用户名: 密码: 验证码:
粉煤灰混凝剂制备及用于混凝—人工湿地处理污水效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国污水处理多采用二级生化处理工艺,一次性投资大、运行费用高、建设周期长、占地面积大,为了探寻一条简洁灵活、基建省、运行费用低、且能适于中小城镇污水处理的工艺流程,本课题提出“混凝-人工湿地”处理工艺。为减少混凝药剂费用,实验以当地电厂固体废弃物——粉煤灰为原料,采用酸溶法制备粉煤灰混凝剂并应用于混凝单元,混凝出水再经过模拟潜流人工湿地进一步处理。同时,将酸溶粉煤灰得到的Al、Fe盐溶液通过慢速滴碱法研制出了聚合硫酸铝铁(PAFS),应用于工业废水的处理。
     酸溶反应温度的提高能协同酸浸液浓度的增加显著提高粉煤灰中的铝铁溶出性能。常压下沸腾条件直接酸溶,可使粉煤灰中Al、Fe溶出率达到10%、33%以上,混凝剂中含Al_2(SO_4)_3 19.3g/L、Fe_2(SO_4)_3 7.5g/L ;在4.0ml/L投加量下处理污水的效果和市售混凝剂相当,但产泥量较大,每处理1m3污水,约有6kg残留粉煤灰微粒成为污泥。添加助溶剂并没有改善粉煤灰的酸溶活性,而和纯碱高温焙烧后,Al的溶出性提高。100g粉煤灰与6g的Na_2CO_3混匀后在805℃下焙烧1h,产物冷却粉碎后在沸腾回流条件下与4mol/L的H_2SO_4反应0.5h、余温冷却0.5h,即得到粉煤灰混凝剂,其中含Al_2(SO_4)_3 32.7g/L、Fe_2(SO_4)_3 7.1g/L;处理生活污水的投量为1ml/L时,处理效果明显优于相同投量下的市售混凝剂,COD、SS和TP的去除率分别达到64%、93%和91%,剩余SS、TP已经达到《城镇污水处理厂污染物排放标准(GB 18918-2002)》的一级B标准。
     对于PAFS的制备,考查了Al/Fe摩尔比、Na_2CO_3浓度、滴定终点的pH值、Al+Fe的总浓度、碱化剂种类等因素对产品混凝性能的影响,确定了最佳合成条件为100g/L的Na_2CO_3溶液慢速滴定溶出液至pH=1.1~1.2左右。样品制备时pH值越大,[Al,Fe]_a越少,[Al+Fe]_b和[Al+Fe]_c增加。最佳条件下获得的PAFS,其中[Al,Fe]_a占57.06%,[Al+Fe]_b占5.58%,[Al+Fe]_c占37.36%。随着时间的延长,样品的pH值有下降的趋势,结合Ferron比色法测定的形态变化结果,这是熟化过程中低聚物分子与游离OH-络合生成较高聚合度分子所致。PAFS中既有以羟基桥联的铁的聚合物,也有以羟基桥联的铝的聚合物。PAFS的烧杯实验结果显示,处理乳品废水的效果优于PAC,并且用量较少。适宜pH值范围为6~9,静沉15min即可达到COD去除率63.9%,SS去除率94.4%。
     潜流人工湿地处理混凝预处理后的生活污水,在0.03~0.10m~3/(m~2·d)的水力负荷下,进水COD负荷为5.62~18.11g/(m2·d) ,水力停留时间6.73~1.95d,菖蒲和美人蕉湿地对COD的去除率为64%~77%,出水COD小于60mg/L,满足《城镇污水处理厂污染物排放标准(GB 18918-2002)》一级B标准。两级湿地串联运行可提高氨氮去除效率;在0.05m~3/(m~2·d)水力负荷下,进水氨氮负荷为2.156g/(m~2·d),水力停留时间3.97d,出水氨氮和TN分别为40.46mg/L和46.80mg/L,去除率分别达到11.97%和15.44%。进水TP浓度低时,砾石床潜流人工湿地存在基质释放P现象;进水TP约0.3~0.5mg/L,而出水TP浓度约为1mg/L,但仍远低于《城镇污水处理厂污染物排放标准(GB 18918-2002)》二级标准。
The secondary biochemical treatment processes were mostly adopted in China to treat municipal wastewater. However, because of their high primary investment and operating cost, long construction period and large floor area, a new flexible wastewater treatment process, named combined chemically enhanced primary treatment (CEPT)-constructed wetlands treatment system, was presented in this study, aiming at the development of an effective process with less capital investment and operating cost available in medium and small cities. To reduce the chemical dosage cost for the CEPT process, fly ash (FA) produced from a local power plant was firstly utilized to develop an efficient compound coagulant. The effluent from wastewater coagulation unit was then applied to feed the designed subsurface-flow constructed wetland (SSFCW) to further remove the remained pollutants. Meanwhile, a Na_2CO_3 solution was slowly added to the acid leaching fly ash solution to prepare the polyaluminum ferric sulfate(PAFS), which was applied to coagulation of industrial wastewater.
     Cooperating with acid leachant concentration increasing, the enhancement of leaching temperature could greatly promote aluminum and ferrum leaching from FA. Reacting at boiling temperature under atmospheric pressure, the converting efficiencies of Al and Fe could achieve 10% and 33%,respectively. Effective composition of prepared fly ash coagulant were 19.3g/L Al_2(SO_4)_3 and 7.5g/L Fe_2(SO_4)_3. When fly ash coagulant was dosed at a rate of 4.0ml/L, sewage treatment effect was equivalent with that of commercial coagulant. However, the volume of sludge was still large, since 6kg fly ash particles would turn into chemical sludge when disposing per cubic metre sewage. The addition of Cl- or F- to fly ash didn’t improve acid leachability. Acid leachability of Al was improved after FA roasting with Na_2CO_3 at high temperature. According to mass ratio of Na_2CO_3 to FA 0.06, roast the mixture at 805℃for 1 h, then leach the clinker by 4 mol/L ([H~+]) sulfuric acid at boiling temperature for 0.5h with the water vapor condensed. Being cooled, complex coagulant was obtained, which contained Al_2(SO_4)_3 of 32.7g/L and Fe_2(SO_4)_3 of 7.1 g/L. When this complex coagulant was dosed at a rate of 1ml/L, sewage treatment effect was remarkably superior to that of commercial coagulant with equal dosage, and the removal rates of COD, TP and SS could achieve more than 64%, 91% and 93%, respectively. The coagulation effluent TP and SS had already met the level IB of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002).
     Through researches done on affection to coagulation performance of PAFS by checking various Al/Fe mol ratios, Na_2CO_3 concentration, pH of PAFS, Al+Fe concentration and types of base solution, it was proved a successful condition when Na_2CO_3 of 100g/L was slowly added to the acid solution until the pH of the acid solution raised to 1.1~1.2. The result showed that [Al,Fe]_a decreased as pH of PAFS raised while [Al+Fe]_b and [Al+Fe]_c increased. For PAFS with pH of 1.1~1.2, the [Al,Fe]_a species was the main component, 57.06%, with 5.58% of [Al+Fe]_b and 37.36% of [Al+Fe]_c. The change of pH of PAFS with aging time to a lower value was in agreement with the transformation of Al and Fe species of oligomers to high polymers. PAFS was composed of OH-Al complexes and OH-Fe complexes.PAFS had shown a high coagulation effect, superior to that of PAC for dairy wastewater treatment at the same dosage. The optimum coagulation pH range of PAFS is 6~9. After sedimentation period of 15min, removal efficiencies of COD and SS by this type of coagulant reached 63.9% and 94.4%, respectively.
     When the coagulation effluent was further treated in the following SSFCW system with hydraulic loading 0.03~0.10m~3/(m~2·d), COD loading 5.62~18.11g/(m~2·d), hydraulic retention time(HRT) 6.73~1.95d,COD could be removed up to 64%~77% with the final effluent COD less than 60 mg/L, which met the level IB of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002). Wetlands working in series could enhance ammonia nitrogen removal. With hydraulic loading 0.05m~3/(m~2·d), ammonia nitrogen loading 2.156 g/(m~2·d), HRT 3.97d, effluent ammonia nitrogen was 40.46mg/L, with removal rate 11.97%, while total nitrogen(TN) removal rate was 15.44%, with effluent TN 46.80mg/L. In this lab-scale experiment, SSFCW system with gravel bed presented phosphorus release phenomena, with influent TP 0.3~0.5mg/L while effluent TP about 1.0mg/L. However the effluent TP was still far below the levelⅡof the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002).
引文
1付翠彦,郑轶荣,张素青. CEPT工艺在城镇污水处理中的应用.河北化工. 2004,(5):60~61
    2 http://www.hljepb.gov.cn/GhsjShow.asp?Article_id=535
    3宋志文,毕学军,曹军.人工湿地及其在我国小城市污水处理中的应用.生态学杂志. 2003,22(3):74~78
    4吴晓磊.人工湿地废水处理机理.环境科学. 1995,16(3):83~86
    5籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用.应用生态学报. 2002,13(2):224~228
    6王平,周少奇.人工湿地研究进展及应用.生态科学. 2005,24(3):278~281
    7 R. Haberl,R. Perfler,H. Mayer. Constructed Wetlands in Europe. Water Science and Technology. 1995,32(3):305~315
    8 H. Brix. Use of Constructed Wetlands in Water Pollution Control: Historical Development, Present Status and Future Perspectives. Water Science and Technology. 1994,30(8):209~223
    9 A. K. Kivaisi. The Potential for Constructed Wetlands for Wastewater Treament and Reuse in Developing Countries: a Review. Ecological Engineering. 2000,16(4):545~560
    10 B. Gopal. Natural and Constructed Wetlands for Wastewater Treatment: Potentials and Problems. Water Science and Technology. 1999,40(3):27~35
    11白晓慧,王宝贞,余敏等.人工湿地污水处理技术及其发展应用.哈尔滨建筑大学报. 1999,32(6):88~92
    12 X. F. Li,C. C. Jiang. Constructed Wetland Systems for Water Pollution Control in North China. Water Science and Technology. 1995,32(3):349~356
    13刘智晓,崔福义,丁雷等.中小城镇高效低耗污水处理工艺的选择.给水排水. 2006,32(4):32~37
    14迟延智,陈风伦.人工湿地处理污水的实践.中国给水排水. 2003,19(4):82~83
    15李羚.人工湿地处理污水技术及其在我国的应用现状和对策.现代城市研究. 2004,(12):33~39
    16 J. J. Torres,A. Soler,J. Saez,et al. Study of the Internal Hydrodynamics in Three Facultative Ponds of Two Municipal WSPS in Spain. Water Research. 1999,33(5):1133~1140
    17 T. Nameche,J. L. Vasel. Hydrodynamic Studies and Modelization for Aerated Lagoons and Waste Stabilization Ponds. Water Research. 1998,32(10):3039~3045
    18 W. J. Mitsch,K. M. Wise. Water Quality, Fate of Metals, and Predictive Model Validation of a Constructed Wetland Treating Acid Mine Drainage. Water Research. 1998,32(6):1888~1900
    19廖新俤,骆世明,吴银宝等.风车草和香根草在人工湿地中迁移养分能力的比较研究.应用生态学报. 2005,16(1):156~160
    20 J. Huang,R. B. Reneau,C. Hagedorn. Nitrogen Removal in Constructed Wetlands Employed to Treat Domestic Wastewater. Water. Research. 2000,34(9):2582~2588
    21张荣社,周琪,张建等.潜流构造湿地去除农田排水中氮的研究.环境科学. 2003,24(1):113~116
    22 R. Kr?ger,M. M. Holland,M. T.Moore,et al. Plant Senescence: A Mechanism for Nutrient Release in Temperate Agricultural Wetlands. Environmental Pollution. 2007,146(1):114~119
    23张鸿,陈光荣,吴振斌等.两种人工湿地中氮、磷净化率与细菌分布关系的初步研究.华中师范大学学报(自然科学版). 1999,33(4):575~578
    24 C. D. Martin,G. A. Moshiri. Nutrient Reduction in an in-Series Constructed Wetland System Treating Landfill Leachate.Water Science and Technology. 1994,29(4):267~272
    25贺锋,吴振斌,陶菁等.复合垂直流人工湿地污水处理系统硝化与反硝化作用.环境科学. 2005,26(1):47~50
    26 V. Bergeron,J. S. Blais,I. Wharf,et al. Toxicity of Tributyltin Chloride to Anaerobic Nitrogen Transformations in Sediment and Porewater. Journal of Environmental Quality. 1993,22(3):528~536
    27李科德,胡正嘉.芦苇床系统净化污水的机理.中国环境科学. 1995,15(2):140~144
    28梁威,周巧红,成水平等.构建湿地基质微生物与净化效果及相关分析.中国环境科学. 2002,22(3):282~285
    29陈欣燕,程晓如,陈忠正.从微生物学探讨生物除磷脱氮机理.中国给水排水. 1996,12(5):32~33
    30 M. G. Forbes,K. R. Dickson,T. D. Golden,et al. Dissolved Phosphorus Retention of Light-Weight Expanded Shale and Masonry Sand Used in Subsurface Flow Treatment Wetlands. Environmental Science and Technology. 2004,38(3):892~898
    31 L. Yang,H. T. Chang,M. N. L. Huang. Nutrient Removal in Gravel- and Soil- Based Wetland Microcosoms with and without Vegetation. Ecological Engineering. 2001,18(1):91~105
    32 V. Luederitz,E. Eckert,M. L. Weber,et al. Nutrient Removal Efficiency and Resource Economics of Vertical Flow and Horizontal Flow Constructed Wetlands. Ecological Engineering. 2001,18(2):157~171
    33 J. T. A. Verhoeven,A. F. M. Meuleman. Wetlands for Wastewater Treatment: Opportunities and Limitations. Ecological Engineering. 1999,12(1):5~12
    34何连生,刘鸿亮,席北斗等.人工湿地氮转化与氧关系研究.环境科学. 2006,27(6):1083~1087
    35 V. N. N. Hoai,H. E. Farrah,G. A. Lawrance,et al. Efficiency of a Small Artificial Wetland with an Industrial Urban Catchment. Science of the Total Environment. 1998,214(1~3):221~237
    36熊飞,李文朝,潘继征等.人工湿地脱氮除磷的效果与机理研究进展.湿地科学. 2005,3(3):228~233
    37 J. D. H. Williams,J. K. Syers,R. F. Harris,et al. Adsorption and Desorption of Inorganic Phosphorous by Lake Sediments in a 0.1M Sodium Chloride System. Environmental Science and Technology. 1970,4(6):517~519
    38 A. G. Werker , J. M. Dougherty , J. L. McHenry , et al. Treatment Variability for Wetland Wastewater Treatment Design in Cold Climates. Ecological Engineering. 2002,19(1):1~11
    39 R. W. Crites. Design Criteria and Practice for Constructed Wetlands. Water Science and Technology. 1994,29(4):1~6
    40 J. M. Newman,J. C. Clausen,J. A. Neafsey. Seasonal Performance of a Wetland Constructed to Process Dairy Milkhouse Wastewater in Connecticu. Ecological Engineering. 2000,14(1~2):181~198
    41 A. J. Oostrom. Nitrogen Removal in Constructed Wetlands Treating Nitrified Meat Processing Effluent. Water Science and Technology. 1995,32(3):137~147
    42 X. Yuan,D. A. Kovacic,M. B. David,et al. In Situ Measurements of Denitrification in Constructed Wetlands. Journal of Environmental Quality. 1999,28(1):263~269
    43 B. C. Braskerud. Factors Affecting Nitrogen Retention in Small Constructed Wetlands Treating Agricultural Non-Point Source Pollution. Ecological Engineering. 2002,18(3):351~370
    44王东升,刘海龙,晏明全等.强化混凝与优化混凝:必要性、研究进展和发展方向.环境科学学报. 2006,26(4):544~551
    45汤鸿宵.对21世纪水资源问题的思考.科学世界. 1999,(8):3~9
    46王东升.无机高分子絮凝剂的作用机理与计算模式.北京:中国科学院生态环境研究中心博士学位论文,1999
    47 J. K. Edzwald,J. E. Tobiason. Enhanced Coagulation: US Requirement and a Broader View. Water Science and Technology. 1999,40(9):63~70
    48邱慎初.化学强化一级处理(CEPT)技术.中国给水排水. 2000,16(1):26~29
    49 J. K. Edzwald, J. E. Tobiason. Enhanced versus Optimized Multiple Objective Coagulation. Chemical Water and Wastewater Treatment. New York,1998:113~124
    50 A. Metes, N. Koprivanac, A. Glasnovic. Flocculation as a Treatment Method for Printing Ink Wastewater. Water Environment Research. 2000,72(6):680~688
    51沈玉梅.物化法在发展中国家城市污水处理中的应用.北方环境. 1999,(4):55~56
    52姜应和,张发根.混凝法在城市污水强化处理中的应用.中国给水排水. 2002,18(3):30~32
    53尤作亮,蒋展鹏,祝万鹏等.城市污水强化一级处理的研究进展.中国给水排水. 1998,14(5):28~31
    54 D. R. F. Harleman,P. Harremoes,Y. Qian. Hong Kong Harbor Cleanup. Water Environment and Technology. 1997,9(3):47~50
    55熊建英,杨海真,王闯等.铁盐处理上海合流一期污水试验研究.中国给水排水. 2000,16(6):17~19
    56姜应和,李玲玲.混凝法强化城市污水厂一级处理的试验研究.中国给水排水. 2000,16(3):12~15
    57任洁,王闯,邵志刚.上海合流污水物化法强化一级处理的中试研究.给水排水. 1999,25(9):8~9
    58杨旭,赵立志.阳离子絮凝剂研制.重庆环境科学. 1995,17(5):17~19
    59宫世国,陶秀成.新型混凝剂ASD-Ⅱ处理城市生活污水.环境工程. 1996,14(3):7~9
    60相波,唐文伟,李义久.混凝沉淀-缺氧-好氧生物接触氧化法处理铜酞菁废水的研究.上海环境科学. 2003,22(5):329~331
    61阮湘元,白燕,李纠等.混合絮凝剂预絮凝沉降-电催化降解染整废水研究.应用科技. 2002,29(2):44~49
    62李福仁.化学絮凝-气浮工艺在处理高浓度CTMP制浆造纸废水中的应用.中国环境监测. 2001,17(6):57~59
    63栾兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划.工业水处理. 2000,20(11):1~5
    64 D. R. F. Harleman,S. Murcott. The Role of Physical-chemical Wastewater Treatment in the Mega-cities of the Developing World. Water Science and Technology. 1999,40(4~5):75~80
    65 G. R. Xu,W. T. Zhang,G. B. Li. Adsorbent Obtained from CEPT Sludge in Wastewater Chemically Enhanced Treatment. Water Research. 2005 ,39(20):5175~5185
    66 J. C. Huang,L. Li. An Innovative Approach to Maximize Primary Treatment Performance. Water Science and Technology. 2000,42(12):209~222
    67栾兆坤,张锦华,孔凡铭等.适于城镇污水处理的强化絮凝工艺.中国给水排水. 2002,18(1):30~33
    68芈振明,高忠爱,祁梦兰等.固体废物的处理与处置.第2版.高等教育出版社,1993:267~273
    69高占国,华珞,郑海金等.粉煤灰的理化性质及其资源化的现状与展望.首都师范大学学报(自然科学版). 2003,24(1):71~72
    70马阁.改性粉煤灰及其对垃圾渗滤液吸附性研究.郑州大学硕士学位论文. 2006:3~5
    71刘巽伯,沈旦申,陈以理等.上海市粉煤灰应用技术手册.同济大学出版社,1995
    72 B. G. Kutchko, A. G. Kim. Fly Ash Characterization by SEM-EDS. Fuel. 2006, 85(17~18): 2537~2544
    73 N. K. Koukouzas, R. S. Zeng, V. Perdikatsis, et al. Mineralogy and Geochemistry of Greek and Chinese Coal Fly Ash. Fuel. 2006, 85(16 SI): 2301~2309
    74刘心中,姚德,董凤芝.粉煤灰在废水处理中的应用.化工矿物与加工. 2002,(8):4~7
    75钱觉时,吴传明,王智.粉煤灰的矿物组成(上).粉煤灰综合利用. 2001,(1):26~31
    76 G. J. McCarthy,K. D. Swanson,L. P. Keller,et al. Mineralogy of Western Fly Ash. Cement and Concrete Research. 1984,14(4):471~478
    77 G. J. McCarthy,O. E. Manz,D. M. Johansen,et al. Correlations of Chemistry and Mineralogy of Western U.S. Fly Ash. Materials Research Society Symposium Proceedings. 1987,86:109~112
    78钱觉时,王智,吴传明.粉煤灰的矿物组成(中).粉煤灰综合利用. 2001,(2):40~41
    79程爱华,姚改焕,路瑞.粉煤灰在水处理中的应用.中国资源综合利用. 2005,(7):20~22
    80董金道,宣怀平.粉煤灰的利用现状和市场开拓展望.辽宁建材. 2004, (5):17~18
    81杨红彩,郑水林.粉煤灰的性质及综合利用现状与展望.中国非金属矿工业导刊. 2003,(4):38~42
    82边炳鑫,曹敏,艾淑艳等.粉煤灰理化性质及其综合利用.煤矿环境保护. 1997,11(3):44~47
    83丁铁男,田桂茹,张宏波等.大庆市粉煤灰资源化综合利用的规划设想.黑龙江环境通报. 2001,25(1):21~23
    84陈文道.粉煤灰综合利用技术现状.化学工业与工程技术. 1997,18(4):23~27
    85 R. Kikuchi. Application of Coal Ash to EnvironmentalImprovement :Transformation into Zeolite, Potassium Fertilizer, and FGD Absorbent. Resources, Conservation and Recycling. 1999,27(4):333~346
    86沈耀良.废水处理中的几种廉价吸附剂.重庆环境科学. 1995,17(3):50
    87张义之.利用粉煤灰处理废水、污水的方法.中国专利, 2000 :CN1273944
    88 D. S. Kim, J. S. Chang, J. S. Hwang, S. E. Park, J. M. Kim. Synthesis of Zeolite Beta in Fluoride Media under Microwave Irradiation. Microporous and Mesoporous Materials. 2004, 68(1~3): 77~82
    89 J. G.. Chen, H. N. Kong, D. Y. Wu, Z. B. Hu, Z. S. Wang, Y. H. Wang. Removal of Phosphate from Aqueous Solution by Zeolite Synthesized from Fly Ash. Journal of Colloid and Interface Science. 2006, 300(2): 491~497
    90 D. Y. Wu,B. H. Zhang, L. Yan, H. N. Kong, X. Z. Wang. Effect of Some Additives on Synthesis of Zeolite from Coal Fly Ash. International Journal of Mineral Processing. 2006, 80(2~4): 266~272
    91 M.H. Fan,R.C. Brown,J.V. Leeuwen,et al. The Kinetics of Producing Sulfate-based Complex Coagulant from Fly Ash. Chemical Engineering and Processing. 2003,42(12):1019~1025
    92 M.H. Fan,R.C. Brown,T.D. Wheelock,et al. Production of a Complex Coagulant from Fly Ash. Chemical Engineering Journal. 2005,106(3):269~277
    93相会强.改性粉煤灰在抗生素废水脱色中的应用.工业用水与废水. 2005,36(1):48~50
    94薛金凤,黄素哲,萧燕凤.粉煤灰基絮凝剂PAFCC的研制.粉煤灰综合利用. 2004,(5):40~41
    95曾芳.粉煤灰处理电镀废水最佳条件的选择研究.粉煤灰综合利用. 2004,(5):41~42
    96李晔,许士洪,彭长琪等. PAFCS对造纸黑液处理效果的研究.武汉理工大学学报. 2003, 25(8):29~31
    97米杰,鲍卫仁.粉煤灰基混凝剂的制备及在大麻废水中的应用.煤炭转化. 2004,27(2):77~79
    98黄彩海,苏广路,杨丽娟.粉煤灰基混凝剂的制备及应用研究.环境科学. 1995,16(2):47~49
    99苏继成.粉煤灰无机絮凝剂的制备与应用研究.天津科技大学硕士学位论文. 2004:9~10,21,27
    100 S.B. Wang,Z.H. Zhu. Sonochemical Treatment of Fly Ash for Dye Removal from Wastewater. Journal of Hazardous Materials. 2005,126(1~3):91~95
    101王丽华,王东升.利用粉煤灰制备氯化铝溶液的实验研究.桂林工学院学报. 2005,25(2):202~204
    102郑国辉.粉煤灰提取氧化铝的最佳工艺参数.环境保护. 1994,(3):22~24
    103翟建平,何富安,龚同生.粉煤灰中有用元素的提取技术.粉煤灰综合利用. 1995,(4):44~46
    104许佩瑶,丁志农,张振声等.粉煤灰、硫铁矿渣制备聚铁铝硅混凝剂及应用研究.环境工程. 2000,18(2):46~49
    105李晓湘.利用粉煤灰研制高效无机混凝剂聚硅酸铝.环境工程. 2002,20(1):51~52
    106 D.S. Wang,H.X Tang. Modified Inorganic Polymer Flocculant-PFSi: Its Preparation,Characterization and Coagulation Behavior. Water Research. 2001,35(14):3418~3426
    107 B.Y. Gao,H.H. Hahn,E. Hoffmann. Evaluation of Aluminum-silicate Polymer Composite as a Coagulant for Water Treatment. Water Research. 2002,36(14):3573~3581
    108肖杰,钱骏,赖喜德等. PDMDAAC改性粉煤灰预处理油墨废水的研究. 四川环境. 2005,24(4):14~16
    109 S.B. Wang,Y. Boyjoo,A. Choueib. A Comparative Study of Dye Removal Using Fly Ash Treated by Different Methods. Chemosphere. 2005,60(10):1401~1406
    110谢炜平,李红霞.酸溶-微波热解法从粉煤灰中制取聚合氯化铝的研究.环境工程. 1999,17(2):50~51,69
    111韦斯利·艾肯费尔德.工业水污染控制.化学工业出版社,2004:80~81
    112王薇,俞燕,王世和.人工湿地污水处理工艺与设计.城市环境与城市生态. 2001,14(1):59~62
    113 M. Sundaravadivel,S. Vigneswaran. Constructed Wetland for Wastewater Treatment. Critical Review in Environmental Science and Technology. 2001,31(4):351~409
    114赵庆良,刘雨.废水处理与资源化新工艺.中国建筑工业出版社,2006:160~170
    115樊行雪,方国女.大学化学原理及应用(下册).第二版.化学工业出版社,2002:106~110
    116周井炎,王宏,张正波等.基础化学实验(下册).华中科技大学出版社,2004:46~52
    117张勇,胡显智,童志平.现代化学基础实验.第二版.科学出版社,2005:233~234
    118水和废水监测分析方法编委会.水和废水监测分析方法.第四版.中国环境科学出版社,2002:107~108,211~213,368~370
    119水和废水监测分析方法编委会.水和废水监测分析方法.第三版.中国环境科学出版社,1989:341~342
    120 S. Khanra,D. Mallick,S.N. Dutta,et al. Studies on the Phase Mineralogy and Leaching Characteristics of Coal Fly Ash. Water, Air, and Soil Pollution. 1998,107(1~4):251~275
    121钱觉时,王智,张玉奇.粉煤灰的矿物组成(下).粉煤灰综合利用. 2001,(4):24~28
    122王莉君.煤灰形态的扫描电镜研究及其应用.热力发电. 1980,(5):19~25
    123张覃,毛德明,卢定寿等.粉煤灰的矿物学特性研究.粉煤灰综合利用,2001,(1):11~13
    124 A. Seidel,Y. Zimmels. Mechanism and Kinetics of Aluminum and Iron Leaching from Coal Fly Ash by Sulfuric Acid. Chemical Engineering Science. 1998,53(22):3835~3852
    125吴林丽,姚广春,刘宜汉等.粉煤灰颗粒HF酸表面改性处理.有色矿冶. 2004,20(5):38~39
    126王蕾,马鸿文,张晓云等.高铝粉煤灰烧结反应产物硅铝分离的研究.中国非金属矿工业导刊. 2006,(2):30~32
    127方永浩,杨南如.铝硅酸溶胶在不同pH值条件下的聚集特性.硅酸盐通报. 1998,(2):4
    128俞尚清,潘志彦,钱小飞等.聚硅酸氯化铝铁絮凝剂制备及絮凝效果的研究.环境污染与防治. 2004,26(2):121~122
    129王丽华.利用高铝粉煤灰制备聚合氯化铝的实验研究.中国地质大学博士学位论文,2005:20~21,32
    130王丽华,王东升.利用红外光谱确定碱法分解粉煤灰的碳酸钠用量的实验研究.光谱学与光谱分析. 2005,25(8):1240~1242
    131刘小波,傅勇坚,肖秋国.煤矸石-石灰石-纯碱烧结过程研究.环境科学学报. 1999,19(2):211~213
    132葛元新.粉煤灰碱熔融分解制备合成4?型沸石的原料.中国资源综合利用. 2003,(3):36~37
    133 J.Q. Jiang,N.J.D. Graham. Development of Optimal Poly-Alumino–Iron Sulphate Coagulant. Journal of Environmental Engineering. 2003,129(8):699~708
    134胡勇有,涂传青,高健等. Al(Ⅲ)-Fe(Ⅲ)共存溶液水解-沉淀过程研究.华南理工大学学报(自然科学版). 2000,28(5):13~17
    135胡勇有,宁寻安,周勤等.聚合氯化铝铁的混凝性能.环境科学与技术. 2001,(2):9~11
    136赵春禄,刘振儒,李广科.铝和铁共聚物的组成与结晶形貌.上海环境科学. 1997,16(3):27~29
    137汤鸿霄.无机高分子絮凝剂的几点新认识.工业水处理. 1997,17(4):3~5
    138 D.R. Paker , L.W. Zelazny , T.B. Kinraide. Comparison Three Spectrophotometric Methods for Differentiating Mono-and Polynuclear Hydroxyl-aluminum Complexes. Soil Science Society of America Journal. 1988,52(1):67~75
    139 H.X. Tang,W. Stumm. The Coagulating Behaviors of Fe(Ⅲ) Polymeric Species-Ⅰ.Preformed Polymers by Base Addition. Water Research. 1987,21(1):115~121
    140汤鸿霄.无机高分子复合絮凝剂的研制趋向.中国给水排水. 1999,15(2):1~4
    141徐晓军等.化学絮凝剂作用原理.科学出版社,2005:13~14,79~80,124~129,147~151,157~169
    142田宝珍,汤鸿霄. Ferron逐时络合比色法测定Fe(Ⅲ)溶液聚合物的形态.环境化学. 1989,8(4):27~33
    143汤鸿霄.无机高分子絮凝剂的基础研究.环境化学. 1990,9(3):5
    144 Y.Y. Hu,C.Q. Tu,H.H. Wu. Species Distribution of Polymeric Aluminium-Ferrum——Timed Complexation Colorimetric Analysis Method of Al-Fe-Ferron. Journal of Environmental Sciences. 2001,13(4):418~420
    145刘振儒,赵春禄,张旭峰. Ferron逐时络合比色法测定铁铝共聚物的形态.山西大学学报(自然科学版). 1994,17(3):350~353
    146高宝玉,岳钦艳,王艳等. Al-Ferron逐时络合比色法研究PACS中铝的水解聚合形态.环境化学. 1996,15(3):236~237
    147胡勇有,李宗峰,宁寻安等. Al(Ⅲ)-Fe(Ⅲ)共存体系的水溶液化学特征.华南理工大学学报(自然科学版). 1999,27(7):20~25
    148胡勇有,涂传青,高健等.羟基聚合氯化铝铁溶液的形态转化规律.环境科学. 2000,21(6):98~100
    149邓芹英,刘岚,邓慧敏.波谱分析教程.科学出版社,2003:29,65,68
    150常建华,董绮功.波谱原理及解析.科学出版社,2001:97
    151于慧,高宝玉,岳钦艳等.红外光谱法研究聚硅氯化铝混凝剂的结构特征.山东大学学报(自然科学版). 1999,34(2):199~200
    152孔德仁.聚合硅酸硫酸铝铁絮凝剂的制备与性能机理研究.哈尔滨工业大学硕士学位论文,2006:33~34
    153路光杰,黄柱崇,段杰辉.新型高效强化絮凝法的原理与应用.清华大学学报(自然科学版). 2000,40(S1):114~116
    154郭本华,宋志文,李捷等. 3种不同基质潜流湿地对磷的去除效果.环境污染治理技术与设备. 2006,7(1):110~113
    155吴振斌,陈辉蓉,贺锋等.人工湿地系统对污水磷的净化效果.水生生物学报. 2001,25(1):28~35
    156 H. K. Pant,K. R. Reddy. Potential Internal Loading of Phosphorus in a Wetland Constructed in Agricultural Land. Water. Research. 2003,37(5):965~972
    157 R. M. Gersberg,B. V. Elkins,S. R. Lynon,et al. Role of Aquatic Plants in Wastewater Treatment by Artificial Wetlands. Water Research.1986,20(3):363~368
    158 C. C. Tanner,J. S. Clayton,M. P. Upsdell. Effect of Loading Rate and Planting in Constructed Wetlands-II. Removal of Nitrogen and Phosphorus. Water Research. 1995,29(1):27~34
    159 H. Brix. Functions of Macrophytes in Constructed Wetlands. Water Science and Technology. 1994,29(4):71~78
    160龚琴红,田光明,丁晔等.垂直流湿地对生活污水中P的去除效果研究.农业环境科学学报. 2004,23(6):1046~1049
    161 E. J. Dunne,N. Culleton,G. O'Donovan,et al. Phosphorus Retention and Sorption by Constructed Wetland Soils in Southeast Ireland. Water Research. 2005,39(18):4355~4362
    162 I. R. Lantzke,D. S. Mitchell,A. D. Heritage,et al. A Model of Factors Controlling Orthophosphate Removal in Planted Vertical Flow Wetlands. Ecological Engineering. 1999,12(1~2):93~105
    163谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究.农业环境科学学报. 2005,24(2):353~356
    164崔玉波.人工湿地系统运行模式与降解污染物效能研究.哈尔滨工业大学博士论文. 2005:138~139
    165刘超翔,董春宏,李峰民等.潜流式人工湿地污水处理系统硝化能力研究.环境科学. 2003,24(1):80~83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700