáez C., Rodrigo M.A. Electrochemical oxidation of alcohols and carboxylic acids with diamond anodes: A comparison with other advanced oxidation processes[J]. Electrochim. Acta, 2008, 53 (5): 2144-2153.
    [165] Fockedey E., Van Lierde A. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes[J]. Water Res., 2002, 36 (16): 4169-4175.
    [166]李厚梅,王新梅,周崇岭.活性炭填充电极电解法用于印染废水深度处理的可行性试验[J].工业水处理,1987,7(3):49-51.
    [167] Gornushkin I.B., Smith B.W., Winefordner J.D. A kinetic study of diffusion in the electrothermal atomizer with a graphite filter by laser excited atomic fluorescence[J]. Spectrochim. Acta B, 1996, 51 (13): 1679-1693.
    [168] Bronin D.I., Yaroslavtsev I.Y., Nafe H., Aldinger F. Identification of the reaction mechanism of the Pt,O2/La(Sr)Ga(Mg)O3-αelectrode system[J]. Electrochim. Acta, 2004, 49 (15): 2435-2441.
    [169] Diniz A.V., Ferreira N.G., Corat E.J., Trava-Airoldi V.J. Efficiency study of perforated diamond electrodes for organic compounds oxidation process[J]. Diamond Relat. Mater., 2003, 12 (3-7): 577-582.
    [170] Li Y., Wang F., Zhou G., Ni Y. Aniline degradation by electrocatalytic oxidation[J]. Chemosphere, 2003, 53 (10): 1229-1234.
    [171] Canizares P., Lobato J., Paz R., Rodrigo M.A., Sáez C. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes[J]. Water Res., 2005, 39 (12): 2687-2703.
    [172] Canizares P., Sáez C., Lobato J., Rodrigo M.A. Electrochemical treatment of 2, 4-dinitrophenol aqueous wastes using boron-doped diamond anodes[J]. Electrochim. Acta, 2004, 49 (26): 4641-4650.
    [173]杨松,李玉明,周集体,胡军.三维三相流化床电极处理苯胺实验研究[J].环境污染治理技术与设备,2004,5(6):43-47.
    [174] Iniesta J., Michaud P.A., Panizza M., Cerisola G.., Aldaz A., Comninellis C. Electrochemical oxidation of phenol at boron-doped diamond electrode[J]. Electrochim. Acta, 2001, 46 (23): 3572-3578.
    [175]王立章,乔启成,傅剑锋,王哲晓.三维电极体系中苯酚降解效率的影响因素研究[J].生态环境,2007,16(6):850-854.
    [176] Angela-Guiovana R., Cesar P. Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 Implications insolar water disinfection[J]. Appl. Catal. B, 2004, 51 (4): 283-302.
    [177] Dhananjay S.B., Sanjay P.K., Sudhir B.S. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultravioletlight[J]. Chem. Engin. J., 2004, 102 (3): 283-290.
    [178] Erdal K., Ali S., Osman M.A. Photocatalytic degradation kinetics of di- and tri-substituted phenolic compounds in aqueous solution by TiO2/UV[J]. Appl. Catal. B, 2005, 58 (3-4): 211-216.
    [179]陈敏忠,傅家膜,盛国英,闵育顺.电催化氧化法降解水中有机物的研究进展[J].中国给水排水,1999,15(3):24-26.
    [180]何春,安太成,熊亚.三维电极电化学反应器对有机废水的降解研究[J].电化学,2002,8(2):327-332.
    [181]赵稚娟.化学动力学中的活化能概念[J].辽阳石油化工高等专科学校学报,1999,15(1):39-41.
    [182]许文林,王雅琼,高明国.固定床电化学反应器的模型方程求解[J].扬州大学学报(自然科学版),2000,3(1):53-57.
    [183] Robertson P.M., Ibl N. Electrolytic recovery of metals from waste waters with the Swiss-roll`cell[J]. J. Appl. Electrochem., 1977, 7 (4): 323-330.
    [184]杨松.复极性三维电极反应器的改进研究[D].大连:大连理工大学,2004.
    [185]傅剑锋,季民,阎怀国,王三反.粒子群电解法降解焦化废水中酚的影响因素研究[J].农业环境科学学报,2004,23(6):1139-1143.
    [186]郭士元,张爱丽,周集体.不同惰性填料复极性固定床电解槽处理对硝基酚钠废水行为比较[J].电化学,2006,12(2):165-169.
    [187] Lin C., Popov B.N., Ploehnz H.J. Modeling the effects of electrode composition and pore structure on the performance of electrochemical capacitors[J]. J. Electrochem. Soc., 2002, 149 (2): A167-A175.
    [188] Thilakavathia R., Balasubramaniana N., Ahmed Bashab C. Modeling electrowinning process in an expanded bed electrode[J]. J. Hazard. Mater. (In press).
    [189] Newman J. Elect rochem ical systems [M ]. NJ: P rentice-Hall, Inc, 1973.
    [190]庞志成,汪尔康.线性电流扫描过程中的液/液界面离子转移动力学[J].中国科学:B,1990(1):21-27.
    [191]司云森,杨显万.硅氟酸溶液中方铅矿的阳极氧化动力学研究[J].有色金属,2002,54(4):59-62.
    [192]张兴芳,孙彦平.填充床电极反应器中典型有机电合成反应系统的选择性分析[J].化工学报,2008,59(5):1165-1170.
    [193] Bard A J., Faulkner L.R. Electrochemical Methods: Fundamentals and Applications[M]. New York: John Wiley & Sons, 1980.
    [194]许文林,王雅琼,孙彦平,王森.反应控制时固定床电化学反应器特性研究[J].太原工业大学学报,1995,26(1):1-5.
    [195]周抗寒,周定.复极性固定床电解槽内电极电位的分布[J].环境化学,1994,13(4):318-322.
    [196]谢建治,张书廷,赵新华.不同因素对三维电极体系电极电位的影响[J].天津大学学报,2005,38(7):644-648.
    [197]许文林,袁渭康.扩散控制下固定床电化学反应器(II)实验研究[J].化学反应工程与工艺,1995,11(4):372-376.
    [198]许文林,袁渭康.扩散控制下固定床电化学反应器(III)反应器的设计与操作[J].化学反应工程与工艺,1996,12(1):17-24.
    [199]李保山,胡壮麒,牛玉舒,翟玉春,全明秀.发泡金属电极的宏观反应速率及电势分布[J].化工学报,2001,52(7):593-600.
    [200] Newman J., Tiedemann W. Porous-electrode theory with battery applications[J]. AIChE J., 1975, 21 (1): 25-41.
    [201] Alkire R. A theoretical study of bipolar porous electrodes[J]. J. Electrochem. Soc., 1973, 120 (7): 900-905.
    [202] Alkire R., Ng P.K. Studies on flow-by porous electrodes having perpendicular directions of current and electrolyte flow[J]. J. Electrochem. Soc., 1977, 124 (8): 1220-1227.
    [203] Alkire R., Cangellari A. Effect of benzotriazole on the anodic dissolution of iron in the presence of fluid flow[J]. J. Electrochem. Soc., 1988, 135 (10): 2441-2446.
    [204] Alkire R., Gracon B. Flow-through porous electrodes[J]. J. Electrochem. Soc., 1975, 122 (12): 1594-1601.
    [205] Storck A., Enriquenz-Granados M.A., Roger M., Coeuret F. The behaviour of porous electrodes in a flow-by regime—I. Theoretical study[J]. Electrochim Acta, 1982, 27 (2): 293-301.
    [206] Langlois S., Coeuret F. Flow-through and flow-by porous electrodes of nickel foam, Part III: Theoretical electrode potential distribution in the flow-by configuration[J]. J. Appl. Electrochem., 1990, 20 (5): 740-748.
    [207] Xu W.L., Ding P., Yuan W.K. The behavoir of packed bed electrode reactor[J]. Chem. Engin. Sci., 1992, 47 (9-11): 2307-2312.
    [208] Sun Y.P., Qiu O., Xu W.L., Scott K. A study of the performance of a sparged packed bed electrode reactor for the direct electrochemical oxidation of propylene[J]. J. Electroanal. Chem., 2001, 503 (1): 36-44.
    [209] Nava J.L., Oropeza M.T., Ponce de León C., González-García J., Frías-Ferrer A.J. Determination of the effective thickness of a porous electrode in a flow-through reactor; effect of the specific surface area of stainless steel fibres, used as a porous cathode, during the deposition of Ag(I) ions[J]. Hydrometallurgy, 2008, 91 (1-4): 98-103.
    [210] Low C.T.J., Roberts E.P.L., Walsh F.C. Numerical simulation of the current, potential and concentration distributions along the cathode of a rotating cylinder Hull cell[J]. Electrochim. Acta, 2007, 52 (11): 3831-3840.
    [211] Vilar E.O., de Freitas N.L., de Lirio F.R., de Sousa F.B. Study of the electrochemical conductivity of graphite felt employed as a porous electrode[J]. Braz. J. Chem. Eng., 1998, 15 (3): 295-302.
    [212] Agarwal A.S., Landau U., Shan X., Payer J.H. Modeling the cathodic region in crevice corrosion under a thin electrolyte film including particulates. 208th Electrochem. Soc. Meeting[C]. Los Angeles: ECS Trans., 2005.
    [213] Diwakar V.D., Subramanian V.R. Effect of varying electrolyte conductivity on the electrochemical behavior of porous electrodes[J]. J. Electrochem. Soc., 2005, 152 (5): A984-A988.
    [214] Yoshizawa S., Takehara Z., Ogumi Z. Modification of the packed-bed electrode and its potential distribution[J]. Bull. Chem. Soc. Japan, 1976, 49 (12): 3372-3375.
    [215] Fleischmann M., Kelsall G.H. A parametric study of copper deposition in a fluidized bed electrode[J]. J. Appl. Electrochem., 1984, 14 (3): 269-275.
    [216] Langmuir I. The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes[J]. Phys. Rev., 1923, 21 (4): 419-435.
    [217] Song H.K., Jung Y.H., Lee K.H., Dao L.H. Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution[J]. Electrochim. Acta, 1999, 44 (20): 3513-3519.
    [218] Nú?ez-Vergara L.J., García F., Domínguez M.M., de la Fuente J., Squella J.A. In situ reactivity of the electrochemically generated nitro radical anion from nitrendipine with glutathione, adenine and uracil[J]. J. Electroanal. Chem., 1995, 381 (1-2): 215-219.
    [219] Sioda R.E., Fahidy T.Z., Frankowsk B. An application of reactor theory principles to the confinement of electrochemically generated unstable radical ions[J]. J. Electroanal. Chem., 2003, 560 (1): 43-49.
    [220] Lazarova V., Perera J., Bowenand M. Application of aerated biofilters for production of high quality water for industrial reuse in West Basin[J]. Water Sci. Technol., 1996, 41(4-5): 417-424.
    [221] Denbigh K.G., Turner J.C.R. Chemical Reactor Theory, An Introduction, third ed.[M]. Cambridge: Cambridge University Press, 1984.
    [222] Holland F.A. Fluid flow for chemical engineers[M]. London: E. Arnold, 1973.
    [223]李清彪,廖鑫凯,吴志旺,邓旭,黄益丽,卢英华,孙道华,洪铭嫒,王琳.高浓度淀粉废水水解–好氧循环一体化处理工艺的初步研究[J].中国化学工程学报(英文版),2004,12(1):108-112.
    [224]廖鑫凯,李清彪,陈文谋,邓旭,卢英华,何宁.多阶段曝气SBR法处理淀粉废水[J].水处理技术,2005,31(10):48-51.
    [225]张群绸,仝攀瑞,高玉松. UASB工艺在处理淀粉废水中的应用[J].环境工程,2006,24(2):25-27.
    [226]丛培君,袁彦肖,王淑兰,孙鹤,王榕树.超滤技术在马铃薯淀粉排放废水中的应用初探[J].环境科学学报,1998,18(4):442-444.
    [227]王以清,侯小刚,张显球.热泵蒸馏应用于橡胶助剂废水预处理的研究[J].上海环境科学,2002,21(10):628-629.
    [228]陈广春,袁爱华,唐玉斌,田园. Fenton试剂氧化预处理橡胶促进剂生产废水[J].苏州大学学报:自然科学版,2005,21(4):71-74.
    [229]郭向明,苏宏,赵文生,闫广平.加压生物氧化法处理助剂厂废水的研究[J].化工环保,2001,21(2):70-74.
    [230] Modi B.R., Naik N.M., Naik D.N., Disai K.R. Synthesis of 4,4/-bis [(4-morpholino- 6-arylureidothioureido- s- triazin-z-yl) amino] stilbene-2,2/-disulfonic acid-derivatives and their use as fluorescent brightening agents for cotton and nylon fibers[J]. Dyes Pigm., 1993, 23 (1): 65-72.
    [231] Rajagopal R., Seshadri S. Light-stabilized azo dyes containing a built-in ultraviolet absorber residue[J]. Dyes Pigm., 1988, 9 (3): 233-241.
    [232] Tennant R.W., Spalding J., tasiewicz S.S., Ashby J. Prediction of the outcome of rodent carcino-genicity bioassayscurrently being conducted on 44 chemicals by the national-toxicology-program[J]. Mutagenesis, 1990, 5 (1): 3-14.
    [233] Fierz-David H.E., Blangey L. Fundmental process of dye chemistry[M]. London: Interscience, 1949.
    [234] Yu G., Zhu W.P., Yang Z.H., Jiang Z.P. Phisicochemical decolorization technology of dye wastewater[J]. Environ. Sci., 1994, 15: 75-80.
    [235] Chai L., Zhang F., Zhang G. Treatment of DSD acid wastewater using a weak basic resin[J]. Desalination, 2005, 180 (1-3): 157-162.
    [236] Yu G., Zhu W., Yang Z. Pretreatment and biodegradability enhancement of DSD acid manufacturing wastewater[J]. Chemosphere, 1998, 37 (3): 487-494.
    [237]李国柱,张凤宝,张国亮,贾春燕,张中岭.用氧化-絮凝法处理DSD酸还原废水的实验室及工业实验[J].工业水处理,2005,25(9):30-32.
    [238]孙力平,严媛媛,冯雷雨.好氧共代谢对DSD酸还原段生产废水的处理[J].中国给水排水,2006,22(17):96-99.
    [239]严媛媛,孙力平,冯雷雨. SBR法处理还原段DSD酸废水脱氢酶活性的研究[J].环境科学与技术,2007,30(3):87-89.
    [240]王妍,孙力平,贾仁勇.微电解-吹脱-SBR法处理DSD酸生产废水[J].环境科学与技术,2007,30(12):80-82.
    [241] Haplova J., Farkas V., Hejtmanek M., Kodousek R., Malinsky J. Effect of the new fluorescent brightener rylux bsu on morphology and biosynthesis of cell-walls in saccharomyces-cerevisiae[J]. Arch. Microbiol, 1994, 161 (4): 340-344.
    [242]龙超,张全兴,许昭怡,李爱民,陈金龙,成志强.树脂吸附法处理高浓度DSD酸氧化工序生产废水的研究[J].离子交换与吸附,2002,18(1):45-50.
    [243] Yang C., Teo K.C., Xu Y.R. Butane extraction of model organic pollutants from water[J]. J. Hazard. Mater., 2004, 108 (1-2): 77-83.
    [244] Li G., Zhang F., Zhang G., Han J. Recovery of Na2SO4 from remediation of wastewater and reuse for preparation of sodium of 4-nitrotoluene-2-sulfonate (NTSNa)[J]. Desalination, 2006, 194 (1-3): 176-181.
    [245] Fóti G., Mousty C., Reid, V. Comninellis C. Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor[J]. Electrochim. Acta, 1998, 44 (5): 813-818.
    [246]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [247] Pelegrini R.T., Freire R.S., Duran N., Bertazzoli R. Photoassisted electrochemical degradation of organic pollutants on a DSA type oxide electrode: process test for a phenol synthetic solution and its application for the E1 bleach Kraft mill effluent[J]. Environ. Sci. Technol., 2001, 35 (13): 2849-2853.
    [248]时文中,李灵芝,余国忠.电化学氧化含酚废水及其动力学的研究[J].水处理技术,2003,29(6):341-344.
    [249]杨昌柱,崔艳萍,黄健,郑燕琼.三维电极反应器氧化降解苯酚[J].化工进展,2006,25(5):551-556.
    [250] Piya-areetham P., Shenchunthichai K., Hunsom M. Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode[J]. Water Res., 2006, 40 (15): 2857-2864.
    [251]丁海洋,冯玉杰,刘峻峰.采用循环伏安与Tafel曲线比较不同阳极的电催化性能[J].催化学报,2007,28(7):646-650.
    [252]郑良勇,李占斌,李鹏.黄土区陡坡径流水动力学特性试验研究[J].水利学报,2004,35(5):46-51.
    [253]杨春光,郑艳梅,张立强,赵景利.从生产甘氨酸废水中回收氯化铵工艺研究[J].无机盐工业,2003,35(1):42-43.
    [254]杨春光.从生产甘氨酸的废液中回收氯化铵及冷凝水治理的工艺研究[D].石家庄:河北工业大学,2003.
    [255]杨春光,赵景利,徐烈.甘氨酸厂氨氮废水治理的工艺及实验研究[J].环境污染治理技术与设备,2004,5(12):90-93.
    [256]刘长飞.膨胀蛭石粉处理甘氨酸废水并制造化肥原料的方法:中国,101134683[P]. 2008-03-05.
    [257]杨春光,赵景利,殷学智,徐烈. Fenton试剂法处理甘氨酸废水中COD的研究[J].环境污染治理技术与设备,2006,7(3):105-107.
    [258]张昌军,艾仕云,朱鲁生.纳米TiO2光催化氧化甘氨酸及其氧化机理的研究[J].山东大学学报:理学版,2006,41(4):148-151.
    [259]林海波,徐红,杨喜波,张恒彬,李晓萍.在流动式电解槽中氨氮废水的间接电氧化[J].环境化学,2005,24(2):146-149.
    [260]陈金銮,施汉昌,徐丽丽. pH值对氨氮电化学氧化产物与氧化途径的影响[J].环境科学,2008,29(8):2277-2281.
    [260]岳琳,王启山,孙晓明,王玉恒,石岩.电-多相催化氧化处理垃圾渗滤液中氨氮的研究[J].环境化学,2008,27(2):177-180.
    [262]王鹏,刘伟藻,方汉平.垃圾渗滤液中NH3-N的电化学氧化[J].中国环境科学,2000,20(4):289-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700