用户名: 密码: 验证码:
超声强化臭氧/蜂窝陶瓷催化氧化去除水中有机物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的迅猛发展和人类物质生活水平的提高,水环境污染已是普遍存在的问题,饮用水的卫生和安全也受到越来越多的关注。然而,城市给水常规处理工艺对于近年来微污染水源水中出现的一些有机污染物的处理能力有限,很难将其降解。使用非均相催化剂来提高臭氧氧化能力的高级氧化技术,因其工艺简单、易于回收处理、水处理成本较低、活性高等优点,得到了研究者的普遍重视。本文研发的超声强化蜂窝陶瓷催化臭氧化去除水中有机物的高级氧化技术,实现了超声降解与非均相催化臭氧化的有机结合,产生的协同效应使得蜂窝陶瓷催化臭氧化工艺在有效且方便的前提下进一步提高了氧化降解效能和催化剂的使用寿命,同时也弥补了单独声解水中污染物历时长、费用高、降解效率低等局限性,提高了声能的利用率和有机物的降解速度与程度。
     超声强化蜂窝陶瓷催化臭氧化工艺对水中硝基苯的降解效果随着单场频率的升高(20~40kHz)而增加。三个不同频率的垂直正交的超声场对水中硝基苯降解的强化效果最好,频率相差越大,强化效果越明显。
     超声/臭氧/蜂窝陶瓷组合工艺具有明显的协同效应,显著提高了水中硝基苯的降解效能。臭氧作为空化气体对组合工艺去除水中硝基苯具有最好的强化效能,且臭氧投量和气体流速与硝基苯的降解效能均成正相关性,连续投加可以明显获得优于一次性投加的去除效果。
     超声/臭氧/蜂窝陶瓷组合工艺对水中硝基苯的降解效能分别随着水体温度、初始pH值、水体循环流速、蜂窝陶瓷催化剂的用量和孔密度、硝基苯初始浓度和声强的升高而增加,均成正相关性。且降解效能按照混凝江水、自来水、沉后水、蒸馏水和超纯水的顺序呈现降低趋势。水中常见无机金属阳离子(Na~+、K~+、Ag~+、Mg~(2+)、Ca~(2+)、Ba~(2+)、Mn~(2+)、Fe~(2+)、Co~(2+)、Ni~(2+)、Cu~(2+)、Zn~(2+)、Cd~(2+)、Cr~(3+)、Fe~(3+)和Al~(3+))和阴离子(NO_3~- ,Cl~- ,HCO_3~-、H_2PO_4~―、SO_4~(2―)、CO_3~(2―)、HPO_4~(2―)和PO_4~(3―))对各个体系去除水中硝基苯降解效能的影响比较复杂,分别表现出了无影响、促进、先促进后抑制和抑制作用。水中常见有机物甲醛和邻苯二甲酸二丁酯可以抑制超声/臭氧/蜂窝陶瓷对水中硝基苯的降解,腐殖酸、甲醇和甲酸分别使得硝基苯的降解都经历了先促进后抑制的过程。
     蜂窝陶瓷催化剂的主晶相为2MgO·2Al_2O_3·5SiO_2,是标准的α-堇青石结构;催化剂的表面存在着表面羟基,其含量为9.13×10~(-6)mol~·m~(-2);催化剂表面的pHZPC为6.60。超声或/和蜂窝陶瓷催化剂的引入分别促进了体系中臭氧的分解,降低了水中的剩余臭氧浓度,减少了臭氧尾气浓度,提高了体系的臭氧利用率,加速了体系中~·OH和H_2O_2的生成,从而强化了对TOC的矿化能力。且超声/臭氧/蜂窝陶瓷联用具有最好的协同效应。
     氧化路径分析表明,硝基苯的降解经历了芳环的羟基化、有机氮的矿化、通过开环反应由芳香族化合物向脂肪族化合物的转化及脂肪族链式化合物的氧化;主要的芳香族化合物和有机羧酸等中间产物包括硝基苯酚类、硝基苯多酚类、苯酚、对苯二酚、对苯醌、丙二酸、乙酸、NO_3~-、顺丁烯二酸和草酸,进一步证实硝基苯的降解遵循~·OH氧化机理。
     超声/臭氧/蜂窝陶瓷对硝基苯的降解符合假一级反应动力学模型,其协同效应反应速率常数为13.62×10~(-2)min~(-1)。假一级表观反应速率常数分别与臭氧投量、臭氧气体流速、催化剂用量、催化剂孔密度、反应温度、初始pH值、水体循环流速和声强成正相关性。动力学经验方程式为: -dC/dt=k_0[O_3]~(0.98)[Cata]~(1.61)T~(0.54)(pH)~(0.98)I~(1.90)[C]。
     超声/臭氧/蜂窝陶瓷组合工艺对松花江水源水中TOC、COD_(Mn)、UV_(254)和NO2–-N的去除分别具有明显的协同效应,出水中大分子有机物的含量相对减少,小分子有机物的含量相对增加;出水中有机物的可生化降解性依次提高,体系中最易被细菌吸收、能直接同化成细菌体的有机物部分的含量增加。强化体系也使原水中的NH3-N和NO3–-N的浓度依次增加。超声/臭氧/蜂窝陶瓷工艺处理后可使松花江水源水中152种有机物减少到27种,并且在三致物、美国EPA优先污染物和内分泌干扰物的去除方面具有明显的优势。
With the development of industry and the increase of living condition, the pollution of water environment exists wildly. Therefore, the sanitary standards and the security of drinking water have received more and more much attention throughout the world. However, the conventional processes have been shown to achieve a very limited mineralization of organic micropollutants in drinking water treatment. In recent years, heterogeneous catalytic ozonation, as a promising advanced oxidation processes (AOPs), has been investigated for degrading organic compounds in water treatment due to its high oxidation potential.
     Ultrasound enhanced ceramic honeycomb catalytic ozonation, as a novel AOP, was invented to decompose organic compounds in water, using a vertical three ultrasonic reactor for the first time. This enhanced process achieved the organic combination of ultrasonic degradation and heterogeneous catalytic ozonation. The synergistic effect of the combined process further improved the degradation efficiency of the ceramic honeycomb catalytic ozonation system based on the advantages of efficiency and convenience, and increased the lifetime of ceramic honeycomb catalyst. Simultaneously, it also could remedy the expensive and ineffective limits of sonolysis alone for the degradation of contaminations in water, enhancing the using efficiency of ultrasonic intensity and the degradation rate of organic compound.
     The degradation efficiency of nitrobenzene in aqueous solution increased with the increase of single frequency (20~40 kHz) in the enhanced process of ceramic honeycomb catalytic ozonation by ultrasound. The enhancement efficiency was even more pronounced in the presence of vertical triple transducers with different frequency. The larger the difference between the frequencies used by the experiment, the higher enhancement efficiency was achieved.
     The combined process of ultrasound/ozone/ceramic honeycomb presented the obvious synergistic effect for the ozonation of nitrobenzene, resulting in a remarkable improvement of degradation efficiency. The best enhanced efficiency could be obtained when ozone was used as dissolved gas. In addition, total ozone applied and gas flow rate presented respectively the positive correlation with the degradation efficiency of nitrobenzene. With the same dosage of applied ozone, the multiple steps addition of ozone showed the higher degradation efficiency than that obtained by adding within one step before the start of the experiment.
     The degradation efficiency of nitrobenzene in the combined process increased with the increase of reaction temperature, initial pH, circle flow rate, amount of catalyst, pore density of catalyst, initial concentration of nitrobenzene and ultrasonic intensity, respectively, suggesting the positive correlation. Furthermore, the degradation efficiency of nitrobenzene decreased according to the following rule: flocculated river water, tap water, sedimentated water, distilled water and superpure water. The effects of general inorganic metal ions (Na~+、K~+、Ag~+、Mg~(2+)、Ca~(2+)、Ba~(2+)、Mn~(2+)、Fe~(2+)、Co~(2+)、Ni~(2+)、Cu~(2+)、Zn~(2+)、Cd~(2+)、Cr~(3+)、Fe~(3+) and Al~(3+)) and anions (NO_3~-,Cl~― ,HCO_3~-、H_2PO_4~―、SO_4~(2―)、CO_3~(2―)、HPO_4~(2―) and PO_4~(3―)) on the degradation efficiency of nitrobenzene were complex in the different processes, representing no remarkable effect, accelerating effect, restraining effect and so on, respectively. Moreover, formaldehyde and dibutyl phthalate could inhibit the degradation of nitrobenzene. The experimental results indicated that humic acid, methanol and formic acid could accelerate the degradation of nitrobenzene at the lower concentration, and the reactions were retarded at higher concentrations.
     The bulk crystalline phase of ceramic honeycomb catalyst was 2MgO·2Al_2O_3·5SiO_2, which was the standard structure ofα-cordierite. The determination result indicated that the density of surface hydroxyl groups existing on the surface of ceramic honeycomb was 9.13×10~(-6)mol·m~(-2), and the pHPZC was 6.60. The introduction of ultrasound or/and ceramic honeycomb catalyst accelerated the decomposition of ozone, resulting in the concentration decreases of residual ozone and offgas ozone. It also increased the utilization efficiency of ozone, the concentrations of ~·OH and H_2O_2 formation, leading to the improvement of mineralization level of TOC. The synergistic effect was even more pronounced in the combined process of ultrasound/ozone/ceramic honeycomb.
     The investigation of proposed oxidation pathways suggested that the degradation of nitrobenzene seemed to occur in several steps as follows: the hydroxylation of aromatic ring, the mineralization of organic nitrogen, the transformation of aromatics to aliphatics by destruction of ring structures and the oxidation of the aliphatic chains. The major intermediary degradation products detected in the experiment were nitrophenols, multihydroxy derivatives and low molecular weight organic acids, including nitrophenol isomers of o, p, m-nitrophenol, 4-nitrocatechol, 1,4-dihydroxy-2-nitrobenzene, 3,4,5-trihydroxynitrobenzene, 2,3,5-trihydroxynitrobenzene and 2,3,4,5-tetra-hydroxynitrobenzene. Phenol, hydroquinone, benzoquinone and nitrate ion were also detected as intermediates formation, confirming that ~·OH oxidation was the major reaction pathway in the present catalytic ozonation.
     The results indicated that degradation of nitrobenzene followed the pseudo-first-order kinetic model, and the rate constant kU-O-C of synergistic effect was 13.62×10~(-2)min~(-1). The pseudo-first-order rate constant exerted the positive correlation with total ozone applied, gas flow rate, amount of catalyst, pore density of catalyst, reaction temperature, initial pH, circle flow rate and ultrasonic intensity, respectively. The kinetic practical equation could be expressed as follows: -dC/dt=k_0[O_3]~(0.98)[Cata]~(1.61)T~(0.54)(pH)~(0.98)I~(1.90)[C]
     The combined process of ultrasound/ozone/ceramic honeycomb presented respectively the obvious synergistic effect for the removal of TOC、COD_(Mn)、UV_(254) and NO_2~--N from raw water of Songhuajiang River. The proportion of low molecular weight organic compounds in raw water from Songhuajiang River was increased after the treatment by the combined process. Furthermore, the combined process increased the biodegradablility and the assimilable organic carbon (AOC) of raw water, and also increased the concentrations of NH_3-N and NO_3~–-N. The total kinds of organic compounds decreased from 152 of raw water to 27 of treated water by the combined process of ultrasound/ozone/ceramic honeycomb. The experimental results illustrated that the combined process had the remarkable synergistic effect for the removals of“three cause”organic compounds, prior controlled organic compounds of EPA and endocrine disrupting chemicals in raw water from Songhuajiang River.
引文
1 J. Staehelin, J. Hoigné. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environ. Sci. Technol. 1982, 16(10): 676~681
    2 R. M. Hozalski, E. J. Bouwer, S. Goel. Removal of Natural Organic Matter (NOM) from Drinking Water Supplies by Ozone-biofiltration. Water Sci. Technol. 1999, 40(9): 157~163
    3 V. Camel, A. Bermond. The Use of Ozone and Associated Oxidation Processes in Drinking Water Treatment. Water Res. 1998, 32(11): 3208~3222
    4 U. von Gunten. Ozonation of Drinking Water: Part II. Disinfection and By-production Formation in Presence of Bromide, Iodide or Chlorine. Water Res. 2003, 37(7): 1469~1487
    5 E. Brillas, J. C. Calpe, P. L. Cabot. Degradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Ozonation Catalyzed with Fe2+ and UVA Light. Appl. Catal. B: Environ. 2003, 46: 381~391
    6 B. Kasprzyk-Hordern, M. Zió?ek, J. Nawrocki. Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment. Appl. Catal. B: Environ. 2003, 46: 639~669
    7 J. Trawczyński. B. Bielak, W. Mi?ta. Oxidation of Ethanol over Supported Manganese Catalysts-Effect of the Carrier. Appl. Catal. B: Environ. 2005, 55: 277~285
    8 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. Catalytic Ozonation of Oxalic Acid in an Aqueous TiO2 Slurry Reactor. Appl. Catal. B: Environ. 2002, 39(3): 221~231
    9 J.F. Beltrán, F. J. Rivas, R. Montero-de-Espininosa. A TiO2/Al2O3 Catalyst to Improve the Ozonation of Oxalic Acid in Water. Appl. Catal. B: Environ. 2004, 47: 101~109
    10 Y. X. Yang, J. Ma, Q. D. Qin, et al. Degradation of Nitrobenzene by Nano-TiO2 Catalyzed Ozonation. J. Mol. Catal. A: Chem. 2007, 267(1-2): 41~48
    11李来胜,陈乐,祝万鹏,等. CB-TiO2薄膜光催化臭氧氧化邻苯二甲酸二丁酯研究.高技术通讯. 2005, 15(8): 55~60
    12简丽,张彭义,毕海.水中天然有机物的臭氧强化光催化降解研究.环境科学学报. 2005, 25(12): 1630~1635
    13 J. S. Park, H. Choi, J. Cho. Kinetic Decomposition of Ozone and Para-chlorobenzoic Acid (pCBA) During Catalutic Ozonation. Water Res. 2004, 38: 2284~2291
    14 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. Iron Type catalysts for the Ozonation of Oxalic Acid in Water. Water Res. 2005, 39(15): 3553~3564
    15 H. Einaga, S. Futamura. Catalytic Oxidation of Benzene with Ozone over Alumina-supported Manganese Oxides. J. Catal. 2004, 227: 304~312
    16 H. Einaga, S. Futamura. Oxidation Behavior of Cyclohexane on Alumina-supported Manganese Oxides with Ozone. Appl. Catal. B: Environ. 2005, 60: 49~55
    17 S. P. Tong, W. P. Liu, W. H. Leng, et al. Characteristics of MnO2 Catalytic Ozonation of Sulfosalicylic Acid and Propionic Acid in Water. Chemosphere 2003, 50(10): 1359~1364
    18 B. Kasprzyk-Horden, U. Raczyk-Stanis?awiak, J. ?wietlik, et al. Catalytic Ozonation of Natural Organic Matter on Alumina. Appl. Catal. B: Environ. 2006, 62(3-4): 345~358
    19 M. Ernst, F. Lurot, J. C. Schrotter. Catalytic Ozonation of Refractory Organic Model Compounds in Aqueous Solution by Aluminum Oxide. Appl. Catal. B: Environ. 2004, 47(1): 15~25
    20 J. H. Qu, H. Y. Li, H. J. Liu, et al. Ozonation of Alachlor Catalyzed by Cu/Al2O3 in Water. Catal. Today 2004, 90: 291~296
    21皮运正,王建龙,吴迪. CuO和Cu(II)催化臭氧氧化的研究.环境化学. 2005, 24(2): 197~199
    22 B. Legube, N. K. V. Leitner. Catalytic Ozonation: a Promising Advanced Oxidation Technology for Water Treatment. Catal. Today 1999, 53: 61~72
    23 F. Delano?, B. Acedo, N. K. V. Leitner, et al. Relationship between the Structure of Ru/CeO2 Catalysts and Their Activity in the Catalytic Ozonation of Succinic Acid Aqueous Solutions. Appl. Catal. B: Environ. 2001, 29(4): 315~325
    24 C. Cooper, R. Burch. An Investigation of Catalytic Ozonation for theOxidation of Halocarbons in Drinking Water Preparation. Water Res. 1999, 33(18): 3695~3700
    25 J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese-catalysed Ozonation: Influence of Humic Substances. Water Res. 1999, 33(3): 785~793
    26 R. Gracia, S. Cortes, J. Sarasal, et al. TiO2-catalysed Ozonation of Raw EBRO River Water. Water Res. 2000, 34(5): 1525~1532
    27 M. A. Barakat,H. Schaeffer, G. Hayes, et al. Photocatalytic Degradation of 2-Chlorophenol by Co-doped TiO2 Nanoparticles. Appl. Catal. B: Environ. 2005, 57: 23~30
    28 F. J. Rivas, M. Carbajo, F. J. Beltrán, et al. Perovskite Catalytic Ozonation of Pyruvic Acid in Water: Operating Conditions Influence and Kinetics. Appl. Catal. B: Environ. 2006, 62(1-2): 93~103
    29 V. Fontanier, V. Farinesa, J. Albeta, et al.Study of Catalyzed Ozonation for Advanced Treatment of Pulp and Paper Mill Effluents. Water Res. 2006, 40(2): 303~310
    30 K. S. Suslick, Sonochemistry, Science, 1990, 247: 1439~1445
    31 J, Dewulf, H. van Langenhove, A. De Visscher, et al. Ultrasonic Degradation of Trichloroethylene and Chlorobenzene at Micromolar Concentrations: Kinetics and Modeling. Ultrason. Sonochem. 2001,(8): 143~150
    32 R. A. Sierka, G. L. Amy. Catalytic Effects of Ultraviolet Light and/or Ultrasound on the Ozone Oxidation of Humic Acid and Trihalomethane Precursors. Ozone Sci. Eng. 1985, 7: 47~61
    33 W. R. Hu, H. Y. Pei. Decomposed Characteristic of Azo Dyes by Ozonization with Ultrasonic Enhancement. Chinese Sci. Bull. 2002, 47(12): 986~989
    34 L. K. Weavers, N. Malmstadt, M. R. Hotfmann. Kinetics and Mechanism of Pentachlorophenol Degradation by Sonication, Ozonation, and Sonolytic Oznation. Environ. Sci. Technol. 2000, 34: 1280~1285
    35 T. M. Olson, P. R. Barbier. Oxidation Kinetics of Natural Organic Matter by Sonolysis and Ozone. Water Res. 1994, 28(6): 1383~1391
    36 L. K. Weavers, M. R. Hoffmann. Sonolytic Decomposition of Ozone in Aqueous Solution: Mass Transfer Effects. Environ. Sci. Technol. 1998, 32:3941~3947
    37 T. M. Olson, P. F. Barbier. Oxidation Kinetics of Natural Organic Matter by Sonolysis and Ozone. Water Res. 1994, 28(6): 1383~1391
    38 E. J. Hart, A. Henglein. Sonolysis of Ozone in Aqueous Solution. J. Phys. Chem. 1986, 90: 3061~3062
    39 W. K. Joon, M. R. Hoffmann. Kinetics and Mechanism of the Sonolytic Destruction of Methyltert-butyl Ether by Ultrasonic Irradiation in the Presence of Ozone. Environ. Sci. Technol. 1998, 32: 3194~3199
    40 L. K. Weavers, F. Ling, M. R. Hoffmann. Aromatic Compound Degradation in Water Using a Combination of Sonolysis and Ozonolysis. Environ. Sci. Technol. 1998, 32(18): 2727~2733
    41 N. H. Ince, G. Tezcanlí. Reactive Dyestuff Degradation by Combined Sonolysis and Ozonation. Dyes Pigments. 2001, 49: 145~153
    42 V. Ragaini, E. Selli, C. L. Bianch, et al. Sono-photocatalytic Degradation of 2-chlorophenol in Water: Kinetic and Energetic Comparison with Other Techniques. Ultrason. Sonochem. 2001, 8(3): 251~258
    43 J. Hoigné, H. Bader. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water. Part I. Non-dissociating Organic Compounds. Water Res. 1983, 17(2): 173~184
    44 J. Hoigné, H. Bader. The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions. Water Res. 1976, 10(5): 377~386
    45 K. L. Rakness, G. Gordon, B. Langlais, et al. Guideline for Measurement of Ozone Concentration in the Process Gas from an Ozone Generator. Ozone Sci. Eng. 1996, 18: 209~229
    46 H. Bader, J. Hoigné. Determination of Ozone in Water by the Indigo Method. Water Res. 1981, 15(4): 449~456
    47 H. Bader, V. Sturzenegger, J. Hoigné. Photometric Method for the Determination of Low Concentrations of Hydrogen Peroxide by the Peroxidase Catalyzed Oxidation of N,N-Diethyl-p-Phenylenediamine (DPD). Water Res. 1988, 22(9): 1109~1115
    48国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.中国环境科学出版社. 1989: 254~255, 264~265, 308~310
    49金伟,范瑾初.紫外吸光值(UV254)作为有机物替代参数的探讨.工业水处理. 1997, 17(6): 30~33
    50 I. C. Escobar, A. A. Randall. Assimilable Organic Carbon (AOC) and Biodegradable Dissolved Organic Carbon (BDOC): Complementary Measurements. Water Res. 2001, 35(18): 4444~4454
    51 H. Tamura, A. Tanaka. Surface Hydroxyl Site Densities on Mmetal Oxides as a Measure for the Ion-exchange Capacity. J. Colloid Interface Sci. 1999, 209: 225~231
    52 M. Mullet, P. Fievet, A. Szymezyk, et al. A Simple and Accurate Determination of the Point of Zero Charge of Ceramic Membranes. Desalination 1999, 121: 41~48
    53 C. Petrier, A. Francony. Ultrasonic Waste-water Treatment: Incidence of Ultrasonic Frequency on the Rate of Phenol and Carbon Tetrachloride Degradation. Ultrason. Sonochem. 1997, 4(4): 295~300
    54 G. Cum, G. Galli, R. Gallo, et al, Role of Frequency in the Ultrasonic Activation of Chemical Reaction. Ultrasonics. 1992, 30(4): 267~270
    55 B. David, M. Lhote, V. Faure. Ultrasonic and Photochemical Degradation of Chlopropham and 3-Chloproaniline in Aqueous Solution. Water Res. 1998, 32(8): 2237~2243
    56 I. Hua, M. R. Hoffmann. Optimization of Ultrasonic Irradiation as an Advanced Oxidation Technology. Environ. Sci. Technol. 1997, 31(8): 2237~2243
    57 J. D. Seymour, H. C. Wallace, R. B. Gupta. Sonochemical Reactions at 640 kHz Using an Efficient Reactor, Oxidation of Potassium Iodide. Ultrason. Sonochem. 1997, 4(4): 289~293
    58 I. Hua, R. H. Hochemer, M. R. Hoffmann. Sonochemical Degradation of p-Nitrophenol in a Parallel-plate Near-field Acoustical Processor. Environ. Sci. Technol. 1995, 29(11): 2790~2796
    59 G. J. Price, P. Matthias, E. J. Lenz. Use of High Power Ultrasound for the Destruction of Aromatic Compounds in Aqueous Solution. Process Saf. Environ. 1994, 72B(1): 27~31
    60 M. H. Entezari, P. Kruus, R. Otson. The Effect of Frequency on Sonochemical ReactionsⅢ: Dissociation of Carbon Disulfide. Ultrason. Sonochem. 1997, 4(1): 49~54
    61 R. Andreozzi, R. Marotta, R. Sanchirico. Manganese-catalysed Ozonation of Glyoxalic Acid in Aqueous Solutions. J. Chem. Technol. Biotechnol. 2000, 75(1): 59~65
    62 J. Ma, N J D. Graham. Preliminary Investigation of Manganese-catalyzed Ozonation for the Destruction of Atrazine. Ozone Sci. Eng. 1997, 19(3):227~240
    63 J. Ma, M. H. Sui, Z. L. Chen, et al. Degradation of Refractory Organic Pollutants by catalytic Ozonation-Activated Carbon and Mn-loaded Activated Carbon as Catalysts. Ozone Sci. Eng. 2004, 26(1): 3~10
    64孙志忠,马军.改性蜂窝陶瓷催化臭氧化降解水中微量的硝基苯.环境科学. 2005, 26(6):84~88
    65 S. Okouchi, O. Jojimo. Cativation-induced Degradation of Phenol by Ultrasound. Water Sci. Technol. 1992, 26(9~11): 2053~2056
    66王君,韩健涛,张向,等. TiO2催化超声降解甲基橙溶液.应用化学. 2004, 21(1): 32~35
    67 Y. E. Yoo, N. Takenaka, H. Bandow, et al. Characteristics of Volatile Fatty Acids Degradation in Aqueous Solution by the Action of Ultrasound. Water Res. 1997, 31(6): 1532~1535
    68 D. Drijvers, H. van Langenhove, L. N. T. Kim, et al. Sonolysis of an Aqueous Mixture of Trichloroethylene and Chlorobenzene. Ultrason. Sonochem. 1999, 6(1~2): 115~121
    69葛建团.声化学降解偶氮染料酸性红B(ARB)的研究.中国科学院研究生院.博士学位论文. 2003: 15~17
    70 Y. Ku. Utrasonic Destruction of 2-chlorophenol in Aqueous Solution. Water Res. 1997, 31(4): 929~932
    71 K. Gaddam, H. M. Cheung. Effect of Pressure, Temprerature and pH on the Sonochemical Destruction of 1,1,1-trichloroethane in Dilute Aqueous Solution. Ultrason. Sonochem. 2001, 8(8):103~109
    72 J. Hoigné. Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation Processs. In: J. Hrubec (Ed.). The Handbook of Environmental Chemistry. vol. 5 part C-Quality and Treatment of Drinking Water. Springerverlag. Berlin. Heidelberg. 1998: 84~141
    73 A. Roberto, C. Vincenzo, I. Amedeo, et al. Advanced Oxidation Processes(AOP) for Water Purification and Recovery. Catal. Today. 1999, 53: 51~59
    74 K. Sehested, J. Holcman, E. Bjergbakke, et al. Formation of Ozone in the Reaction of O3?― and the Decay of the Ozonide Ion Radical at pH 10–13. J. Phys. Chem. 1984, 88: 269~273
    75 A. .J. Elliot, D. R. Mccracken. Effect of Temperature on O?― Reactions and Equilibria: a Pulse Radiolysis Study. Radiat. Phys. Chem. 1989, 33: 69~74
    76 U. von Gunten. Ozonation of Drinking Water: PartⅠ. Oxidation Kinetics and Product Formation. Water Res. 2003, 37(7): 1443~1467
    77 C. H. Kuo, L. Zhong, M. E. Zappi, et al. Kinetic and Mechanism of the Reaction Between Ozone and Hydrogen Peroxide in Aqueous Solutions. Can. J. Chem. Eng. 1999, 77: 473~482
    78 J. D. Seymour, R. B. Gupta, Oxidation of Aqueous Pollutants Using Ultrasound: Salt-induced Enhancement. IEC Res. 1997, 36(9): 3453~3457
    79胡文勇,郑正,郑寿荣,等.超声波/零价铁降解对硝基苯胺的试验研究.环境污染治理技术与设备. 2005, 6(3): 28~32
    80 R. Andreozzi, A. Insola, V. Caprio, et al. The Kinetics of Mn(Ⅱ)-catalysed Ozonation of Oxalic Acid in Aqueous Solution. Water Res. 1992, 26(7): 917~921
    81汤鸿霄.当代化学前沿.中国致公出版社. 1997: 764~765
    82钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(上).中国环境科学出版社. 2000: 20~21
    83 R. L. Parfitt, J. D. Russell. Adsorption on Hydrous OxideⅣ: Mechanisms of Adsorption of Various Ions on Geomite. J. Soil Sci. 1977, 28: 297~305
    84 F. Sunada, A. Heller. Effects of Water, Salt, and Silicone Overcoating of the TiO2 Photocatalyst on the Rates and Products of Photocatalytic Oxidation of Liquid 3-octanol and 3-octanone. Environ. Sci. Technol. 1998, 32(2): 282~286
    85 M. Conceicao, D. A. Mateus. Kinetics of Photodegradation of the Fungicide Fenarimol in Natural Waters and in Various Salt Solutions: Salinity Effects and Mechanistic Considerations. Water Res. 2000, 34(4): 1119~1126
    86 J. L. Acero, U. von Gunten. Influence of Carbonate on Advance Oxidation Process for Drinking Water Treatment. In: Proceeding of Ozonation and AOPs in Water Treatment: Applications and Research, Poitiers, France, 23-25 September, 1998: 131~139
    87 H. Paillard, M. Doré, M. M. Bourbigot. Prospects Concerning Applications of Catalytic Ozonation in Drinking Water Treatment. In: Proceeding of 10th Ozone World Congress, Monaco, France, March 1991. 1: 313~329
    88 F. P. Logemann, J. H. J. Annee. Water Treatment with a Fixed Bed Catalytic Ozonation Process. Water Sci. Technol. 1997, 35(4): 353~360
    89 J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese-catalysed Ozonation: Influence of Radical Scavengers. Water Res. 2000, 34(15): 3822~3828
    90 B. Langlais, D. A. Reckhow, D. R. Brink. Ozone in Water Treatment: Application and Engineering. Chelsea, Michigan, USA: Lewis Publishers, Inc. 1991: 168~205
    91 J. Nawrocki, S. Bi?ozor, W. Ilecki. Utlenianie w Technologii Uzdatniania wody. W: Uzdatnianie Wody, Procesy Chemiczne i Biologiczne, (Praca zbiorowa pod Redakcj? J. Nawrockiego i S. Bi?ozora), Wydawnictwa Naukowe PWN. Warszawa-Poznań. 2001: 154~244
    92 W. J. Masschelein. Adsorption. In: Unit Processes in Drinking Water Treatment. New York. USA. Marcel Dekker Inc. 1992: 321~361
    93 J. L. Acero, S. Konrad, U. von Gunten. Influence of Carbonate on the Ozone/hydrogen Peroxide Based Advanced Oxidation Process for Drinking Water Treatment. Ozone Sci. Eng. 2000, 22: 305~328
    94欧阳小琨,陆胜民,应敏.臭氧降解甲基对硫磷机理研究.安全与环境工程. 2004, 11(2): 38~41
    95杜桂荣,孙占学,童少平,等.催化臭氧化降解有机废水及影响因素.东华理工学院学报. 2004, 27(2): 173~177
    96 J. Staechlin, J. Hoigné. Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactions. Environ. Sci. Technol. 1985, 19(12): 1206~1213
    97 H. Emma, D. A. Goslan, J. B. Fearing, et al. Seasonal Variations in the Disinfection By-product Precursor Profile of Reservoir Water. AQUA. 2002, 51(8): 475~482
    98 F. Xiong, N. J. D. Graham. Removal of Atrazine Through Ozonation in the Presence of Humic Substances. Ozone Sci. Eng. 1992,14(3): 263~268
    99 J. L. Acero, H. Stefan, C. Torsten. MTBE Oxidation by Conventional Ozonation and the Combination Ozone/hydrogen peroxide: Efficiency of the Processes and Bromate Formation. Environ. Sci. Technol. 2001, 35: 4252~4259
    100 G. V. Buxton, C. L. Greenstock, W. P. Helman, et al. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data. 1988, 17: 513~817
    101 J. Hoigné, H. Bader. Rate Constants of Reaction of Ozone with Organic and Inorganic Compounds in Water. Part II. Dissociating Organic Compounds. Water Res. 1983, 17(2): 185~194
    102 V. L. N. Karpel, M. Dore. Hydroxyl Radical Induced Decomposition of Aliphatic Acids in Oxygenated and Deoxygenated Aqueous Solutions. J. Photochem. Photobiol. A. 1996, 99: 137~143
    103 S. Wang, F. Shiraishi, K. A. Nakano. Synergistic Effect of Photocatalysis and Ozonation on Decomposition of Formic Acid in an Aqueous Solution. Chem. Eng. J. 2002, 87: 261~271
    104吴平谷,韩关根,王惠华,等.饮用水中邻苯二甲酸酯类的调查.环境与健康杂志. 1999, 16(6): 338~339
    105刘军,王珂,贾瑞宝,等.臭氧-活性炭工艺对饮用水中邻苯二甲酸酯的去除.环境科学. 2003, 24(4): 77~80
    106田怀军.某市饮用水源水、出厂水中有机污染物GC/MS定性分析.现代预防医学. 1999, 26(2): 133~136
    107郑和辉,赵立文,陶晶.水中邻苯二甲酸二丁酯的光催化降解.中国卫生检验杂志. 2005, 15(10): 1158~1160
    108李海燕,曲久辉.饮用水中DBP的臭氧氧化效能与影响因素.环境化学. 2004, 23(3): 278~282
    109 R. Gracia, J. L. Aragues, J. L. Ovelleiro. Study of the Catalytic Ozonation of Humic Substances in Water and Their Ozonation Byproducts. Ozone Sci. Eng. 1996, 18(3): 195~208
    110 R. Gracia, J. L. Aragues, J. L. Ovelleiro. Mn(II)-Catalysed Ozonation of Raw Ebro River Water and Its Ozonation By-Products. Water Res. 1998, 32(1): 57~62
    111 R. Andreozzi, V. Caprio, A. Insola, et al. The Ozonation of Pyruvic Acid in Aqueous Solutions Catalyzed by Suspended and Dissolved Manganese. Water Res. 1998, 32(5): 1492~1496
    112 P. V. L. Nathalie, D. Florence, A. Benito, et al. Reactivity of Various Ru/CeO2 Catalysts During Ozonation of Succinic Acid Aqueous Solutions. New J. Chem. 2000, 24(4): 229~233
    113 A. E. Rutkovskii, L. R. Vishnyakov, A. A. Chekhovshkii, et al. Use of Plasma Technology in Creating Catalysts on Carriers. Powder Metall. Met. C+. 2000, 39(3~4): 207~209
    114 B. Langlais, D. A. Reckhow, D. R. Brink. Ozone in Water Treatment: Application and Engineering. Lewis Publishers. Chelsea. MI. 1991: 20~34
    115胡文容,梦禄,高廷耀.超声强化臭氧氧化偶氮染料的脱色效能.中国给水排水. 1999, 15(11): 1~4
    116赵九生,时其昌,马福善.催化剂生产原理.科学出版社. 1986: 23~50
    117 D. K. Agrawal, V. S. Stubican. Germanium Modified Cordierite Ceramics with Low Thermal Expansion. J. Am. Ceram. Soc. 1986, 69(12): 847~851
    118刘晓芳,张枫,孙华君,等. Zn2+固溶堇青石体系的结构与红外辐射特性.功能材料. 2003, 34(1): 88~90
    119史志铭,梁开明,顾守仁.元素掺杂对堇青石晶体结构及热膨胀系数的作用.现代技术陶瓷. 2000, 2: 18~23
    120 W.斯她姆, J. J.摩尔根.水化学天然水体化学平衡导论.汤鸿霄,薛含斌,毛美洲,等译.科学出版社. 1987: 465~484
    121杨庆良,谢家理,许正,等.高湿度条件下O3在MnOx/Al2O3催化剂上的分解.四川大学学报. 2001, 4: 226~229
    122 J. Nawrocki, M. Rigney, A. M. Cormick, et al. Chemistry of Zirconia and Its Use in Chromatography. J. Chromatography A. 1993, 657: 229~282
    123陈岚,史惠祥,汪大翚.臭氧超声波联合降解除草剂2,4-D(Ⅰ)臭氧和超声波之间的协同作用.化工学报. 2004, 55(11): 1859~1863
    124陈岚,史惠祥,汪大翚.臭氧超声波联合降解除草剂2,4-D(Ⅱ)臭氧和超声波之间的协同作用.化工学报. 2004, 55(11): 1864~1868
    125 A. L. Kowal, M. ?widerska-Bró?. Oczyszczanie Wody. In: Proceeding of PWN. Warszawa-Wroc?aw. Poland. 1998: 166~173
    126 C. P. Huang, C. Dong, Z. Tang. Advanced Chemical Oxidation: Its PresentRole and Potential Future in Hazardous Waste Treatment. Waste Manage. 1993, 13: 361~377
    127钟理, C. H. Kuo.叔丁醇水溶液臭氧氧化的降解过程及反应机理研究.广东化工. 1998, 3: 24~26
    128 P. S. Bailey. The Reactions of Ozone with Organic Compounds. Chem. Rev. 1958, 58: 925~1010
    129 J. L. Sotelo, F. J. Beltrán, F. J. Ben?tez, et al. Ozone Decomposition in Water: Kinetic Study. Ind. Eng. Chem. Res. 1987, 26: 39~43
    130 R. J. Miltner, H. M. Shukairy, R. S. Summers. Disinfection Byproduct Formation and Control by Ozonation and Biotreatment. J. Am. Water Works. Ass. 1992, 84(11): 53~62.
    131 S. D. Richardson, J. A. D. Thruston, T. V. Caughtran, et al. Identification of New Drinking Water Disinfection Byproducts Formed in Presence of Bromide. Environ. Sci. Technol. 1999, 33: 3378~3383
    132 H. Utsumi, M. Hakoda, S. Shimabara, et al. Active Oxygen Species Generated During Chlorination and Ozonation. Water Sci. Technol. 1994, 30: 91~99
    133 K. Makino, A. Hagi. Mechanistic Studies on the Formation of Aminoxyl Radicals from 5,5-dimethyl-1-pyrroline-N-oxide in Fenton System. Characterization of Key Precursors Giving Rise to Background ESR Signals. Can J Chem. 1992, 70: 2818~2827
    134 R. Sauleda, E. Brillas. Mineralization of Aniline and 4-Chlorophenol in Acidic Solution by Ozonation Catalyzed with Fe2+ and UVA Light. Appl. Catal. B: Environ. 2001, 29: 135~145
    135 S. D. Richardson, J. A. D. Thruston, T. V. Caughtran, et al. Identification of New Ozone Disinfection Byproducts in Drinking Water. Environ. Sci. Technol. 1999, 33: 3368~3377
    136 M. H. Zhou, Z. C. Wu, J. Zhu, et al. p-Nitrophenol Degradation by Homogeneous Photochemical Oxidation Combined with Electrocatalysis. Chin. J. Catal. 2002, 23(4): 276~380
    137 A. Goi, M. Trapido, T. Tuhkanen. A Study of Toxicity, Biodegradability, and Some By-products of Ozonised Nitrophenols. Adv. Environ. Res. 2004, 8: 303~311
    138 M. S. Dieckmenn, K. A. Gray. A Comparison of the Degradation of of 4-Nitrophenol via Direct and Sensitized Pohotocatalysis in TiO2 Slurries. Water Res. 1996, 30(5): 1169~1183
    139 A. Di Paola, V. Augugliaro, L. Palmisano, et al. Heterogeneous Photocatalytic Degradation of Nitrophenols. J. Photochem. Photobiol. A: Chem. 2003, 155: 207~214
    140 K. Tanaka, W. Luesaiwong, T. Hisanaga. Photocatalytic Degradation of Mono-, Di- and Trinitrophenol in Aqueous TiO2 Suspension. J. Mol. Catal. A: Chem. 1997, 122: 67~74
    141 M. Trapido, Y. Veressinina, J. Kallas, Degradation of Aqueous Nitrophenols by Ozone Combined with UV-radiation and Hydrogen Peroxide. Ozone Sci. Eng. 2001, 32: 333~342
    142 S. J. Zhang, S. H. Feng, H. Q. Yu, et al. Degradation of Nitrobenzene in Wastewater byγ-Ray Irradiation. J. Environ. Sci. 2004, 16(3): 364~366
    143 M. K. Eberhardt. Radiation-induced Homolytic Aromatic Substitution. 6. The Effect of Metal Ions on the Hydroxylation of Benzonitrile, Anisole and Fluorobenzene. J. Phys. Chem. 1977, 81: 1051~1057
    144 M. A. Oturan, J. Pinson. Hydroxylation by Electrochemically Generated OH? Radicals. Mono- and Polyhydroxylation of Benzoic acid: Products and Isomers’Distribution. J. Phys. Chem. 1995, 99: 13948~13954
    145 N. V. Raghavan, S. Steenken. Electrophilic Reaction of the Hydroxyl Radical with Phenol. Determination of the Distribution of Isomeric Dihydroxycyclohexadienyl Radicals. J. Am. Chem. Soc. 1980, 102: 3495~3499
    146 A. O. Mehmet, P. Jose, C. Pascal, et al. Complete Destruction of p-Nitrophenol in Aqueous Medium by Electro-Fenton Method. Environ. Sci. Technol. 2000, 34: 3474~3479
    147 Q.-R. Li, C.-Z. Gu, Y. Di, et al. Photodegradation of Nitrobenzene Using 172 nm Excimer UV Lamp. J. Hazard. Mater. B. 2006, 133: 68~74
    148 D. S. Bhatkhande, V. G. Pangarkar, A. A. C. M. Beenackers. Photocatalytic Degradation of Nitrobenzene Using Titanium Dioxide and Concentrated Solar Radiation: Chemical Effects and Scaleup. Water Res. 2003, 37: 1223~1230
    149 J. Kiwi, C. Pulgarin, P. Peringer. Effect of Fenton and Photo-Fenton Reactions on the Degradation and Biodegradability of 2- and 4-Nitrophenols in Water Treatment. Appl. Catal. B: Environ. 1994, 3: 335~350
    150 E. Brillas, E. Mur, R. Sauleda, et al. Aniline Mineralization by AOP's: Anodic Oxidation, Photocatalysis, Electro-Fenton and Photoelectro-Fenton Processes. Appl. Catal. B: Environ. 1998, 16: 31~42
    151 N. Chitose, S. Ueta, S. Seino, et al. Radiolysis of Aqueous Phenol Solutions with Nanoparticles.1. Phenol Degradation and TOC Removal in Solutions Containing TiO2 Induced by UV,γ-Ray and Electron Beams. Chemosphere 2003, 50: 1007~1013
    152 F. J. Beltrán, J. Rivas, P.M.álvarez, et al. A Kinetic Model for Advanced Oxidation Processes of Aromatic Hydrocarbons in Water: Application to Phenanthrene and Nitrobenzene. Ind. Eng. Chem. Res. 1999, 38: 4189~4199
    153 N. B. Tahar, A. Savall. Electrochemical Degradation of Phenol in Aqueous Solution on Bismuth Doped Lead Dioxide: a Comparison of the Activities of Various Electrode Formulations. J. Appl. Electrochem. 1999, 29: 277~283
    154 C. Comninellis, C. Pulgarin. Electrochemical Oxidation of Phenol for Wastewater Treatment Using SnO2 Anodes. J. Appl. Electrochem. 1993, 23: 108~112
    155 P. L. Huston, J. J. Pigratello. Degradation of Selected Pesticide Active Ingredients and Commercial Formulations in Water by the Photo-assisted Fenton Reaction. Water Res. 1999, 33: 1238~1246
    156 N. Al-Hayek, B. legube, M. Doré. Catalytic Ozonation(FeⅢ/Al2O3) of Phenol and Its Ozonation By-products. Environ. Technol. Lett. 1989, 10(4): 415~426
    157 J. Ma, M. H. Sui, T. Zhang, et al. Effect of pH on MnOx/GAC Catalyzed Ozonation for Degradation of Nitrobenzene. Water Res. 2005, 39(5): 779~786
    158 K. M. Bulanin, A. V. Alekseev, D. S. Bystror, et al. IR Study of Ozone Adsorption on SiO2. J. Phys. Chem. 1994, 98: 5100~5103
    159 K. M. Bulanin, J. C. Lavalley, A. A. Tsyganenko. Infrared Study of Ozone Adsorption on TiO2(Anatase). J. Phys. Chem. 1995, 99: 10294~10298
    160 K. M. Bulanin, J. C. Lavalley, J. Lamotte, et al. Infrared Study of OzoneAdsorption on CeO2. J. Phys. Chem. B. 1998, 102: 6809~6816
    161 K. M. Bulanin, J. C. Lavalley, A. A. Tsyganenko. Infrared Study of Ozone Adsorption on CaO. J. Phys. Chem. B. 1997, 101: 2917~2922
    162印红玲.高湿度条件下臭氧分解催化剂(锰、银)的制备及性能研究.四川大学.硕士学位论文. 2003: 35~40
    163 Y. Joseph, W. Ranke, W. Weiss, Water on FeO(111) and Fe3O4(111): Adsorption Behavior on Different Surface Terminations. J. Phys. Chem. B. 2000, 104: 3224~3236
    164 U. von Gunten, Y. Oliveras. Advanced Oxidation of Bromide-Containing Waters: Bromate Formation Mechanisms. Environ. Sci. Technol. 1998, 32(1): 63~70
    165 M. Pera-Titus, V. García-Molina, M. A. Ba?os, et al. Degradation of Chlorophenols by Means of Advanced Oxidation Processes: a General Review. Appl. Catal. B Environ. 2004, 47(4): 219~256
    166 J. Staehelin, R. E. Buehler, J. Hoigné. Ozone Decomposition in Water Studied by Pulse Radiolysis. 2. Hydroxyl and Hydrogen Tetroxide (HO4) as Chain Intermediates. J. Phys. Chem. 1984, 88(24): 5999~6004
    167 K. Sehested, H. Corfitzen, J. Holcman, et al. On the Mechanism of the Decomposition of Acidic O3 Solutions, Thermally or H2O2-Initiated. J. Phys. Chem. A 1998, 102(16): 2667~2672
    168 E. Neyens, J. Baeyens. A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique. J. Hazard. Mater. 2003, 98: 33~50
    169 T. E. Agustina, H. M. Ang, V. K. Vareek. A Review of Synergistic Effect of Photocatalysis and Ozonation on Wastewater Treatment. J. Photochem. Photobiol. C: Photochemistry Reviews. 2005, 6(4): 264~273
    170 F. J. Beltrán, F. J. Rivas, P. Alvarez, et al. Kinetics of Heterogeneous Catalytic Ozone Decomposition in Water on an Activated Carbon. Ozone Sci. Eng. 2002, 24(4): 227~237
    171孙志忠,马军.水中本底成分对催化臭氧化分解水中微量硝基苯的影响.环境科学. 2006, 27(2): 88~93
    172 W. J. Masschelein. Unit Processes in Drinking Water Treatment. New York. USA. Marcel Dekker Publishers. 1992: 635~710
    173沈慧芳,程江,陈焕钦.间甲酚臭氧化反应动力学研究.化学工业与工程.2004, 21(3): 157~160
    174 B. Langlais, D. A. Reckhow, D. R. Brink. Ozone in Water Treatment: Application and Engineering. Michigan. United States of America. Awwa Research Foundation and Lewis Publishers. 1991:18~19
    175 B. F. Javier, B. H. Jesus, A. P. Jose, et al. Kinetics of p-Hydroxybenzoic Acid Photodecomposition and Ozonation in a Batch Reactor. J. Hazard. Mater. 2000, B73: 161~178
    176 W. Chu, M. H. Ching. Modeling the Ozonation of 2,4-Dichlorophoxyacetic Acid Through a Kinetic Approach. Water Res. 2003, 37: 39~46
    177 W. Chu, K. H. Chan, C. Y. Kwan. Modeling the Ozonation of Herbicide 2,4-D Through a Kinetic Approach. Chemosphere. 2004, 55: 647~652
    178 Z. Shiyuna, Z. Xuesong, L. Daotang, et al. Ozonation of Naphthalene Sulfonic Acids in Aqueous Solutions: Part II—Relationships of Their COD, TOC Removal and the Frontier Orbital Energies. Water Res. 2003, 37: 1185~1191
    179钟理,郭江海,严益群,等.苯的液相臭氧氧化反应动力学.化学反应工程与工艺. 1998, 14(2): 220~223
    180陈英,张浩,钟理,等.苯酚的O3/H2O2化学氧化反应动力学研究.化学反应工程与工艺. 2001, 17(1): 55~60
    181陈英,李艳莉,钟理.苯酚液相臭氧氧化和复合氧化反应动力学.上海环境科学. 2002, 21(1): 5~8
    182朱世云,张全兴,陈金龙,等.臭氧氧化降解水溶液中1-萘酚的动力学研究.环境化学. 1999, 18(3): 227~231
    183胡军,周集体,张爱丽,等.光催化—臭氧联用技术协同处理硝基苯废水.化工环保. 2004, 24: 192~195
    184 P. E. Savage, M. A. Smith. Kinetics of Acetic Acid Oxidation in Supercritical Water. Environ. Sci. Technol. 1995, 29: 216~221
    185 J. G. Lin, Y. S. Ma. Magnitude of Effect of Reaction Parameters on 2-Chlorophenol Decomposition by Ultrasonic Process. J. Hazard. Mater. 1999, B66: 291~305
    186 N. Her, G. Amy, D. Foss, et al. Variations of Molecular Weight Estimation by HP-Size Exclusion Chromatography With UVA Versus Online DOC Detection. Environ. Sci. Technol. 2002, 36: 3393~3399
    187胡前胜,宋宏,蔡承铿.广州市集中式供水“三氮”污染来源分析研究.中国卫生检验杂志. 2002, 12(5): 544~545
    188 J. Tanaka, M. Matsumura. Kinetic Studies of Removal of Ammonia from Seawater by Ozonation. J Chem Technol Biotechnol. 2002, 77: 649~656
    189 J. Tanaka, M. Matsumura. Application of Ozone Treatment for Ammonia Removal in Spent Brine. Adv. Environ. Res. 2003, 7: 835~845
    190 S. H. Lin, C. L. Wu. Removal of Nitrogenous Compounds from Aqueous Solution by Ozonation and Ion Exchange. Water Res. 1996, 30(8): 1851~1857
    191 P. Berger, N. V. L. Karpel, M. Doré, et al. Ozone and Hydroxyl Radicals Induced Oxidation of Glycine. Water Res. 1999, 33(2): 433~441
    192 J. Pietsch, F. Sacher, W. Schmidt, et al. Polar Nitrogen Compounds and Their Behaviour in The Drinking Water Treatment Process. Water Res. 2001, 35(15): 3537~3544
    193 L. Oliviero, J. J. Barbier, D. Duprez. Wet Air Oxidation of Nitrogen-Containing Organic Compounds and Ammonia in Aqueous Media. Appl. Catal. B: Environ. 2003, 40: 163~184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700