用户名: 密码: 验证码:
剩余污泥减量化污水处理工艺及微生物群落特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以活性污泥和生物膜为代表的污水生物处理以高效低耗的突出优点广泛应用于城市污水和工业废水处理。然而,产生大量剩余污泥以及高昂的污泥处理费用已成为污水生物处理技术最大弊端之一。因此,如何从根本上解决剩余污泥问题已成为当今环境工程界面临的挑战。在污水处理过程中减少剩余污泥排放,从源头上降低剩余污泥产量的各种污泥减量技术已成为废水生物处理研究的热点和发展方向。具有代表性的好氧-沉淀-厌氧(OSA)工艺在传统活性污泥工艺污泥回流段增加污泥厌氧环节,不需要添加任何化学药剂和贵重设备,有利于降低运行和投资成本,符合可持续污水处理模式,具有良好的工业化应用前景。
     本论文系统研究了好氧-沉淀-厌氧工艺污水处理效能和污泥减量效果以及影响因素,探索了工艺污泥减量机制,首次利用变性梯度凝胶电泳(DGGE)技术和荧光原位(FISH)技术分析了OSA工艺微生物种群特征、多样性以及运行条件变化对优势种群更替的影响。开发了具有内源反硝化除磷功能的污泥减量新工艺,探讨了内源反硝化除磷污泥减量新工艺污水处理效能和污泥减量效果以及相关的影响因子,着重对工艺反硝化除磷效能和特征进行了分析和研究,并利用DGGE和FISH技术从微生物生态学角度探讨了微生物种群特征与工艺处理效能间的关系。
     以传统活性污泥(CAS)工艺为参照,在分析探讨厌氧-沉淀-好氧(OSA)工艺污泥减量和污水处理效能以及相关影响因子的基础上,着重研究了OSA工艺污泥减量的内在控制机制。研究结果表明,由于微生物维持代谢和内源代谢增加引起的污泥衰减和慢速生长微生物是OSA工艺污泥减量的主要原因,其中大约2/3的污泥减量是由污泥衰减引起的,慢速生长微生物对OSA工艺污泥减量的贡献为23%左右;10%左右污泥减量是由能量解偶联机制引起的。
     利用DGGE和FISH技术对OSA工艺微生物种群多样性和群落特征进行研究分析,得到OSA工艺微生物种群多样性比CAS工艺更加丰富,增加有机负荷和废水水质复杂化都会使微生物种群多样性增加,但优势微生物群落基本不受影响,OSA工艺微生物群落结构相对稳定的这一特点决定了OSA工艺具有良好稳定的运行效能。从DGGE优势条带中分离到的11个优势菌与GenBank中已有微生种属比对发现,其中7个优势菌与GenBank统计的在反硝化污泥、EBPR污泥中出现的种属相似性非常高,表明OSA工艺中插入污泥厌氧池为内源反硝化菌和生物聚磷菌创造有利的生长条件。系统进化树分析结果表明,β-proteobacteria种属的微生物是OSA污泥系统的主要种群。
     开发了内源反硝化除磷污泥减量工艺,在好氧池有机负荷Ns约为0.87 kgCOD/kgMLSS·d,系统污泥回流比为25%,反硝化污泥回流比为35%的条件下稳定运行,污泥产量为4.78g/d,污泥产率为0.30gMLSS/gCOD,COD平均去除率为90%,NH4+-N、TN的去除率分别稳定在86%和84%左右,TP去除率达到80%左右。内源反硝化除磷工艺中缺氧反硝化聚污泥约占总聚磷污泥的35%~44%。提高SRT,可提高生物吸磷效率,增加污泥中磷含量,这一定程度上缓解了剩余污泥排放量和TP去除率之间的矛盾。
     利用DGGE技术,对代表性优势条带测序相似性比对,并构建系统进化树,分析内源反硝化除磷工艺微生物群落特征。内源反硝化除磷工艺中的微生物主要由α-proteobacteria、β-proteobacteria、γ-proteobacteria、CFB-group bacteria、low G+C gram-positive bacteria五大菌群构成,其中β-proteobacteria种属的微生物在整个工艺微生物菌群数量中占绝对优势,达到48%左右。以DAPI为背景,用PAOmix探针FISH杂交证实了聚磷菌在内源反硝化除磷工艺缺氧污泥和厌氧污泥中都占有优势,分别占微生物总量的40%和33%左右。
Activated sludge process and biofilm process with high efficiency and low cost have been applied worldwidely in municipal and industrial wastewater biological treatment. However, the most serious drawbacks of conventional biological wastewater treatment technology are tremendous production of excess sludge and the rising costs for final sludge treatment. So how to solve essentially the problem of excess sludge production is generating a real challenge in the field of environmental engineering technology. An ideal way to solve sludge-associated problems is to reduce sludge production in the wastewater treatment rather than the post-treatment of the sludge. The oxic-settling-anaerobic (OSA) process is a modified conventional activated sludge (CAS) process and reduces excess sludge by adding an anaerobic sludge tank in sludge return line. The OSA process is in accord with sustainable wastewater treatment model and reduces excess sludge by lower operational and investment cost for not adding any chemical and expensive equipments. The OSA process can be conveniently used to rebuild CAS process by inserting an anaerobic sludge tank in recycled sludge course, which is puzzled by heavy excess sludge production. So the Oxic-Settling-Anaerobic process provides a promising technique for industrial scale application.
     Performance of the OSA process has been systematically studied, including efficiency of wastewater treatment and sludge reduction, its affecting factors, and mechanism of minimization of excess sludge. For the first time, denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH) were used to analyze microbial community characteristics, predominant community transformation by change of operational condition in OSA process. A new endogenous denitrifying phosphorus removal process with excess sludge reduction was developed. Efficiency of wastewater treatment and sludge reduction and its affecting factors were discussed. Efficiency and characteristics of denitrifying dephosphatation in the endogenous phosphorus removal process were studied emphatically. DGGE and FISH were used to investigate the relationship between microbial characteristics and treatment efficiency in various units of the endogenous denitrifying phosphorus removal process.
     In comparison with the CAS process, internal mechanism of excess sludge reduction was stressly discussed in the OSA process. As a result, the decisive cause of reducing excess sludge production is the increasing maintenance endogenous metabolism in the OSA process, which include sludge decay and anaerobic reactions with low sludge yield. It has been confirmed that sludge decay is the main cause in the OSA process, accounting for 66.7% of sludge reduction. These anaerobic reactions in sludge anaerobic tanks have lower sludge production than aerobic oxidation when equivalent SCOD is consumed, which may lead to approximately 23% of sludge reduction in the OSA process. There was energetic uncoupling in the OSA system since microorganisms were exposed to alternative anaerobic and aerobic environment, but which was a minimum factor, leading to about 10% of sludge reduction.
     The results of DG-DGGE profile and FISH analysis showed that there was more abundant microbial diversity in OSA sludge than that in CAS sludge. 11 predominant bands was excised from DG-DGGE and blasted in GenBank. Results showed that 7 clones represented by dominant bands in the DGGE gel of the OSA sludge were similar to bacteria isolated from denitrifying sludge and EBPR sludge. The finding explained that anaerobic sludge tank inserted in recycled sludge line provided a favorable environment for endogenous denitrifying bacteria and phosphorus removing bacteria. Phylogenetic tree of predominant DG-DGGE bacteria indicated thatβ-proteobacteria was the main community in the OSA sludge.
     A new endogenous denitrifying phosphorus removal process was developed. It was stably running when Ns was 0.87kgCOD/kgMLSS·d, ratios of system return sludge and denitrifying return sludge were 25% and 35%, respectively. Under the best conditions, sludge production was 4.78g/d and Yobs was 0.30gMLSS/gCOD while COD removal efficiency was about 90% and the percentage of NH4+-N, TN, TP was about 86%, 84% and 80%, respectively. Denitrifying phosphorus removal bacteria occupied 35%~44% of phosphorus accumulating bacteria in the endogenous denitrifying phosphorus removal process. Phosphorus content of sludge could be increased by extending SRT, which relaxed the contradiction between the production of excess sludge and TP removal efficiency.
     Analyzing and blasting the predominant bacteria represented by dominant bands in the DGGE gel of the endogenous denitrifying phosphorus removal process, it was detected that there were abundant microbial community.α-proteobacteria、β-proteobacteria、γ-proteobacteria、CFB-group bacteria、low G+C gram-positive bacteria were the main subclasses.β-proteobacteria was the predominant subclass, accounting for about 48%. FISH by PAOmix probe showed that phosphorus accumulating bacteria accounted for 40% of total bacteria in anoxic sludge and 33% of total bacteria in anaerobic sludge.
引文
1 Metcalf & Eddy, Inc. Wastewater Engineering Treatment and Reuse (Fourth Edition).北京:清华大学出版社. 2003:567~627, 1460~1461
    2梁鹏,黄霞,钱易.污泥减量化技术的研究进展.环境污染治理技术与设备. 2003,4 (1):44~52
    3 Q. L. Zhao, G. Kugel. Thermophilic/Mesophilic Digestion of Sewage Sludge and Organic Waste. Environ. Sci. Health. 1997,31:2211~2231
    4 R. Srivastava, D. Kumar, S. K. Gupta. Bioremediation of Municipal Sludge by Vermitechnology and Toxicity Assessment by Allium cepa. Bioresour. Technol. 2005,96:1867~1871
    5 Y. S. Wei, R. T. Van Houten, A. R. Borger, D. H. Eikelboom, Y. B. Fan. Minimization of Excess Sludge Production for Biological Wastewater Treatment. Water Res. 2003,37:4453~4467
    6 Y. Liu, J. H. Tay. Strategy for Minimization of Excess Sludge Production from the Activated Sludge Process. Biotechnol. Adv. 2001,19:97~107
    7 V. Martinage, E. Paul. Effect of Environmental Parameters on Autotrophic Decay Rate. Environ Technol. 2000,21:31~41
    8 M. Mayhew, T. Stephenson. Biomass Yield Reduction: Is Biochemical Manipulation Possible Without Affecting Activated Sludge Process Efficiency? Water.Sci.Technol. 1998,38:137~144
    9 Y. Liu, J. H. Tay. A Kinetic Model for Energy Spilling-Associated Product Formation in Substrate-Sufficient Continuous Culture. J. Appl. Microbiol. 2000,88:663~668
    10 M. C. M. Van Loosdrecht, M. Henze. Maintenance Endogenous Respiration, Lysis, Decay and Predation. Water.Sci.Technol. 1999,39(1):107~117
    11 J. H. Rensink, W. H. Rulkens. Using Metazoan to Reduce Sludge Production. Water Sci. Technol. 1997,36(11):171~179
    12 W. Ghyoot, W. Verstraete. Reduced Sludge Production in a Two-Stage Membrane-Assisted Bioreactor. Water Res. 2000,34(1):205~215
    13 A. G. Boon, D. R. Burgess. Treatment of Crude Sewage in Two High-Rate Activated Sludge Plants Operated in Series. Water Pollution Control.1974,74:382~392
    14 B. Abbassi, S. Dullstein, N. Rabiger. Minimization of Excess Sludge Production by Increase of Oxygen Concentration in Activated Sludge Flocs: Experimental and Theoretical Approach. Water Res. 1999,34(1):139~146
    15 R. Palmegren, F. Jorand, P. H. Nielsen, J. C. Block. Influence of Oxygen Limitation on the Cell Surface Properties of Bacteria from Activated Sludge. Water Sci. Technol. 1998,37:349~352
    16 C. Pena, M. A. Trujillo-Roldan, E. Galindo. Influence of Dissolved Oxygen Tension and Agitation Speed on Alginate Production and Its Molecular Weight in Cultures of Azotobacter vinelandii. Enzyme Microb. Technol. 2000,27:390~398
    17 W. Ghyoot, W. Verstraete. Reduced Sludge Production in a Two-Stage Membrane-Assisted Bioreactor. Water Res. 2000,34(1):205~215
    18 C. Visavanathan, R. B. Aim, K. Parameshwaran. Membrane Separation Bioreactors for Wastewater Treatment. Crit. Rev. Env. Sci. Technol. 2000,30(1):1~48
    19 W. H. Wang, Y. J. Jung, Y. Kiso, T.Yamada, K. S. Min. Excess Sludge Reduction Performance of an Aerobic SBR Process Equipped with a Submerged Mesh Filter Unit. Process Biochemistry. 2006,41:745~751
    20 L. Holakoo, G. Nakhla, A. S. Bassi, E. K. Yanful. Long Term Performance of MBR for Biological Nitrogen Removal from Synthetic Municipal Wastewater. Chemosphere. 2007,66:849~857
    21 P.Chudoba, J.Chang, B, Capedeville. Synchronized Division of Activated Sludge Microorganisms. Water Res. 1991,25:817~822
    22 S. Saby, M. Djafer, G. H. Chen. Effect of Low ORP in Anoxic Sludge Zone on Excess Sludge Production in Oxic-Settling-Anoxic Activated Sludge Process. Water Res. 2003,37(1):11~20
    23 R. Ghiglizza, A. Lodi, A. Converti, C. Nicolella, M. Rovatti. Influence of the Ratio of the Initial Substrate Concentration to Biomass Concentration on the Performance of a Sequencing Batch Reactor. Bioprocess. Eng. 1996,14:124~138
    24 R.W. Oley, H. D. Stensel. Uncouplers and Activated Sludge-the Impact on Synthesis and Respiration. Toxicol. Environ. Chem.1993,40:235~254
    25 S. E. Strant, H. N. Greg, H. D. Stensel. Activated Sludge Yield Reduction Using Chemical Uncouplers. Water Environ. Res. 1999,71(4):454~458
    26 E. W. Low, H. A. Chase. The Use of Chemical Uncouplers for Reducing Biomass Production during Biodegradation. Water Sci. Technol. 1998,37(4-5):399~402
    27 X. F. Yang, M. L. Xie, Y. Liu. Metabolic Uncouplers Reduce Excess Sludge Production in an Activated Sludge Process. Process Biochem. 2003,38(9):1373~1377
    28 G. H. Chen, H. K. Mo, S. Saby. Minimization of Activated Sludge Production by Chemically Stimulated Energy Spilling. Water Sci. Technol. 2000,42(12):189–200
    29 G. H. Chen, H. K. Mo, Y. Liu. Utilization of a Metabolic Uncoupler, 3,3′,4′,5-Tetrachlorosalicylanilide (TCS) to Reduce Sludge Growth in Activated Sludge Culture. Water Res. 2002,36(8):2077~2083
    30 F. X. Ye, Y. Li. Reduction of Excess Sludge Production by 3,3′,4′,5- Tetrachlorosalicylanilide in an Activated Sludge Process. Appl Microbiol Biotechnol. 2005,67:269~274
    31 Y. Liu. Bioenergetic Interpretation on the S0/X0 in Substrate-Sufficient Batch Culture. Water Res. 1996,30(11):2766~2770
    32 Y. Liu, G. H. Chen, E. Paul. Effect of the S0/X0 Ratio on Energy Uncoupling in Substrate-Sufficient Batch Culture of Activated Sludge. Water Res. 1998,32(10):2833~2888
    33 P. Chudoba, B. Capdeville, J. Chudoba. Explanation of Biological Meaning of the S0/X0 Ratio in Batch Cultivation.Water Sci. Technol. 1992,26(3-4): 743~751
    34 H. Yasui, M. Shibata. An Innovative Approach to Reduce Excess Sludge Production in the Activated Sludge Process. Water Sci. Technol. 1994,30(9):11~20
    35 H. Yasui, K. Nakamura, S. Sakuma, M. Iwasaki, Y. Sakai. A Full-Scale Operation of a Novel Activated Sludge Process without Excess Sludge Production. Water Sci. Technol. 1996,34(3-4):395~404
    36 Y. Sakai, T. Fukase, H. Yasui, M. Shibata. An Activated Sludge Process without Excess Sludge Production. Water Sci. Technol.1997,36(11):163~170
    37 R. Goel, K. Komatsu, H. Yasui, H. Harada. Process Performance and Change in Sludge Characteristics during Anaerobic Digestion of Sewage Sludge with Ozonation. Water Sci. Technol. 2004,49(10):105~113
    38 S. Hwang, H. Jang, M. Lee, J. Song, S. Kim. Characteristics of Sludge Reduction in an Integrated Pretreatment and Aerobic Digestion Process. Water Sci. Technol. 2006,53(7): 235~242
    39 M. B?hler, H. Siegrist. Partial Ozonation of Activated Sludge to Reduce Excess Sludge, Improve Denitrification and Control Scumming and Bulking. Water Sci. Technol. 2004,49(10): 41~49
    40 Y. Suzuki, T. Kondo, K. Nakagawa, S. Tsuneda, A. Hirata, Y. Shimizu, Y. Inamori. Evaluation of Sludge Reduction and Phosphorus Recovery Efficiencies in a New Advanced Wastewater Treatment System Using Denitrifying Polyphosphate Accumulating Organisms. Water Sci. Technol. 2006,53(6):107~113
    41 W. Saktaywin, H. Tsuno, H. Nagare, T. Soyama. Operation of a New Sewage Treatment Process with Technologies of Excess Sludge Reduction and Phosphorus Recovery. Water Sci. Technol. 2006,53(12):217~227
    42 S. Saby, M. Djafer, G. H.Chen. Feasibility of Using a Chlorination Step to Reduce Excess Sludge in Activated Sludge Process. Water Res. 2002,36(3):656~666
    43 M. Rocher, G. Goma, A. Pilas-Begue, L. Louvel, J. L. Rols. Excess Sludge Reduction in Activated Sludge Process by Integrating Biomass Alkaline Heat Treatment. Water Sci. Technol. 2001,44:437~444
    44 A. Canales, A. Pareilleux, J. L. Rols, G. Goma, A. Huyard. Decreased Sludge Production Strategy for Domestic Wastewater Treatment. Water Sci. Technol. 1994,30(8):96~106
    45 S. L. Harrison. Bacterial Cell Disrruption: a Key Unit Operation in the Recovery of Intracellular Products. Biotechnol. Adv. 1991, (9):217~240
    46 A. Tiehm, K. Nickel, U. Neis. The Use of Ultrasound to Accelerate the Anaerobic Disgestion of Sewage Sludge. Water Sci. Technol. 1997,36(11):121~128
    47 X. Q. Cao, J. Chen, Y. L. Cao, J. Y. Zhu, X. D. Hao. Experimental Study onSludge Reduction by Ultrasound. Water Sci. Technol. 2006,54(9):87~93
    48 J. A. Müller. Pretreatment Processes for the Recycling and Reuse of Sewage Sludge. Water Sci. Technol. 2000,42(9):167~174
    49 K. Tanemura, K. Kida, M. Teshima, Y. Sonoda. Anaerobic Treatment of Wastewater from a Food-Manufacturing Plant with a Low Concentration of Organic Matter and Regeneration of Usable Pure Water. J. Ferment. Bioeng. 1994,77(3):307~311
    50 N. M. Lee, T. Welander. Reducing Sludge Production in Aerobic Wastewater Treatment through Manipulation of the Ecosystem. Water Res. 1996,30(8):1781~1790
    51 N. M. Lee, T. Welander. Use of Protozoa and Metazoa for Decreasing Sludge Production in Aerobic Wastewater Treatment. Biotechnology Lett. 1996,18(4):429~434
    52 C. H. Ratsak. Effects of Nais Elinguis on the Performance of an Activated Sludge Plant. Hydrobiologia. 2001,463:217~222
    53 P. Liang, X. Huang, Y. Qian, Y. S. Wei, G. j. Ding. Determination and Comparison of Sludge Reduction Rates Caused by Microfaunas Predation. Bioresour. Technol. 2006,97:854~861
    54 P. Liang, X. Huang, Y. Qian. Excess Sludge Reduction in Activated Sludge Process through Predation of Aeolosoma hemprichi. Biochem. Eng. J. 2006,28:117~122
    55 X. Huang, P. Liang, Y. Qian. Excess Sludge Reduction Induced by Tubifex tubifex in a Recycled Sludge Reactor. J. Biotechnol. 2007,127:443~451
    56 H. J. H. Elissen, T. L.G. Hendrickx, H. Temmink, C. J. N. Buisman. A New Reactor Concept for Sludge Reduction Using Aquatic Worms. Water Res. 2006,40:3713~3718
    57 M. Wagner, R. Amann, H. Lemmer, K. H. Schleifer. Probing Activated Sludge with Oligonucleotides Specific for Proteobacteria: Inadequacy of Culture-Dependent Methods for Describing Microbial Community Structure. Appl. Environ. Microbiol. 1993,59 (5):1520~1525
    58 M.Wagner, R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, K. H. Schleifer. Development of an rRNA-Targeted Oligonucleotide Probe Specific for the Genus Acinetobacter and Its Application for In Situ Monitoring inActivated Sludge. Appl. Environ. Microbiol. 1994,60(3):792~800
    59 N. Boon, E. M. Top, W. Verstraete, S. D. Siciliano. Bioaugmentation As a Tool to Protect the Structure and Function of an Activated-Sludge Microbial Community against a 3-Chloroaniline Shock Load. Appl. Environ. Microbiol. 2003,69(3):1511~1520
    60 G. Muyzer, E. C. De Waal, A.Uitterlindern. Profiling of Complex Microbial Population Using Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Appl. Environ. Microbiol. 1993,59:695~700
    61 M. A. Pereira, K. Roest, A. J. M. Stams, M, Mota, M. Alves, A.D.L. Akkermans. Molecular Monitoring of Microbial Diversity in Expanded Granular Sludge Bed (EGSB) Reactors Treating Oleic Acid. FEMS Microbiol. Ecol. 2002,41:95~103
    62陈红歌,胡元森,贾新成,吴坤.垃圾填埋场细菌种群空间分布及组成多样性研究.环境科学学报. 2005,25(6):809~815
    63殷峻,陈英旭,刘和,王远鹏.应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微生物多样性.环境科学. 2004,25(6):12~16
    64刘新春,吴成强,张昱,杨敏,李红岩. PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析.生态学报. 2005,25(4):842~847
    65滕应,骆永明,赵祥伟,李振高,宋静,吴龙华.重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析.土壤学报. 2004,41(3):343~347
    66 A. K. Rowan, J. R. Snape, D. Fearnside, M. R. Barer, T. P. Curtis, I. M. Head. Composition and Diversity of Ammonia-Oxidising Bacterial Communities in Wastewater Treatment Reactors of Different Design Treating Identical Wastewater. FEMS Microbiol. Ecol. 2003,43:195~206
    67 G. Silyn-Roberts, G. Lewis. In Situ Analysis of Nitrosomonas spp. in Wastewater Treatment Wetland Biofilms. Water Res. 2001,35(11):2731~2739
    68 J. Ahn, T. Daidou, S. Tsuneda, A. Hirata. Characterization of Denitrifying Phosphate-Accumulating Organisms Cultivated under Different Electron Acceptor Conditions using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis Assay. Water Res. 2002,36:403~412
    69 H. Heuer, M. Krsek, P. Baker, K. Smalla, E. M. H. Wellington. Analysis ofActinomycete Communities by Specific Amplification Cation of Genes Encoding 16S rRNA and Gel-Electrophoretic Separation in Denaturing Gradients. Appl. Environ. Microbiol. 1997,63:3233~3241
    70 V. Cilia, B. Lafay, R. Christen. Sequence Heterogeneities among 16S ribosomal RNA Sequences and Their Effect on Phylogenetic Analyses at the Species Level. Mol. Biol. Evol. 1996,13:451~461
    71 T. Vallaeys, E. Topp, G. Muyzer, V. Macheret, G.Laguerre, A. Rigaud, G. Soulas. Evaluation of Denaturing Gradient Gel Electrophoresis in the Detection of 16S rDNA Sequence Variation in Rhizobia and Methanotrophs. FEMS Microbiol. Ecol. 1997,24:279~285
    72 C. A. Eichner, R.W. Erb, K. N. Timmis. Thermal Gradient Gel Electrophoresis Analysis of Bioprotection from Pollutant Shocks in the Activated Sludge Microbial Community. Appl. Environ. Microbiol. 1999,65(1):102~109
    73 Y. Liu, T. Zhang, H. H. P. Fang. Microbial Community Analysis and Performance of a Phosphate-Removing Activated Sludge. Bioresour. Technol. 2005,96:1205~1214
    74 M. Wagner, D. R. Noguera, S. Juretschcko, G. Rath, H. P. Koops, K. H. Schleifer. Combining Fluorescent in Situ Hybridization with Cultivation and Mathematical Modeling to Study Population Structure and Function of Ammonia Oxidizing Bacteria in Activated Sludge. Water. Sci. Tech. 1998,37:441~449
    75 J. R. Liu, R. J. Seviour. Design and Application of Oligonucleotide Probes for Fluorescent in Situ Identification of the Filamentous Bacterial Morphotype Nostocoida Limicola in Activated Sludge. Environ. Microbio1. 2001,3:551~560
    76 P. L. Bond, R. Erhart, M. Wagner, J. Keller, L. L. Blackall. Identification of Some of the Major Groups of Bacteria in Efficient and Nonefficient Biological Phosphorus Removal Activated Sludge Systems. Appl. Environ. Microbiol. 1999,65(9):4077~4084
    77 P. Chudoba, J. Chudoba, B. Capdeville. The Case of Both Energetic Uncoupling and Metabolic Growth in the Activated Sludge Process: OSA System. Water Sci. Technol. 1992,26(9-11):2477~2480
    78 G. H. Chen, K. J. An, S. Saby, E. Brois, M. Djafer. Possible Cause of Excess Sludge Reduction in an Oxic-Settling-Anaerobic Activated Sludge Process (OSA Process). Water Res., 2003,37:3855~3866
    79国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法,4版.北京:中国环境科学出版社,2002.227~231,243~246, 254~279
    80 Y. Liu, Y. M. Lin, J. H. Tay. The Elemental Compositions of P-Accumulating Microbial Granules Developed in Sequencing Batch Reactors. Process Biochem. 2005,40:3258~3262
    81 J. C. Spain, D. T. Gibson. Pathway for Biodegradation of p-Nitrophenol in a Moraxella sp. Appl. Microbiol. Biothechnol. 1991,57:812~819
    82刘艳玲,任南琪.气相色谱法厌氧反应器中的挥发性脂肪酸(VFA).哈尔滨建筑大学学报. 2000,33(6):31~34
    83 B. S. McSwain, R. L. Irvine, M. Hausner, P. A. Wilderer. Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge. Appl. Environ. Microbiol. 2005,71(2):1051–1057
    84 H. Liu, H. H. P. Fang. Extraction of Extracellular Polymeric Substances (EPS) of Sludges. J. Biotechnol. 2002,95:249~256
    85 M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956,28:350~356
    86 B. Fr?lund, T. Griebe, P. H. Nielsen. Enzymatic Activity in the Activated-Sludge Floc Matrix. Appl. Microbiol. Biotechnol. 1995,43:755–761
    87 X. Z. Li, Q. L. Zhao. Efficiency of Biological Treatment Affected by High Strength of Ammonium-Nitrogen in Leachate and Chemical Precipitation of Ammonium-Nitrogen as Pretreatment. Chemosphere, 2001,41:37~43
    88俞毓馨,吴国庆,孟宪庭.环境微生物学.北京:中国环境科学出版社. 1990:136~137
    89 B.Gabriel. Wastewater Microbiology. (2nd). New York: John Wiley & Sons, Inc. 1999.291~305
    90 J. Z. Zhou, M. A. Bruns, J. M. Tiedje. DNA Recovery from Soils of Diverse Composition. Appl. Environ. Microb. 1996,62(2):316~322
    91 W. W. Wilfinger, K. Mackey, P. Chomczynski. Effect of pH and IonicStrength on the Spectrophotometric Assessment of Nucleic Acid Purity. BioTech. 1997, 22(3):474~478
    92 R. I. Amann, W. Ludwing, K. H. Schleifer. Phylogenetic Identification and In Situ Detection of Individual Microbial Cells without Cultivation. Microbiol. Rev. 1995,59:143~169
    93 A. E. Murray, J. T. Hollibaugh, C. Orrego. Phylogenetic Composition of Bacterioplankton from Two California Estuaries Compared by Denaturing Gradient Gel Electrophoresis of 16SrDNA Fragments. Appl. Environ. Microbiol. 1996,62(7):2676~2680
    94 N. Boon, W. De Windt, W. Verstraete, E. M. Top. Evaluation of Nested PCR-DGGE (Denaturing Gradient Gel Electrophoresis) with Group-Specific 16S rRNA Primers for the Analysis of Bacterial Communities from Different Wastewater Treatment Plants. FEMS Mcirobiology Ecology. 2002,39:101~112
    95 F. Ampe, A. Sirvent, N. Zakhia. Dynamics of the Microbial Community Responsible for Traditional Sour Cassava Starch Fermentation Studied by Denaturing Gradient Gel Electrophoresis and Quantitative rRNA Hybridization. Int. J. Food Microbiol. 2001,65:45~54
    96高平平,晁群芳,张学礼,王凌华,赵立平. TGGE分析焦化废水处理系统活性污泥细菌种群动态变化及多样性.生态学报. 2003,23(10):1963~1969
    97 K. Tamura, J. Dudley, M. Nei, S. Kumar. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Oxford University Press. 2007.1596~1599
    98 R. I. Amann, B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, D. A. Stahl. Combination of 16S rRNA-Targeted Oligonucleotide Probes with Flow Cytometry for Analyzing Mixed Microbial Populations. Appl. Environ. Microbiol. 1990,56:1919~1925
    99 W. Manz, R. Amann, W. Ludwig, M. Wagner, K. H. Schleifer. Phylogenetic Oligonucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions. Syst. Appl. Microbiol. 1992,15:593~600
    100 G. R. Crocetti, P. Hugenholtz, P. L. Bond, A. Schuler, J. Keller, D. Jenkins, L. L. Blackall. Indentification of Polyphosphate-Accumulating Organisms andDesign of 16SrRNA-Directed Probes for Their Detection and Quantition. Appl. Environ. Microbiol. 2000,66(3):1175~1182
    101 B. O. Mansell. Biological Denitrifying of Nitrate Contaminated Ground Water in a Microporous Membrane Bioreactor. University of California (Davis). Ph.D. Dissertation. 2000:77~78
    102刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.北京:中国建筑工业出版社. 2000.105~108
    103 E. Neyens, J. Baeyens, R. Dewil, B. Deheyder. Advanced Sludge Treatment Affects Extracellular Polymeric Substances to Improve Activated Sludge Dewatering. J. Hazard. Mater. 2004,106:83~92
    104 E. W. Low, H. A. Chase, M. G. Milner, T. P. Curtis. Uncoupling of Metabolism to Reduce Biomass Production in the Activated Sludge Process. Water Res. 2000,34(12):3204~3212
    105 R. Manser, W. Gujer, H. Siegrist. Decay Process of Nitrifying Bacteria in Biological Wastewater Treatment Systems. Water Res. 2006,40:2416~2426
    106 J. Lobos, C. Wisniewski, M. Heran, A. Grasmick. Effects of Starvation Conditions on Biomass Behaviour for Minimization of Sludge Production in Membrane Bioreactors. Water Sci.Technol. 2005,51(6-7):35~44
    107 J. Chang, P. Chudoba, B. Capdeville. Determination of the Maintenance Requirement of Activated Sludge. Water Sci. Technol. 1993,28:139~142
    108 G. H. Chen, W. K. Yip, H. K. Mo, Y. Liu. Effect of Sludge Fasting /Feasting on Growth of Activated Sludge Cultures. Water Res. 2001,35(4):1029~1037
    109 B. E. Rittmann, P. L. McCarty著.文湘华,王建龙等译.环境生物技术:原理与应用.北京:清华大学出版社. 2004.165~493
    110 A. J. B. Zehnder, K.Wuhrmann. Titatium(III) Citrate as a Non-Toxic Oxidation Reduction Buffering System for the Culture of Anaerobes. Science. 1976,194:1165~1166
    111 M. J. Higgins, J. T. Novak. The Effect of Cations on the Settling and Dewatering of Activated Sludge. Water Environ. Res. 1997,69(2):215~224
    112 R. Amann, F.O. Glockner, A. Neef. Modern Methods in Subsurface Microbiology: In Situ Identification of Microorganisms with Nucleic Acid Probes. FEMS Microbiol. Rev. 1997,20:191~200
    113 P. L. Bond, P. Hugenholtz, J. Keller, L. L. Blackall. Bacterial CommunityStructures of Phosphate-Removing and Non-Phosphate Removing Activated Sludges from Sequencing Batch Reactors. Appl. Environ. Microbiol. 1995,61(5):1910~1916
    114 W. T. Liu, A. T. Nielsen, J. H. Wu, C. S. Tsai, T. Matsuo, S. Molin. In Situ Identification of Polyphosphate and Polyhydroxyalkanoate-Accumulating Traits for Microbial Populations in a Biological Phosphorus Removal Process. Environ. Microbiol. 2001,3:110~122
    115 I. Purtschert, W. Gujer. Population Dynamics by Methanol Addition in Denitrifying Wastewater Treatment Plants. Water Sci. Tech. 1999,39(1):43~50
    116 S. Haruta, M. Kondo, K. Nakamura, H. Aiba,S. Ueno, M. Ishii, Y. Igarashi. Microbial Community Changes during Organic Solid Waste Ttreatment Analyzed by Double Gradient-Denaturing Gradient Gel Electrophoresis and Fluorescence In Situ Hybridization. Appl Microbiol. Biotechnol. 2002,60:224~231
    117陈桐生,李建军,岑英华,孙国萍. DG-DGGE分析除臭生物滤池微生物多样性及富集后的种群结构差异.应用与环境生物学报. 2006,12(1):113~117
    118 H. Yurimoto, Y. Shinoda, Y. Sakai, H. Uenishi, A. Hiraishi, N. Kato. Aerobic and Anaerobic Toluene Degradation by a Newly Isolated Denitrifying Bacterium, Thauera sp. strain DNT-1. Appl. Environ. Microbiol. 2004,70 (3):1385-1392
    119 M. P. Ginige, J. Keller, L. L. Blackall. Investigation of an Acetate-Fed Denitrifying Microbial Community by Stable Isotope Probing, Full-Cycle rRNA Analysis, and Fluorescent In Situ Hybridization-Microautoradiography. Appl. Environ. Microbiol. 2005,71 (12): 683~8691
    120周可新,许木启,曹宏.生物除磷活性污泥系统微生物学研究进展.应用与环境生物学报. 2005, 1(5): 38~641
    121 L. S. Serafim, P. C. Lemos, C. Levantesi. Methods for Detection and Visualization of Intracellular Polymers Stored by Polyphosphate-Accumulating Microorganisms. J. Microbiol. Methods. 2002,51:1~18
    122 R. Sorm, G. Bortone. Phosphate Uptake under Anoxic Conditions and Fixed-Film Nitrification in Nutrient Removal Activated Sludge System. Water Res.1996,3(7):1573~1584
    123 G. Bortone, S. Marsili Libelli, A. Tilche, J. Wanner. Anoxic Phosphate Uptake in the Dephanox Process. Water Sci. Technol. 1999,40 (4-5):177~185
    124 T. Kuba, G. J. F. Smolders, M. C. M. van Loosdrecht, J. J. Heijnes. Biological Phosphorus Removal from Wastewater by Anaerobic-Anoxic Sequencing Batch Reactor. Water Sci. Technol. 1993,27(5-6):241~252
    125 Y. Z. Peng, Y. Y. Wang, M. Ozaki, A. Takigawa, Z. H. Wang, M. L. Pan. Phosphorus Removal under Anoxic Conditions in a Continuous-Flow A2N Two-Sludge Process. Water Sci. Technol. 2004,50(6):299~307
    126 M. A. Head, J. A. Oleszkiewicz. Bioaugmentation for Nitrificaition at Cold Temperatures. Water Res. 2004,38:523~530
    127彭永臻,刘智波,T. Mino.污水强化生物除磷的生化模型研究进展.中国给水排水. 2006,22(4):1~5
    128 J. Y. Hu, S. L. Ong, W. J. Ng, F Lu, X. J. Fan. A New Method for Characterizing Denitrifying Phosphorus Removal Bacteria by Using Three Different Types of Electron Acceptors. Water Res. 2003,37:3463~3471
    129 D. S. Lee, C. O. Jeon, J. M. Park. Biological Nitrogen Removal with Enhanced Phosphate Uptake in a Sequencing Batch Reactor Using Single Sludge System. Water Res. 2001,35(16):3968~3976
    130 A. Wachtmeister, T. Kuba. A Sludge Characterization Assay for Aerobic and Denitrifying Phosphorus Removing Sludge. Water Res. 1997,31(3):471~478
    131王亚宜,王淑莹,彭永臻. MLSS、pH及NO2--N对反硝化除磷的影响.中国给水排水. 2005,21(7):47~51
    132 Y. Y. Wang, M. L. Pan, M. YAN, Y. Z. Peng, S. Y. Wang. Characteristics of Anoxic Phosphors Removal in Sequence Batch Reactor. J. Environ. Sci. 2007,19:776~782
    133 J. W. McGrath, S. Cleary, A. Mullan, J. P. Quinn. Acidstimulated Phosphate Uptake by Activated Sludge Microorganisms under Aerobic Laboratory Conditions. Water Res. 2001,35:4317~4322
    134 A. T. Nielsen, W. T. Liu, C. Filipe, L. G. Jr., S. Molin, D. A. Stahl. Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. Appl. Environ. Microbiol. 1999,65(3):1251~1258
    135 H. Satoh, T. Mino, T. Matsuo. Uptake of Organic Substrates and Accumulation of Polyhydroxyalkanoates Linked with Glycolysis of Intracellular Carbohydrates under Anaerobic Conditions in the Biological Excess Phosphate Removal Processes. Water Sci. Technol. 1992,26:933~942
    136 G. J. F. Smolders, J. van der Meij, M. C. M. van Loosdrecht, J. J. Heijnen. Model of the Anaerobic Metabolism of the Biological Phosphorus Removal Process-Stoichiometry and pH Influence. Biotechnol. Bioeng. 1994,43:461~470
    137 T. Mino, M. C. M. van Loosdrecht, J. J. Heijnen. Microbiology and Biochemistry of the Enhanced Biological Phosphate Removal Process. Water Res. 1998,32:3193~3207
    138 G. W. Fuhs, M. Chen. Microbiological Basis of Phosphate Removal in the Activated Sludge Process for the Treatment of Wastewater. Microbiol. Ecol. 1975, 2:119~138
    139 M. Kawaharasaki, H. Tanaka, T. Kanagawa, K. Nakamura. In Situ Identification of Polyphosphate-Accumulating Bacteria in Activated Sludge by Dual Staining with rRNA-Targeted Oligonucleotide Probes and 4’,6-Diamidino-2-Phenylindol (DAPI) at a Polyphosphate-Probing Concentration. Water Res. 1999,33:257~265
    140 Y. Kong, J. L. Nielsen, P. H. Nielse. Identity and Ecophysiology of Uncultured Actinobacterial Polyphosphate-Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal Plants. Appl. Environ. Microbiol. 2005,71(7):4076~4085
    141 H. P. Shi, C. M. Lee. Combining Anoxic Denitrifying Ability with Aerobic–Anoxic Phosphorus-Removal Examinations to Screen Denitrifying Phosphorus-Removing Bacteria. Int. Biodeterior. Biodegrad. 2006, 57: 121~128
    142 S. Tsuneda, T. Ohno, K. Soejima. Simultaneous Nitrogen and Phosphorus Removal Using Denitrifying Phosphate-Accumulating Organisms in a Sequencing Batch Reactor. Biochem. Eng. J. 2006, 27: 191~196
    143 C. Falkentoft. The Significance of Zonetaion in a Denitrifying Phosphorus Removing Biofilm. Water Res.1999, 33:3303~3310
    144 H. Urakawa, S. Kurata, T. Fujiwara, D. Kuroiwa, H. Maki, S. Kawabata, T. Hiwatari, H. Ando, T. Kawai, M. Watanabe, K. Kohata. Characterization and Quantification of Ammonia-Oxidizing Bacteria in Eutrophic Coastal Marine Sediments Using Polyphasic Molecular Approaches and Immunofluorescence Staining. Environ. Microbiol. 2006,8 (5):787~803
    145 A. Eiler, S. Bertilsson. Composition of Freshwater Bacterial Communities Associated with Cyanobacterial Blooms in Four Swedish Lakes. Environ. Microbiol. 2004,6 (12):1228~1243
    146 B. B. Liu, F. Zhang, X. X. Feng, Y. Liu, X. Yan, X. Zhang, L. Wang, L. Zhao. Thauera and Azoarcus as Functionally Important Genera in a Denitrifying Quinoline-Removal Bioreactor as Revealed by Microbial Community Structure Comparison. FEMS Microbiol. Ecol. 2006,55 (2):274~286
    147 G. R. Crocetti, J. F. Banfield, J. Keller, P. L. Bond, L. L. Blackall. Glycogen-Accumulating Organisms in Laboratory-Scale and Full-Scale Wastewater Treatment Processes. Microbiology. 2002,148 (11):3353~3364
    148 S. Juretschko, A. Loy, A. Lehner, M. Wagner. The Microbial Community Composition of a Nitrifying-denitrifying Activated Sludge from an Industrial Sewage Treatment Plant Analyzed by the Full-Cycle rRNA Approach. Syst. Appl. Microbiol. 2002,25 (1):84~99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700