用户名: 密码: 验证码:
土壤含水层处理技术去除二级出水中溶解性有机物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将城市污水处理厂二级处理出水用于人工地下水回灌逐渐成为补充地下含水层和储存水资源的有效途径,土壤含水层处理(SAT)是地下回灌流程中一个重要组成部分。在SAT系统中,溶解性有机物(DOM)一直备受关注。本研究采用XAD树脂分离技术将DOM分级成疏水性有机酸(HPO-A),疏水性中性有机物(HPO-N),过渡亲水性有机酸(TPI-A),过渡亲水性中性有机物(TPI-N)和亲水性有机物(HPI)等5种组分,并通过氯化实验、红外光谱、紫外光谱、核磁共振波谱、元素分析等多种实验手段考察了城市污水处理厂二级处理出水中的DOM各组分的分布特征和化学特性,并考察了DOM在SAT系统中的去除和变化,以及回灌对土壤有机物的影响。
     利用XAD树脂对二级处理出水中的DOM进行分级分离,并对各DOM组分进行特性表征。结果表明,HPO-A和HPI是二级处理出水的主要有机组分,HPO-A是加氯消毒时产生三卤甲烷(THMs)的主要前体物质。每种DOM组分的单种THM生成量随溴离子浓度增加的变化趋势相同:CHCl3单调递减;CHCl2Br和CHBr2Cl先升后降;CHBr3单调递增。氯化反应导致HPO-A, HPO-N, TPI-A和TPI-N在250–280 nm范围内的紫外吸收的降低。氯化反应导致HPO-A、HPO-N、TPI-A和TPI-N中O—H、C=C和苯环含量的降低,C—O含量的升高,以及C=O和C—Cl的生成。氯化反应中溴离子的存在导致这4种DOM组分中出现C—Br。
     通过土壤柱模拟实验考察了DOM在SAT系统中的去除及其卤代活性的变化。结果表明,SAT系统对HPO-A、HPO-N、TPI-A、TPI-N和HPI的三卤甲烷生成势(THMFP)的去除率分别为27.24%, 34.43%, 26.24%, 35.85%和36.08%。DOM各组分的三卤甲烷生成活性(STHMFP)在SAT系统中均升高。对于HPO-A、HPO-N和HPI来说,THMFP与UV-254的相关性较强,而对于TPI-A和TPI-N来说,THMFP与UV-254的相关性较弱。
     通过可生物降解溶解性有机碳(BDOC)反应柱实验,以及进水分别为未添加NaN3和添加了NaN3的二级处理出水的2个土壤柱系统的模拟实验,研究了好氧生物降解作用、SAT系统、以及SAT系统中非好氧生物降解和吸附的联合作用对DOM的去除效果。结果表明,好氧生物降解作用、SAT系统和SAT系统中非好氧生物降解和吸附的联合作用对总DOC的去除率分别约为57.3%、70%和27.5%。中性DOM组分(HPO-N和TPI-N)比酸性DOM组分(HPO-A和TPI-A)更容易被好氧生物降解作用所去除,而酸性DOM组分比中性DOM组分更容易被SAT系统中非好氧生物降解和吸附的联合作用所去除。好氧微生物显著降解酸性DOM组分中的C=O官能团而SAT系统中非好氧生物降解和吸附的联合作用显著降解中性DOM组分中的C=O官能团;好氧微生物降解酸性DOM组分中的C―O官能团,而SAT系统中非好氧生物降解和吸附的联合作用则导致C―O官能团在HPO-A,HPO-N,TPI-A和TPI-N中的相对含量的升高;好氧微生物显著降解酰胺类有机物,而SAT系统中非好氧生物降解和吸附的联合作用则导致酰胺类有机物的生成。
     通过比较进水分别为未进行和已经过活性炭吸附处理后的二级处理出水的2个土壤柱系统对DOM的去除效果,研究了进水预处理程度对SAT系统性能的影响。结果表明,当SAT系统进水中DOM的浓度降低时,SAT系统出水中DOM的浓度也降低,并且SAT系统对DOM的去除率下降。
     通过比较回灌前的土壤,以及回灌后不同深度土壤中水可提取DOM的含量和官能团特征考察了回灌对土壤中水可提取DOM的影响。结果表明,回灌导致了表层土(0-12.5 cm)中水可提取DOM含量的升高,以及深度在12.5 cm以下的土壤中水可提取DOM含量的降低。回灌导致土壤中HPO-A和TPI-A的含量的下降,以及HPO-N、TPI-N和HPI的含量的升高。回灌对顶部和底部土壤中水可提取DOM组分的官能团的影响不同。
Groundwater recharge with municipal wastewater is an increasingly valued practice for replenishing aquifers used for domestic supply. Soil-aquifer treatment (SAT) is the import component of groundwater recharge engineers. Dissolved organic matter (DOM) is of concern during SAT. DOM was fractionated using XAD resins into five fractions: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). The distribution and chemical characters of these DOM fractions in secondary effluents from the wastewater treatment plant were examined by many experimental analysis ways such as chlorination experiments, infrared spectroscopy, ultraviolet (UV) spectroscopy, nuclear magnetic resonance spectroscopy and elemental analysis. Moreover, the removal and transformation of DOM during SAT, as well as the effect of the recharge on the soil DOM, were investigated.
     DOM in secondary effluents was fractionated and isolated using XAD resins, and each DOM fraction was characterized. The results showed that HPO-A and HPI dominated in the secondary effluent. HPO-A was the main precursors for trihalomethanes (THMs) following chlorination. The patterns of individual THM species with increased bromide concentrations were similar for all DOM fractions, which were as follows: CHCl3 decreased exponentially; CHCl2Br and CHBr2Cl increased initially and then decreased; CHBr3 increased continuously. Chlorination resulted in decreased UV absorbance across wavelengths from 250 to 280 nm for HPO-A, HPO-N, TPI-A and TPI-N. Chlorination resulted in the decreasing content of C—H, C=C and aromatic rings, the increasing content of C—O, and the production of C=O and C—Cl in HPO-A, HPO-N, TPI-A and TPI-N. The presence of bromide in chlorination led to the occurrence of C—Br for these four fractions.
     The removals and changes in the chlorine reactivity of DOM during SAT were investigated by soil-column simulation experiments. The results showed that the reduction of THMFP from HPO-A, HPO-N, TPI-A, TPI-N and HPI during SAT was 27.24%, 34.43%, 26.24%, 35.85% and 36.08%, respectively. Specific THMFP (STHMFP) for each DOM fraction increased across the soil columns. THMFP was strongly correlated to UV-254 for HPO-A, HPO-N and HPI, while the relationship between THMFP and UV-254 for TPI-A and TPI-N was significantly poor.
     The removals of DOM by the aerobic biodegradation, SAT system and a combination of sorption and anaerobic biodegradation during SAT were examined by the BDOC reaction column tests, as well as the simulation experiments using two soil-column systems, whose influents were the secondary effluent without and with NaN3 addition, respectively. The results showed that the removals of bulk DOC by the aerobic biodegradation, the SAT system and the combination of sorption and anaerobic biodegradation during SAT were 57.3 %, 70% and 27.5%, respectively. Neutral DOM fractions (HPO-N and TPI-N) were more readily removed than acid DOM fractions (HPO-A and TPI-A) by aerobic biodegradation, while acid DOM fractions were more readily removed than neutral DOM fractions by the combination of sorption and anaerobic biodegradation during SAT. The C=O functional groups in acid DOM fractions were significantly reduced by the aerobic biodegradation, whereas those in neutral DOM fractions were significantly reduced during SAT. The C―O functional groups in acid fractions were reduced by aerobic biodegradation while the combination of sorption and anaerobic biodegradation during SAT resulted in the increased relative content of C―O functional groups in HPO-A, HPO-N, TPI-A and TPI-N. The aerobic biodegradation significantly reduced amides, while the combination of sorption and anaerobic biodegradation during SAT resulted in the production of amides.
     The effect of influent pre-treatment on the performance of SAT systems was investigated by a comparison between the removals of DOM by two soil-column systems, whose influents were the secondary effluents without and with activated carbon adsorption treatments, respectively. The results showed that the effluent DOM concentrations as well as the DOM removals for the SAT system would decrease when the influent DOM concentrations decrased.
     The effect of recharge on water extractable DOM in soils was examined, by comparing the content and functional properties of water extractable DOM in soils after recharge at the different depths with those in the soils before recharge. The results showed that the recharge resulted in the increased content of water extractable DOM in the top soils (0-12.5 cm), as well as the decreased content of water extractable DOM in the soils below 12.5 cm. The recharge resulted in the decreased content of HPO-A and TPI-A as well as the increased content of HPO-N, TPI-N and HPI. The effects of recharge on functional groups of water extractable DOM fractions in the top and bottom soils were not similar.
引文
1皮运正,云桂春,张丽萍. DGB处理二级出水用于地下回灌的风险评价.环境科学研究, 2002, 15(2): 30~33
    2 L. Sala, M. Serra. Towards sustainability in water recycling. Water Sci. Technol., 2004, 50(2):1~8
    3 H. Bouwer. Role of groundwater recharge in treatmen and storage of waste-water for reuse. Water Sci. Technol., 1991, 24(9): 295~302
    4周彤.污水回用决策与技术[四].北京:化学工业出版社, 2002
    5高前兆,李小雁等,俎瑞平.水资源危机.北京:化学工业出版社, 2002
    6钱正英,张光斗.中国可持续发展水资源战略研究.中国水利水电出社, 2001: 28~31
    7周彤.污水回用是解决城市缺水的有效途径.给水排水.2001.27(11): 1~6
    8曾扬,安贞煜.土地处理技术在污水资源化中的应用.环境污染治理技术与设备, 2003, 4(9): 77~80
    9何江涛,钟佐,汤鸣皋,陈鸿汉.污水土地处理技术与污水资源化.地学前缘, 2001, 8(1): 155~161
    10成徐洲,吴天宝,陈天柱.城市污水地下回灌技术现状与发展.中国给水排水. 1999, 15(6): 20~21
    11云桂春,成徐洲.人工地下水回灌.中国建筑工业出版社. 2004, 4
    12皮运正,吴天宝,陈维芳.土壤含水层处理可吸附有机卤化物的实验研究.重庆环境科学, 2000, 22(1): 31~33
    13成徐洲,吴天宝,陈天柱,杨天竹.土壤渗滤处理技术研究现状与进展.环境科学研究, 1999, 12(4): 33~36
    14仝贵婵,叶裕才,云桂春,金光宇.城市污水深度处理中有机物的去除.环境科学, 2000, 21(11): 73~76
    15云桂春,皮运正,胡俊.浅谈再生污水地下回灌的健康危害风险.给水排水, 2004, 30(4): 7~10
    16朱慧峰,顾慧人.上海市污水厂出水用于地下水回灌探讨.中国给水排水, 2005, 21(4): 91~93
    17 M. N. Viswanathan, M. N. Al Senafy, T. Rashid, E. Al-Awadi, K. Al-Fahad. Improvement of tertiary wastewater quality by soil aquifer treatment. WaterSci. Technol., 1999, 40 (7): 159~163
    18皮运正,云桂春,张丽萍. DGB处理二级出水用于地下回灌的风险评价.环境科学研究, 2002, 15(2): 30~33
    19 T. Asano, J. A. Cotruvo. Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations. Water Res., 2004, 38(8): 1941~1951
    20 P. Dillon, P. Pavelic, S. Toze, S. Rinck-Pfeiffer, R. Martin, A. Knapton, D. Pidsley. Role of aquifer storage in water reuse. Desalination, 2006,188 (1-3): 123~134
    21王丽娜,城市污水再生用于地下水回灌及健康风险评价.哈尔滨工业大学硕士毕业论文. 2006年6月.
    22 P. Fox, W. Aboshanp, W. Alsamadi. Analysis of soils to demonstrate sustained organic carbon removal during soil aquifer treatment. J. Environ. Qual., 2005, 34 (1): 156~163
    23郭伟,李培军.污水快速渗滤土地处理研究进展.环境污染治理技术与设备, 2004, 5(8): 2~7
    24 A. Kanarek, M. Michail. Groundwater recharge with municipal effluent: Dan Region reclamation project, Israel. Water Sci. Technol., 1996, 34(11): 227~233
    25何星海,马世豪.再生水补充地下水水质指标及控制技术.环境科学, 2004, 25(5): 61~64
    26赵璇,胡俊,王建龙.土壤基质对回灌水的净化效果.清华大学学报(自然科学版). 2004, 44(3): 347~349
    27 J. F. McCarthy, T. M. Williams, L. Liang, P. M. Jardine, L. W. Joiiey, D. L. Tayior, A. V. Paiumbo, L. W. Coopert. Mobility of natural organic matter in a sandy aquifer. Environ. Sci. Technol., 1993, 27(4): 667~676
    28 F. Brissand. Infiltration percolation for reclaimed pond. Water Sci. Technol., 1991, 24(9): 185~193
    29 T. Kopchynski, P. Fox, B. Alsmaldi, M. Berner. Effects of soil type and effluent pretreatment on soil aquifer treatment. Water Sci. Technol., 1996, 34(111): 235~242
    30 D. M. Quanrud, R. G. Arnold, L. G. Wilson, H. J. Gordon, D. M. Graham, G. L. Amy. Fate of organics during column studies of soil aquifer treatment. J.Environ. Eng.-ASCE, 1996, 122(4): 314~321
    31 P. Westerhoff, M. Pinney. Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater. Waste Manage., 2000, 20(1): 75~83
    32 J. E. Drewes, P. Fox. Behavior and characterization of residual organic compounds in wastewater used for indirect potable reuse. Water Sci. Technol., 1999, 40(4-5): 391~398
    33 J. E. Drewes, P. Fox. Fate of natural organic matter (NOM) during groundwater recharge using reclaimed water. Water Sci. Technol., 1999, 40(9): 241~248
    34 J. E. Drewes, M. Jekel. Behavior of DOC and AOX using advanced treated wastewater for groundwater recharge. Water Res., 1998, 32(10): 3125~3133
    35 P. Nema, C. S. P. Ojha, A. Kumar, P. Khanna. Techno-economic evaluation of soil-aquifer treatment using primary effluent at Ahmedabad, India. Water Res., 2001, 35(9): 2179~2190
    36 J. E. Drewes, M. Reinhard, P. Fox. Comparing microfiltration-reverse osmosis and soil-aquifer treatment for indirect potable reuse of water. Water Res., 2003, 37(15): 3612~3621
    37 R. W. Tanja, E. Jorg, J. E. Drewes. Using soil biomass as an indicator for the biological removal of effluent-derived organic carbon during soil infiltration. Water Res., 2006, 40(5): 961–968
    38 T. Rauch, J. E. Drewes. Quantifying organic carbon removal in groundwater recharge systems. J. Environ. Eng.-ASCE, 2005, 131(6): 909~923
    39 D. M. Quanrud, J. Hafer, M. M. Karpiscak, H. M. Zhang, K. E. Lansey, R. G. Arnold.. Fate of organics during soil-aquifer treatment: sustainability of removals in the field. Water Res., 2003, 37(14): 3401~3411
    40 W. Cha, P. Fox, F. Mir, H. Choi. Characteristics of biotic and abiotic removal of dissolved organic carbon in wastewater effluents using soil batch reactors. Water Environ. Res., 2004, 76(2): 130~136
    41 J. C. Lance, R. C. Rice, R. G. Gilbert. Renovation of wastewater by soil columns flooded with primary effluent. Water Pollut. Control Fed., 1980, 52(2): 381~387
    42 N. Fierer, J. P. Schimel, P. A. Holden. Variations in microbial communitycomposition through two depth profiles. Soil Biol. Biochem., 2003, 35(1): 167~176
    43林春野,何孟常.污水土壤含水层处理系统原理、管理、效率和应用.环境污染治理技术与设备, 2006, 7(2): 1~8
    44 C. Lin, D. Greenwald, A. Banin. Temperature dependence of infiltration rate during large scale water recharge into soils. Soil Sci. Soc. Am. J., 2003, 67(2): 487~493
    45 S. G. Wangemann, R. A. Kohl, P. A. Molumeli. Infiltration and percolation influenced by antecedent soil water content and air entrapment. Trans. ASAE, 2000, 43(6): 1517~1523
    46 S. Fuchs, H. H. Hahn, J. Roddewig, M. Schwarz, R. Turkovic. Biodegradation and bioclogging in the unsaturated porous soil beneath sewer leaks. Acta Hydroch. Hydrob., 2004, 32(4-5): 277~286
    47 R. David, G. Pyne. Groundwater Recharge and Wells .USA: Lewis Publishers. CRC Press, 1995, 40~80
    48 G. Amy, J. E. Debroux, R. Arnold, L. G. Wilson. Preozonation for enhancing the biodegradability of wastewater effluent in a potable recovery soil aquifer treatment (SAT) system. J. Water Sci., 1996, 9(3): 365~380
    49皮运正,吴天宝.活性炭吸附用于城市污水地下回灌技术的研究.中国给水排水, 1999, 15(10): 5~8
    50田光明.人工土快滤滤床对耗氧有机污染物的去除机制.土壤学通报, 2002, 39(1): 127~134
    51 Z. Y. Zhang, Z. F. Lei, Z. Y. Zhang, N. Sugiura, X. T. Xu, D. D. Yin. Organics removal of combined wastewater through shallow soil infiltration treatment: A field and laboratory study. J. Hazard. Mater., 2007, 149(3): 657~665
    52 T. Suzuki, T. Katsuno, G. Yamaura. Land application of wastewater using three types of trenches set in lysimeter and its mass balance of nitrogen. Water Res., 1992, 26(11): 1433~1444
    53 J. C. Lance, R. C. Rice, R. G. Gilbert. Renovation of wastewater by soil columns flooded with primary effluent. J. Water Pollut. Control Fed., 1980, 52(22): 381~387
    54 J. H. Miller, W. P. Ela, K. E. Lansey, P. L. Chipello, R. G. Arnold. Nitrogentransformations during soil-aquifer treatment of wastewater effluent-oxygen effects in field studies. J. Environ. Eng.-ASCE, 2006, 132(10): 1298~1306
    55 H. H. Yoo, J. H. Miller, K. Lansey, M. Reinhard. EDTA, NTA, alkylphenol ethoxylate and DOC attenuation during soil aquifer treatment. J. Environ. Eng.-ASCE, 2006, 132(6): 674~682
    56 C. Lin, A. Banin. Phosphorous retardation and breakthrough into well water in a soil-aquifer treatment (SAT) system used for large-scale wastewater reclamation. Water Res., 2006, 40(8): 1507~1518
    57 C. Lin, A. Banin. Effect of long-term effluent recharge on phosphate sorption by soils in a wastewater reclamation plant. Water Air Soil Poll., 2005, 164(1-4): 257~273
    58 W. Cha, J. Kim, H. Choi. Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment. Water Res., 2006, 40(5): 1034~1042
    59 J. A. Leenheer, P. Jean. Characterizing dissolved aquatic organic matter. Environ. Sci. Technol., 2003, 49(1): 19~26
    60 D. A. Backhus, C. Golini, E. Castellanos. Evaluation of fluorescence quenching for assessing the importance of interactions between nonpolar organic pollutants and dissolved organic matter. Environ. Sci. Technol., 2003, 37(20): 4717~4723
    61 J. E. Drewes, J. P. Croue. New approaches for structural characterization of organic matter in drinking water and wastewater effluents. Water Sci. Technol., 2002, 2(2): 1~10
    62 C. E. Rostad, B. S. Martin, L. B. Barber, J. A. Leenheer. Effect of constructed wetland on disinfection byproducts: removal process and production of precursors. Environ. Sci. Technol., 2000, 34(13): 2703~2710
    63 D. M. Quanrud, R. G. Arnold, L. G. Wilson, M. H. Conklin. Effect of soil type on water quality imp rovement during soil aquifer treatment. Water Sci. Technol., 1996, 33 (10-11): 419~431
    64 S. Grunheid S, G. Amy, M. Jekel. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res., 2005, 39(14): 3219~3228
    65 T. Juhna, M. Klavins, L. Eglite. Sorption of humic substances on aquifer material at artificial recharge of groundwater. Chemosphere, 2003, 51(9):861~868
    66 P. Fox, K. Narayanaswamy, A. Genz, J. E. Drewes. Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA. Water Sci. Technol., 2001, 43 (10): 343~350
    67 S. L. Houston, P. D. Duryea, R. Hong. Infiltration considerations for groundwater recharge with waste effluent. J. Irrig. Drainage Eng-ASCE., 1999, 125(5): 264~272
    68 A. Lindroos, V. Kitunen, J. Derome, H. Helmisaari. Changes in dissolved organic carbon during artificial recharge of groundwater in a forested esker in Southern Finland. Water Res., 2002, 36(20): 4951~4958
    69 T. Rauch, J. E. Drewes. Assessing the removal potential of soil-aquifer treatment systems for bulk organic matter. Water Sci. Technol., 2004, 50(2): 245~253
    70 J. Langmark, M. V. Storey, N. J. Ashbolt, T. A. Stenstrom. Artificial groundwater treatment: biofilm activity and organic carbon removal performance. Water Res., 2004, 38(3): 740~748
    71 G. Amy, J. Drewes. Soil aquifer treatment (SAT) as a natural and sustainable wastewater Reclamation/Reuse technology: Fate of wastewater effluent organic matter (EfOM) and trace organic compounds. Environ. Monit. Assess., 2007, 129(1-3): 19~26
    72 M. Reinhard, J. Montgomery-Brown, J. S. Louie, B. Gross. From effluent to new water: Performance evaluation and quality assurance. Chimia, 2003, 57 (9): 561~566
    73 J. Montgomery-Brown, J. E. Drewes, P. Fox, M. Reinhard. Behavior of alkylphenol polyethoxylate metabolites during soil aquifer treatment. Water Res., 2003, 37 (15): 3672~3681
    74 B. L. Mansell, J. E. Drewes. Fate of steroidal hormones during soil-aquifer treatment. Ground Water Monit. Remediat., 2004, 24 (2): 94~101
    75 O. Conroy, D. M. Quanrud, W. P. Ela, D. Wicke, K. E. Lansey, R. G. Arnold. Fate of wastewater effluent hER-agonists and hER-antagonists during soil aquifer treatment. Environ. Sci. Technol., 2005, 39 (7): 2287~2293
    76 M. V.Yates, C. P. Gerba. Microbial considerations in wastewater reclamation and reuse. In: T. Asano (ed.) Wastewater Reclamation and Reuse. Lancaster,PA: Technomic Publishers. 1998, 1437~488
    77 D. K. Powelson, C. P. Gerba, M. T. Yanya. Virus transport and removal in wastewater during aquifer recharge. Water Res., 1993, 27(4): 583~590
    78 D. K. Powelson, C. P. Gerba. Virus removal from sewage effluent during saturated and unsaturated flow through soil columns. Water Res., 1994, 28(10): 2175~2181
    79 Y. Chu, Y. Jin, M. Flury, M. V. Yates. Mechanisms of virus removal during transport in unsaturated porousmedia. Water Resour. Res., 2001, 37(2): 253~263
    80 W. A. M. Hijnen, A. J. Brouwer-Hanzens, K. J. Charles, G. J. Medema. Transport of MS2 phage, Escherichia coli, Clostridium perfringens, Cryptosporidium parvum and Giardia intestinalis in a gravel and a sandy soil. Environ. Sci. Technol., 2005, 39 (20): 7860~7868
    81 J. Won, J. W. Kim, S. Kang, H. Choi, Transport and adhesion of Escherichia coli JM109 in soil aquifer treatment (SAT): One-dimensional column study. Environ. Monit. Assess., 2007, 129 (1-3): 9~18
    82 S. Y. Lee, J. U. Lee, H. Choi, K. W. Kim. Sorption behaviors of heavy metals in SAT (soil aquifer treatment) system. Water Sci. Technol., 2004, 50(2): 263~268
    83 O. Oren, I. Gavrieli, A. Burg, J. Guttman, B. Lazar. Manganese mobilization and enrichment during soil aquifer treatment (SAT) of effluents, the Dan Region Sewage Reclamation Project (Shafdan), Israel. Environ. Sci. Technol., 2007, 41(3): 766~772
    84崔理华,白瑛,等.城市污水人工快滤处理后回用的环境效应研究.农业环境保护, 1997, 16(4): 153~157
    85崔理华,白瑛,等.城市污水人工快滤处理后回灌的作物效应的综合分析.农业环境保护, 1997,16(6): 241~244
    86 B. Jimenez, A. Chavez. Quality assessment of an aquifer recharged with wastewater for its potential use as drinking source:“El Mezquital Valley”case. Water Sci. Technol., 2004, 50 (2): 269~276
    87 Z. W. Tang, G. H. Li, L. W. Mays, P. Fox. Development of methodology for the optimal operation of soil aquifer treatment systems. Water Sci. Technol., 1996, 33(10-11): 433~442
    88 C. Rav-Acha, I. Duchovni, A. Kanarek, N. Izakson. Retardation factors and breakthrough times of organic micropollutants in groundwater recharged with effluents. Water Sci. Technol., 1996, 33(10-11): 391~399
    89 M. M. Eusuff, K. E. Lansey. Optimal operation of artificial groundwater recharge systems considering water quality transformations. Water Resour. Manag., 2004, 18(4): 379~405
    90 P. Nema, A. Chelani, C. S. P. Ojha, A. Kumar, P. Khanna. Utility of column lysimeter for design of soil aquifer treatment system for wastewater renovation using artificial neural networks. J. Environ. Eng.-ASCE, 2004, 130(12): 1534~1542
    91 J. W. Kim, J. Kim, H. Choi, F. W. Schwartz. Modeling the fate and transport of organic and nitrogen species in soil aquifer treatment process. Water Sci. Technol., 2004, 50(2): 255~261
    92 J. Greskowiak, H. Prommer, G. Massmann, C. D. Johnston, G. Nutzmann, A. Pekdeger. The impact of variably saturated conditions on hydrogeochemical changes during artificial recharge of groundwater. Appl. Geochem., 2005, 20(7): 1409~1426
    93 J. C. Tapias, M. Himi, A. Masachs, C. Nieto, F. Brissaud, M. Salgot, A. Casas. Using electrical imaging for assessing suitability of reclaimed water recharge at Begur, Spain. Desalination, 2006, 188(1-3): 69~77
    94南京土城研究所.土壤理化分析.上海:上海科学技术出版社, 1978: 449~450
    95马艳霞,冯秀丽,叶银灿,张慧宇,徐丛亮.比重计法和吸液管法粒度分析比较.海洋科学. 2002, 26(6): 63~67
    96 T. Karanfil, I. Erdogan, M. A. Schlautman. Selecting filter membranes for measuring DOC and UV254. J. Am. Water Works Ass., 2003, 95(3): 86~100
    97 G. L. Aiken, D. M. McKnight, K. A. Thorn, E. M. Thurman. 1992. Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Org. Geochem., 18(4): 567~573.
    98 A. T. Chow, K. K. Tanji, S. Gao. Production of dissolved organic carbon (DOC) and trihalomethane (THM) precursor from peat soils. Water Res., 2003, 37(18): 4475~4485
    99 A. T. Chow, F. Guo, S. Gao, R. S. Breuer. Size and XAD fractionations oftrihalomethane precursors from soils. Chemosphere, 2006, 62(10): 1636~1646.
    100 T. F. Marhaba, Y. Pu, K. Bengraine. Modified dissolved organic matter fractionation technique for natural water. J. Hazard. Mater., 2003, 101(1): 43~53
    101 A. Imai, T. Fukushima, K. Matsushige, Y. H. Kim, K. Choi. Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Res., 2002, 36(4): 859~870
    102 A. Imai, K. Matsushige, T. Nagai. Trihalomethane formation potential of dissolved organic matter in a shallow eutrophic lake. Water Res., 2003, 37(17): 4284~4294
    103 D. M. Quanrud, R. G. Arnold, K. E. Lansey, C. Begay, W. Ela, A. J. Gandolfi. Fate of effluent organic matter during soil-aquifer treatment: biodegradability, chlorine reactivity and genotoxicity. J. Water Health, 2003, 1(1): 33~44
    104 B. Kwon, S. Lee, J. Cho, H. Ahn, D. Lee, H. S. Shin. Biodegradability, DBP formation, and membrane fouling potential of nature organic matter: characterization and controllability. Environ. Sci. Technol., 2005, 39(3): 732~739
    105 C. Musikavong, S. Wattanachira, T. F. Marhaba, P. Pavasant. Reduction of organic matter and trihalomethane formation potential in reclaimed water from treated industrial estate wastewater by coagulation. J. Hazard. Mater., 2005, 127(1-3): 48~57
    106 T. F. Marhaba, A. Mangmeechai, C. Chaiwatpongsakorn, P. Pavasant. Trihalomethanes formation potential of shrimp farm effluents. J. Hazard. Mater., 2006, 136(2): 151~163.
    107 A. T. Chow, F. Guo, S. Gao, R. Breuer. Filter pore size selection for characterizing dissolved organic carbon and trihalomethane precursors from soils. Water Res., 2005, 39(7): 1255~1264.
    108 A. T. Chow, F. Guo, S. Gao, R. Breuer. Trinalomethane formation potential of filter isolates of electrolyte-extractable soil organic carbon. J. Environ. Qual., 34(6): 1992~1997
    109 B. Panyapinyopol, T. F. Marhaba, V. Kanokkantapong, P. Pavasant.Characterization of precursors to trihalomethanes formation in Bangkok source water. J. Hazard. Mater., 2005, 120(1-3): 229~236
    110 J. A. Leenheer, C. E. Rostad, L. B. Barber. Nature and chlorine reactivity of organic constituents from reclaimed water in groundwater, Los Angeles County, California. Environ. Sci. Technol., 2001, 35(19): 3869~3876
    111 D. M. Quanrud, M. M. Karpiscak, K. E. Lansey, R. G. Arnold. Transformation of effluent organic matter during subsurface wetland treatment in the Sonoran Desert. Chemosphere, 2004, 54(6): 777~788
    112 H. Ma, H. E. Allen, Y. Yin, Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Res., 2001, 35(4): 985~996
    113 V. Kanokkantapong, T. F. Marhaba, P. Pavasant, B. Panyapinyopol. Characterization of haloacetic acid precursors in source water. J. Environ. Manage., 2006, 80(3): 214~221
    114 X. Yang, C. Shang, J. C. Huang, DBP formation in breakpoint chlorination of wastewater, Water Res., 2005, 39(19): 4755~4767.
    115 V. Matamoros, R. Mujeriego, J. M. Bayona. Trihalomethane occurrence in chlorinated reclaimed water at full-scale wastewater treatment plants in NE Spain, Water Res., 2007, 41(15): 3337~3344.
    116 T. Karanfil, I. Erdogan, M. A. Schlautman. The impact of filtrate turbidity on UV254 and SUVA (254) determinations. J. Am. Water Works Ass., 2005, 97(5): 125~136.
    117 P. Namour, M. C. Muller. Fractionation of organic matter from wastewater treatment plants before and after a 21-day biodegradability test: a physical-chemical method for measurement of the refractory part of effluents. Water Res., 1998, 32(7): 2224~31
    118 O. D. Basu, P. M. Huck. Removal of humic acid by biofiltration. Water Supply, 2003, 4(4): 147~154
    119 P. C. Singer. Humic substances as precursors for potentially harmful disinfection by-products. Water Sci. Technol., 1999, 40 (9): 25~30
    120 Z. Huixian, Y. Sheng, X. Wu, X. Ouyong. Formation of POX and NPOX with chlorination of fulvic acid in water: empirical models. Water Res., 1997, 31(6): 1536~1541
    121 R. P. Galapate, A. U. Baes, K. Ito, K. Iwase, M. Okada. Trihalomethane formation potential prediction using some chemical functional groups and bulk parameters. Water Res., 1999, 33(11): 2555~2560
    122 G. V. Korshin, C. W. Li, M. M. Benjamin. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Res., 1997, 31(7): 1787~1785
    123 W. M. Davis, C. L. Erickson, C. T. Johnston, J. J. Delfino, J. E. Porter. Quantitative fourier transform infrared spectroscopic investigation of humic substance functional group composition, Chemosphere, 1999, 38(12): 2913~2928.
    124 L. B. Barber, J. A. Leenheer, T. I. Noyes, E. A. Stiles. Nature and transformation of dissolved organic matter in treatment wetlands, Environ. Sci. Technol., 2001, 35(24): 4805~4816
    125 C. F. Lin, S. H. Liu, O. J. Hao. Effect of functional groups of humic substances on UF performance, Water Res., 2001, 35(10): 2395~2402
    126 J. Chen, B. Gu, E. J. LeBoeuf, H. Pan, S. Dai. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 2002, 48(1): 59~68.
    127 V. Kanokkantapong, T. F. Marhaba, B. Panyapinyophol, P. Pavasant. FTIR evaluation of functional groups involved in the formation of haloacetic acids during the chlorination of raw water, J. Hazard. Mater., 2006, 136(2): 188~196
    128 S. Samios, T. Lekkas, A. Nikolaou, S. Golfinopoulos. Structural investigations of aquatic humic substances from different watersheds. Desalination, 2007, 210(1-3): 125~137
    129 H. C. Kim, M. J. Yu. Characterization of natural organic matter in conventional water treatment processes for selection of treatment process focused on DBPs contral, Water Res., 2005, 39(19): 4779~4789
    130 H. C. Kim, M. J. Yu. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water. J. Hazard. Mater., 2007, 143(1-2): 486~493
    131 J. Peuravuori, K. Pihlaja. Multimethod characterization of lake aquatic humic matter isolated with sorbing solid and tangential membrane filtration.Anal. Chim. Acta, 1998, 364(1): 203~221.
    132 H. C. Kim, M. J. Yu, I. Han. Multi-method study of the characteristic chemical nature of aquatic humic substances isolated from the Han River, Korea. Appl. Geochem., 2006, 21(7): 1226~1239
    133 K. Kaiser, G. Guggenberger, L. Haumaier, W. Zech. The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil. Org. Geochem., 2002, 33(3): 307~318
    134 P. Conte, R. Spaccini, M. Chiarella, A. Piccolo. Chemical properties of humic substances in soils of an Italian volcanic system. Geoderma, 2003, 117(3-4): 243~250
    135 X. L. Chai, S. Takayuki, X. Y. Cao, Q. Guo, Y. C. Zhao. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill. Chmosphere. 2007, 69(9): 1446~1453
    136 S. D. Boyce, J. F. Hornig. Reaction pathways of trihalomethane formation from the halogenation of dihydroxyaromatic model compounds for humic acid. Environ. Sci. Technol., 1983, 17(4): 202~211
    137 P. Westerhoff, P. Chao, H. Mash. Reactivity of natural organic matter with aqueous chlorine and bromine. Water Res., 2004, 38(6): 1502~1513
    138 C. Y. Chang, Y. H. Hsieh, Y. M. Lin, P. Y. Hu, C. C. Liu, K. H. Wang. The organic precursors affecting the formation of disinfection by-products with chlorine dioxide. Chemosphere, 2001, 44(5): 1153~1158
    139 G. L. Amy, P. A. Chadik, P. H. King, W. J. Cooper. Chlorine utilization during trihalomethane formation in the presence of ammonia and bromide, Environ. Sci. Technol., 1984, 18(10): 781~786
    140 C. J. Nokes, E. Fenton, C. J. Randall. Modelling the formation of brominated trihalomethanes in chlorinated drinking waters, Water Res., 1999, 33(17): 3557~3568
    141 E. Chang, Y. P. Lin, P. C. Chiang. Effects of bromide on the formation of THMs and HAAs, Chemosphere, 2001, 43(8): 1029~1034
    142 V.Uyak, I. Toroz. Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply, J. Hazard. Mater., 2007, 149(2): 445~451
    143 S. Chellam, S. W. Krasner. Disinfection byproduct relationships andspeciation in chlorinated nanofiltered waters, Environ. Sci. Technol., 2001, 35(19): 3988~3999
    144 A. Obolensky, P. C. Singer. Halogen substitution patterns among disinfection byproducts in the information collection rule database, Environ. Sci. Technol., 2005, 39(8): 2719~2730
    145 G. Hua, D. A. Reckhow, J. Kim. Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination, Environ. Sci. Technol., 2006, 40(9): 3050~3056
    146 Y. Chin, G. Aiken. O’Loughlin E., Molecular weight, polydispersity, and spectoscopic properties of aquatic humic substances, Environ. Sci. Technol., 1994, 28(11): 1853~1858
    147 C. W. Li, M. M. Benjamin, G. V. Korsin. Use of UV spectroscopy to characterize the reaction between NOM and free chlorine, Environ. Sci. Technol., 2000, 34(12): 2570~2575
    148 N. Ates, M. Kitis, U. Yetis. Formation of chlorination by-products in waters with low SUVA—correlations with SUVA and differential UV spectroscopy, Water Res., 2007, 41(18): 4139~4148
    149 G. V. Korshin, M. M. Benjamin, H. S. Chang, H. Gallard. Examination of NOM chlorination reactions by conventional and stop-flow differential absorbance spectroscopy, Environ. Sci. Technol., 2007, 41(8): 2776~2781
    150 P. A. Maurice, M. J. Pullin, S. E. Cabaniss, Q. Zhou, K. Namjesnik-Dejanovic, G. R. Aiken. A comparison of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates, Water Res., 2002, 36(9): 2357~2371
    151 L. Li, Z. Zhao, W. Huang, P. Peng, G. Sheng, J. Fu. Characterization of humic acids fractionated by ultrafiltration, Org. Geochem., 2004, 35(9): 1025~1037
    152 H. Bouwer. Issues in artificial recharge. Water Sci. Technol., 1996, 33(10-11): 381~390
    153 H. C. Hong, Y. Liang, B. P. Han, A. Mazumder, M. H. Wong. Modeling of trihalomethane (THM) formation via chlorination of the water from Dongjiang River (source water for Hong Kong's drinking water). Sci. Total Environ., 2007, 385(1-3): 48~54
    154 L. Rizzo, V. Belgiomo, M. Gallo, S. Meric. Removal of THM precursors from a high-alkaline surface water by enhanced coagulation and behaviour of THMFP toxicity on D. magna. Desalination, 2005, 176(1-3): 177~188
    155 J. Akkanen, J. V. K. Kukkonen. Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter. Environ. Toxicol. Chem., 2003, 22(3): 518~524
    156 J. Yoon, Y. Choi, S. Cho, D. Lee. Low trihalomethane formation in Korean drinking water. Sci. Total Environ., 2003, 302 (1-3): 157~166
    157 J. F. McCarthy, T. M. Williams, L. Liang, P. M. Jardine, L. W. Jolley, D. L. Taylor, A. V. Palumbo, L. W. Coope. Mobility of natural organic matter in a sandy aquifer. Environ. Sci. Technol., 1993, 27(4): 667~676
    158 K. Kaiser, G. Guggenberger. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geochem., 2000, 31(7-8): 711~725
    159 R. Clemente, M. P. Bernal. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere, 2006, 64(8): 1264~1273
    160 K. Kalbitz, D. Schwesig, J. Schmerwitz, K. Kaiser, L. Haumaier, B. Glaser, R. Ellerbrock. Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biol. Biochem., 2003, 35(8): 1129~1142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700